
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018
1199

LETTER

Having an Insight into Malware Phylogeny: Building Persistent
Phylogeny Tree of Families

Jing LIU†a), Student Member, Pei Dai XIE†, Meng Zhu LIU††, and Yong Jun WANG†, Nonmembers

SUMMARY Malware phylogeny refers to inferring evolutionary rela-
tionships between instances of families. It has gained a lot of attention over
the past several years, due to its efficiency in accelerating reverse engineer-
ing of new variants within families. Previous researches mainly focused on
tree-based models. However, those approaches merely demonstrate lineage
of families using dendrograms or directed trees with rough evolution infor-
mation. In this paper, we propose a novel malware phylogeny construc-
tion method taking advantage of persistent phylogeny tree model, whose
nodes correspond to input instances and edges represent the gain or lost of
functional characters. It can not only depict directed ancestor-descendant
relationships between malware instances, but also show concrete function
inheritance and variation between ancestor and descendant, which is sig-
nificant in variants defense. We evaluate our algorithm on three malware
families and one benign family whose ground truth are known, and com-
pare with competing algorithms. Experiments demonstrate that our method
achieves a higher mean accuracy of 61.4%.
key words: malware phylogeny, persistent phylogeny tree, evolutionary
relationship

1. Introduction

Malware, short for malicious software, is a pervasive prob-
lem confronted by network security. Nowadays, new mal-
ware variants have been increasing rapidly with polymor-
phic and metamorphic engines. They share similar function-
alities with encountered instances and exhibit characteris-
tics of families. Therefore, malware phylogeny construction
approaches have been put forward to thwart the enormous
variants.

Phylogeny model inference of malware aims at re-
constructing evolutionary relationships between instances
within families. It helps analysts to quickly understand a
new, unseen variant which is related to previously analysed
samples along evolution path. Besides, malware phylogeny
offers analysts a better understanding of how malware has
evolved and adapted to deal with new defensive over time.
It is also beneficial to forecast the evolution trend of fami-
lies.

Tree-based models are often used in previous re-
searches of malware phylogeny inference [1]–[6]. Phy-
logeny trees are branching diagrams that represent the re-
lationships among instances. Karim et al. [1] used the

Manuscript received August 8, 2017.
Manuscript revised October 19, 2017.
Manuscript publicized January 9, 2018.
†The authors are with the College of Computer, National Uni-

versity of Defense Technology, Changsha, Hunan, China.
††The author is with the School of Information Science & En-

gineering, Lanzhou University, Lanzhou, 730107, China.
a) E-mail: wwyyjj1971@126.com

DOI: 10.1587/transinf.2017EDL8172

Fig. 1 Different phylogeny tree models

UPGMA algorithm to generate unroot phylogeny trees.
Gupta et al. [6] proposed the graph pruning technique to
construct phylogeny trees of malcode based on temporal
informations. Seideman et al. [2] built phylogeny trees by
computing the minimal spanning tree based on distance met-
ric. However, those tree models are either dendrogram or
directed trees with simple ancestor-descendant relations, as
shown in Fig. 1 (a) and (b). They cannot depict what char-
acteristics are descendant inherited from ancestor and what
functionalities do ancestor vary from descendant, which is
invaluable for understanding new variants within families.

In this paper, we propose a novel malware phylogeny
construction method taking advantage of persistent phy-
logeny tree model to explicitly state the functionality deriva-
tions in evolution. Figure 1 (c) exhibits a plain output of our
method, in which each node corresponds to an input instance
and edges represent the gain or lost of functional characters.
Persistent phylogeny trees are constructed from binary char-
acter matrices under the restriction that each character can
be acquired and lost only once, which is meaningful on the
actual evolution history. In addition, the characters in our
work are behavior patterns extracted from dynamic system
call traces. After generating binary matrix for a given col-
lection of malware instances, we employ the red-black graph
algorithm to construct the persistent phylogeny tree. Mean-
while, the time complexity of our algorithm is polynomial.

We conduct experiments on three malware families and
one benign family whose ground truth are known and com-
pare with Gupta [6] and MST [2]. Results demonstrate that
our method performs better in overall accuracy, precision
and recall. It achieves a mean accuracy of 61.4%.

