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Research on Analytical Solution Tensor Voting

Hongbin LIN†a), Member, Zheng WU†, Dong LEI†, Wei WANG†, and Xiuping PENG††, Nonmembers

SUMMARY This letter presents a novel tensor voting mechanism —
analytic tensor voting (ATV), to get rid of the difficulties in original tensor
voting, especially the efficiency. One of the main advantages is its explicit
voting formulations, which benefit the completion of tensor voting theory
and computational efficiency. Firstly, new decaying function was designed
following the basic spirit of decaying function in original tensor voting
(OTV). Secondly, analytic stick tensor voting (ASTV) was formulated us-
ing the new decaying function. Thirdly, analytic plate and ball tensor vot-
ing (APTV, ABTV) were formulated through controllable stick tensor con-
struction and tensorial integration. These make the each voting of tensor
can be computed by several non-iterative matrix operations, improving the
efficiency of tensor voting remarkably. Experimental results validate the
effectiveness of proposed method.
key words: perceptual grouping, tensor voting, analytic tensor voting,
salient structure inference, structural information propagation

1. Introduction

Tensor voting is a computational framework that addresses
the problem of perceptual organization. It was originally
proposed by Medioni and colleagues [1], to convey human
perception principles into a unified framework that can be
adapted to extract visually salient elements from possibly
noisy or corrupted data. In the past 20 years, tensor vot-
ing has been proven versatile since its successfully adapta-
tion to various problems like contour and surface inferences,
stereo-matching and image processing, and so on.

Despite its effectiveness, tensor voting has not been
widely used in applications where efficiency is an issue, due
to the high computational cost of its traditional implemen-
tation. In the past 20 years, many efforts have been made
to improve its efficiency, e.g. [2] discard part of the votes
for the sake of efficiency. Moreno et al [3] proposed two
alternative formulations of tensor voting based on numer-
ical approximations of the votes, to reduce the high com-
putational complexity while keeping the same perceptual
meaning of the original tensor voting. [4] attempt to pro-
pose a closed-form solution to tensor voting (CFTV), which
does not require numerical integration. But, as pointed in
[3], [5], their methods yield very different values from those
obtained through the original tensor voting.
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This letter presents a novel analytic tensor voting
mechanism, deriving explicit formulations for stick, plate
and ball tensor voting. Rest of this letter is organized as
follows: Sect. 2 presents a new decaying function following
basic spirit of original decaying function. Section 3 provides
and proves the analytic stick, plate and ball tensor voting
(ASTV, APTV and ABTV). Section 4 shows an experimen-
tal comparison between the popular tensor voting methods
and the proposed method. Finally, Sect. 5 concludes the ob-
tained results and makes some final remarks.

2. Tensor Voting

The voting of 2-order symmetric tensor from point q to
neighboring point p is expressed by:

TV(p) =
∑

q∈neigh(p)

(
SV(v,Sq) + PV(v,Pq) + BV(v,Bq)

)

(1)

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sq = λS qe1eT

1

Pq = λPq

(
e1eT

1 + e2eT
2

)
Bq = λBq

(
e1eT

1 + e2eT
2 + e3eT

3

) (2)

are the stick, plate, and ball tensor components respectively,
λS q = λ1 − λ2, λPq = λ2 − λ3 and λBq = λ3, are the corre-
sponding saliencies of tensor at the voter q, v = p − q, SV,
PV and BV represent the stick, plate and ball voting of cor-
responding tensor components. λi and ei are the ith largest
eigenvalue and its corresponding eigenvector of the tensor
at the voter, respectively.

2.1 Stick Tensor Voting

Stick tensors are used to encode the orientation information
of the surface normal at a specific point. Tensor voting prop-
agates surfaceness in a neighborhood by voting of a stick
tensor based on Gestalt psychology [1]. Basic principle of
stick tensor voting is shown in Fig. 1. Let Sq be a stick ten-
sor at voter q, the tensor received at votee p can be computed
by

SV(Sq, v) = DF(Sq, v, σ)R2θSqRT
2θ (3)

where DF(Sq, v, σ) is the decaying function, R2θ is the rota-
tion, θ is the angle shown in Fig. 1.
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Fig. 1 Principle of stick tensor voting.

2.2 Plate Tensor Voting

Plate tensors are used to encode the orientation information
of the curve tangent at a specific point. Tensor voting prop-
agates curveness in a neighborhood by voting of a plate ten-
sor. Unlikely from stick tensor voting, plate votes are com-
puted in a constructive way. Let Pq be a plate tensor at voter
q, the tensor received at votee p can be computed by:

PV(Pq, v) =
λPq

π

∫ 2π

0
SV(v,SPq (α))dα (4)

where λPq is the saliency of plate components at voter,
SPq (α) is a stick tensor constructed by Pq.

2.3 Ball Tensor Voting

Ball tensors are used to encode junctionness or noiseness.
Ball tensor voting is also defined in a constructive way. Let
Bq be a ball tensor at voter q, the tensor received at votee p
can be computed by:

BV(Bq, v) =
3λ1b

4π

∫
Ω

SV(v,SB(β, γ))dΩ (5)

where Ω is the surface of the unitary sphere, SBq (β, γ) is a
stick tensor constructed by Bq.

Original tensor voting is highly time consuming since
(4) and (5) cannot be analytically simplified in original
mechanism. This letter presents the analytical tensor vot-
ing formulations based on novel tensor voting mechanisms.

3. The Decaying Function

In original tensor voting, the decaying function used to re-
duce the strength of the vote, which was defined by

DF(Sq, v, σ) = e−
s2+bκ2

σ2 (6)

where s = θ‖v‖sin θ is the arc length, κ = 2 sin θ
‖v‖ is the curvature,

b is a user defined parameter to weight the curvature, and σ
is the scale parameter, which determines the effective neigh-
borhood size.