The rest of the paper is organized as follows. Section 2
describes the proposed method. Experiments are demon-
strated in Sect. 3. Conclusions are given in Sect. 4.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

1200
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

Table 1 Examples of behavior patterns

Behavior Pattern System Call Sequence

Download malicious files (getaddrinfo, socket, bind,
URLDownloadToFile)

Close security software (RegCreateKey, RegDeleteKey,
RegClostKey)

Copy itself to system folder (NtOpenFile, CopyFileA,
NtSetInformationFile)

2. Proposed Method

Given a collection of malware variants within families, phy-
logeny inference is to construct graphs depicting evolution-
ary relationships between the instances. Persistent phy-
logeny tree is one kind of tree models. It is constructed
from binary character matrices under the restriction that
each character can be acquired and lost only once. Each
instance is labeled by a tree node and edges represent char-
acter variations between ancestors and descendants.

In our work, we first take the behavior patterns ex-
tracted from dynamic system call sequences as functional
characters. Then we generate a binary matrix to map in-
stances and characters. After that, we employ the red-black
graph approach described in [7] to construct the persistent
phylogeny tree of families.

2.1 Behavior Pattern Generation

System calls are the interface of programs to interact with
operating system and access system resources. They are
vital in revealing functionality and behavior of programs.
For example, if a program invokes function URLDownload-
ToFile, we can infer that the program may contain malicious
intent to download remote files. As a consequence, system
calls are widely used in malware analysis.

In order to improve the effectiveness of system calls
representing the behavior of malware, we extract be-
havior patterns from system calls on behalf of func-
tional characters. There exist some specific system call
sequences that match specific malicious behavior pat-
terns. For example, one system call sequence (RegCre-
ateKey, RegDeleteKey, RegCloseKey) with parameter
“SOFTWARE\Microsoft\Windows\CurrentVersion\Run\
Kaspersky” indicates the behavior of closing security soft-
ware. Table 1 lists some examples of behavior patterns
found in our method.

We then generate a binary matrix M, where rows cor-
respond to malware instances and columns correspond to
behavior pattern characters. And each entry Mi j denotes
whether instance i has character j, as shown in Fig. 2.

In our work, we utilize a free online dynamic anal-
ysis sandbox service Malwr [8], to collect system calls of
malware instances. On one hand, dynamic analysis has
the advantage that it is resilient to low-level obfuscation
techniques, such as packers or mutations. On the other

Fig. 2 Behavior pattern matrix generation

Fig. 3 Red-black graph approach

hand, online analysis effectively avoids time-consuming and
resource-intensive local sandbox deployment. Malwr ser-
vice is based on Cuckoo sandbox. It automatically runs sub-
mitted files and returns analysis results through web pages.
Those pages are dynamic loaded via Javascript. Therefore,
we utilize Selenium Webdriver with PhantomJS to simu-
late browser operations and reload html pages automatically.
Then, we use Beautiful Soup, a python library to parse static
html files and extract system call sequences.

2.2 Persistent Phylogeny Construction

For a given character matrix M, with instances set S =
{S 1, S 2, · · · , S n} and characters set C = {c1, c2, · · · , cm}, per-
sistent phylogeny construction aims to depict evolutionary
relationships among S by a tree, under the restriction that
each character can be lost and gain only once. Meanwhile,
each instance is labeled by a node in the tree and edges de-
note character transformations during the evolution of an-
cestors and descendants.

The construction of a persistent phylogeny tree of a ma-
trix M, is equivalent to a sequences of specific graph opera-
tions on the corresponding red-black graph of M [7]. A red-
black graph GRB associated with M is a bipartite graph, with
vertex set V = S

⋃
C and black edge set E = {(u, v) | u ∈

S , v ∈ C,Muv = 1}. The GRB of matrix in Fig. 2 (d) is shown
in Fig. 3 (a).

A connected component of GRB is a subgraph where
any two vertexes are connected by paths. In Fig. 3 (a), it
comprises two connected components and the correspond-
ing vertex sets are: {c1, c2, c3, S 1, S 2, S 3} and {c4, c5, S 4, S 5}.
Let D(c) denote the set of instances in the connected com-
ponent of GRB that contains character c, and N(c) denote

LETTER
1201

the set of instances that are adjacent to c in GRB, that is
N(c) = {S |MS c = 1}. For example, D(c1) = {S 1, S 2, S 3}
and N(c1) = {S 1, S 2}.

The realization of c+ denotes adding an edge (x, y) in
the tree where the state of c goes from 0 of x to 1 of y. And
the corresponding GRB operation is that deleting all black
edges incident to c and adding red edges between c and in-
stances in D(c)\N(c). For example, Fig. 3 (b) is realization
of c1+ and c4+ after Fig. 3 (a). While, the realization of c−
denotes adding an edge (x, y) where the state of c goes from
1 to 0 and deleting all red edges incident to c. A character
c is universal or free means that it connects to all instances
in D(c) with black edges or red edges. For instance, c4 is
universal in Fig. 3 (a) and c1 is free in Fig. 3 (c).

Where, a character c of GRB is maximal if N(c) � N(c
′
)

for any character c
′
in GRB. Let Ci denote the characters that

have not been realized. Then the process of constructing
persistent phylogeny tree is as follows:

1. Realizing all universal characters c+ of GRB, and up-
dating GRB;

2. Realizing all free characters c− of GRB, and updating
GRB;

3. For each connected component of GRB, finding the
maximal character c in Ci, realizing character c+ and
updating graph GRB;

4. If graph GRB is empty, then stop. Otherwise, go 1-3;

5. Removing tree nodes that have no corresponding in-
stances, and merging edge characters.

The persistent phylogeny tree of matrix in Fig. 2 (d) is
shown in Fig. 1 (c). We use graphviz, a python module to
visualize the phylogeny tree.

3. Experiments

To evaluate the algorithm we proposed, we conduct experi-
ments on four families, of which true phylogenetic graphs
are described in [9]. Three of the families are malware:
Net-Worm.Win32.Mytob, Net-Worm.Win32.Koobface and
Email-Worm.Win32.Bagle, whose evolutions are depicted
by several experts. And the dataset is acquired from
VX Heavens [10]. The other benign family is Network-
Miner [11], which is gathered on the open-source repository.

NetworkMiner is a network forensic analysis tool. It
is used to detect OS, hostname, sessions through packet
sniffing [11]. The lineage of NetworkMiner is a straight
line sorted in increasing order of released versions. The
ground truth of NetworkMiner is described in our previous
work [12]. Figure 4 shows the persistent phylogeny tree of
NetworkMiner. We correctly recovered a large proportion
of ancestor-descendant relationships among the family. And
each edge explicitly depicts the function character variation
along evolution path.

Some instances may have the same behavior patterns,
such as version 1.0, 1.1, 1.2, 1.3 and 1.4 of NetworkMiner.

Fig. 4 Persistent phylogeny tree of networkminer

As a consequence, we construct an additional minimal span-
ning tree merging into persistent phylogeny tree, as shown
in Fig. 4. Let S e denote instances that share same be-
havior patterns, p denote the common parent of S e. We
first calculate the Euclidean distance between each pair of
{S e ∪ p}. It is computed based on the frequency of n-gram
system call sequences. Each instance comprises a vector
f = (f1, f2, . . . , fn), where fi denotes frequency of a spe-
cific n-gram system call sequence. Then we set p as the
root of MST and employ Prim algorithm to construct the
tree. Experiments demonstrate that when n = 3, our method
achieves best accuracy.

We utilize three metrics to quantify our results, the pre-
cision, recall and F-norm. F-norm is an overall metric to
measure the error on identified edges. They are defined as
follows:

precision =
true edges in graph

the total number of edges in graph

recall =
true edges in graph

the total number of edges in ground truth

||A − B||F−norm =

√∑
i

∑
j

(Ai j − Bi j)2

where, true edges denote correctly identified edges, A, B
denote adjacency matrices of the phylogeny graph we con-
structed and the ground truth graph. Each element Ai j (or
Bi j) is either 0 or 1, it denotes whether there exists a directed
edge from instance i to instance j.

We compare our method with Gupta [6] and MST in
[2], which are representative directed tree methods in mal-
ware phylogeny reconstruction. Table 2 shows the results of
the three algorithms. As the table in bold demonstrates, our
algorithm outperforms the other two algorithms in F-norm,

1202
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

Table 2 Results comparison

Family Method F-norm Precision Recall

Mytob

PPT 3.3166 0.50 0.4545

Gupta 6.0828 0.05 0.0526

MST 7.2801 0.0526 0.1053

Koobface

PPT 4.0 0.50 0.50

Gupta 5.9161 0.3158 0.3333

MST 7.2111 0.0278 0.0556

Bagle

PPT 3.8729 0.5882 0.5294

Gupta 6.5574 0.12 0.125

MST 8.3667 0.0208 0.0417

NetworkMiner

PPT 2.0 0.8667 0.9

Gupta 5.0 0.381 0.40

MST 5.6569 0.35 0.70

Fig. 5 Phylogeny trees of mytob

precision and recall of all families. Edge direction inference
is the main difficulty of malware phylogeny construction.
Our algorithm casts edge inference into function transfor-
mation relationship estimation. Thus effectively avoids dis-
tance based edge inference, which is error prone and local
optimal. Moreover, we explicitly depict function variations
over evolution on the basis of correctly recovered edges.

While, there exist some cases that character matri-
ces have no solution for persistent phylogeny tree. Fig-
ure 5 shows the persistent phylogeny tree of family Net-
Worm.Win32.Mytob. Mytob is a family of IRC bots and
spreads mainly through e-mail. The edge (au, aw) in the
persistent phylogeny tree is red dashed because the instance
aw has not been realized in the final red-black graph. It has
been proved [7] when red edges have conflict triple, that is
there exist pairs of instances and characters contain three bi-
nary pairs (0, 1), (1, 0), (1, 1), then the persistent phylogeny
problem is unsolvable, and the final graph will not be empty.
In next work, we will consider relaxing restrictions of per-
sistent phylogeny tree, such as conflict characters can be
gained or lost twice.

4. Conclusion

In this paper, we propose a novel malware phylogeny con-
struction method based on persistent phylogeny tree model.
It can not only demonstrate directed ancestor-descendant re-
lationships between instances within families, but also de-
pict function inheritance and variation between ancestor and
descendant, which is invaluable in reverser engineering of
malware variants. In our work, we take behavior patterns
extracted from dynamic system call traces as input for our
method. Then we employ the red-black graph algorithm
to construct persistent phylogeny tree. Finally, we conduct
experiments and results show that our method outperforms
other algorithms in overall accuracy, precision and recall.

Acknowledgements

This work is supported by NSFC (No.61472439,
No.61379052, No.61271252), National Natural Science
Foundation of China under Grant.

References

[1] M.E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny generation using permutations of code,” Journal in Com-
puter Virology, vol.1, no.1-2, pp.13–23, 2005.

[2] J.D. Seideman, B. Khan, and A.C. Vargas, “Malware biodiversity
using static analysis,” International Conference on Future Network
Systems and Security, vol.523, pp.139–155, Springer, 2015.

[3] J.D. Seideman, B. Khan, and A.C. Vargas, “Identifying malware
genera using the jensen-shannon distance between system call
traces,” Malicious and Unwanted Software: The Americas (MAL-
WARE), 2014 9th International Conference on, pp.1–7, IEEE, 2014.

[4] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette, T.
Patten, G. Zacharias, A. Lakhotia, S. Golconda, J. Bay, R. Hall, and
D. Scofield, “Malware analysis and attribution using genetic infor-
mation,” Malicious and Unwanted Software (MALWARE), 2012 7th
International Conference on, pp.39–45, IEEE, 2012.

[5] M.E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny using maximal pi-patterns,” EICAR 2005 Conference:
Best Paper Proceedings, pp.156–174, 2005.

[6] A. Gupta, P. Kuppili, A. Akella, and P. Barford, “An empirical
study of malware evolution,” 2009 First International Communica-
tion Systems and Networks and Workshops, pp.1–10, IEEE, 2009.

[7] P. Bonizzoni, G.D. Vedova, and G. Trucco, “Solving the persistent
phylogeny problem in polynomial time,” 2016.

[8] https://malwr.com/.
[9] B. Anderson, “Integrating multiple data views for improved malware

analysis,” 2014.
[10] http://vxheaven.org/.
[11] https://sourceforge.net/projects/networkminer/.
[12] J. Liu, Y. Wang, P.D. Xie, and Y.J. Wang, “Inferring phylogenetic

network of malware families based on splits graph,” IEICE Trans.
Inf. & Syst., vol.E100-D, no.6, pp.1368–1371, 2017.

http://dx.doi.org/10.1007/978-3-319-19210-9_10
http://dx.doi.org/10.1109/malware.2014.6999409
http://dx.doi.org/10.1109/malware.2012.6461006
http://dx.doi.org/10.1109/comsnets.2009.4808876
http://dx.doi.org/10.1587/transinf.2016edl8230