In fact, DF(Sq, v, σ) was defined to penalize votes by
both distance and curvature. Following this spirit, [3] used
normalized curvature κ = sin θ instead of curvature κ. Fol-
lowing this spirit, we redefine the decaying function as

DF2(Sq, v, σ) = f ·
(
1 − vT Sqv
λS q vT v

)
. (7)

where f = e−
vT v
σ2 , vT Sqv

λS q vT v = sin2 θ is the square normalized

curvature κ. (7) means penalizing votes by both distance
and square normalized curvature.

4. Analytic Tensor Voting

The complexity of stick tensor voting mainly stems from the
computation of angle θ and the decaying function. Despite
the efficiency of stick tensor voting, it is rather difficult to
derive analytic solution to plate and ball tensor voting using
original definition of decaying function. Thus, we employ
the newly defined decaying function in (7) to formulate the
analytic stick, plate and ball tensor voting.

4.1 Analytic Stick Tensor Voting

Let Sq = λS qe1eT
1 be a stick tensor at q (where e1 is a uni-

tary vector), according to (3), stick tensor vote comprised
of computation of decaying function and tensor rotation. In
original tensor voting, the tensor rotation is computed by
R2θSqRT

2θ, which involves a time consuming computation of
angle θ. In this letter, a geometrical method is employed.
Let’s re-examine Fig. 1 from geometric view, the rotation in
(3) could be expressed as:

R2θ = R = I − 2
vvT

vT v
(8)

Thus the analytic solution to stick tensor voting, which is
named as ASTV(analytic stick tensor voting) would be:

ASTV(v,Sq) = DF2(Sq, v, σ)RSqRT = f RHSq RT (9)

and HSq is obtained by simple substitution, which is

HSq = Sq − vTSqvSq

λS q vTv
(10)

It can be concluded that (9) and (10) hold the same
properties as that in original stick tensor voting defined in
(3) on the aspects of decaying function and direction trans-
formation.

4.2 Analytic Plate Tensor Voting

Let Pq = λPq

(
e1eT

1 + e2eT
2

)
be a plate tensor at point q

(where e1 and e2 be orthogonal unitary vectors). Following
the constructive way, a unitary vector eθ was constructed.
The construction should fulfill constraints below:

(1) eθ should lay on the plane spanned by e1 and e2;
(2) Pq could be yielded through mathematical expectation

of stick tensor SPq(θ) = eθeT
θ ;

(3) eθ should be rotatable around the circle.

In this letter, eθ was constructed simply by
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eθ = e1 sin θ + e2 cos θ. (11)

where θ be uniform distributions with θ ∈ [0, 2π]. Hence,

Pq = λ
′
Pq

2π∫
0

Sq(θ) f (θ)dθ =
λ′Pq

2

(
e1eT

1 + e2eT
2

)
(12)

where λ′Pq = 2λPq,Sq(θ) = eθeT
θ , f (θ) = 1

2π .
Thus, the analytic solution to plate tensor voting, which

is named-as APTV(analytic plate tensor voting) would be

APTV(Pq, v) = 2λPq

2π∫
0

ASTV(Sq(θ), v) f (θ)dθ

= cRHPqRT

(13)

where

HPq = 2λPq

2π∫
0

[
Sq(θ) − vT Sq(θ)vSq(θ)

λS Pq(θ)vT v

]
f (θ)dθ

= Pq − 1
4λPqvT v

(
vT PqvPq + 2PqvvT Pq

)
.

(14)

It can be concluded that (13) and (14) hold the same proper-
ties as that in original plate tensor voting defined in (4).

4.3 Analytic Ball Tensor Voting

Let Bq = λBq

(
e1eT

1 + e2eT
2 + +e3eT

3

)
be a ball tensor at q

(where e1, e2 and e3 be orthogonal unitary vectors). Fol-
lowing the constructive way, a unitary vector eu,θ was con-
structed. The construction must fulfill constraints below:

(1) eu,θ must be spanned by e1, e2 and e3;
(2) Bq could be yield through mathematical expectation of

stick tensor SBq(θ) = eu,θeT
u,θ;

(3) eu,θ must be rotatable around the unitary sphere.

Let’s express above constraints in form below:

eu,θ = x(u, θ)e1 + y(u, θ)e2 + z(u, θ)e3 (15)

where x(u, θ), y(u, θ) and z(u, θ) fulfill:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2(u, θ) + y2(u, θ) + z2(u, θ) = 1∫
u,θ

x2(u, θ) f (u, θ)dudθ = c∫
u,θ
y2(u, θ) f (u, θ)dudθ = c∫

u,θ
z2(u, θ) f (u, θ)dudθ = c∫

u,θ
x(u, θ)y(u, θ) f (u, θ)dudθ = 0∫

u,θ
y(u, θ)z(u, θ) f (u, θ)dudθ = 0∫

u,θ
z(u, θ)x(u, θ) f (u, θ)dudθ = 0

(16)

where c is a constant, f (u, θ) is the joint probability density
function of random variable u and θ.

We construct x(u, θ), y(u, θ) and z(u, θ) by
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(u, θ) =
√

1 − u2 cos θ
y(u, θ) =

√
1 − u2 sin θ

z(u, θ) = u
(17)

where u and θ are independent uniform distribution, with
u ∈ [−1, 1] and θ ∈ [0, 2π]. It can be validated that (17)
fulfills constraints in (16), with c = 1

3 . Hence

Bq = λ
′
Bq

∫
u,θ

SBq(u, θ) f (u, θ)dudθ

=
λ′Bq

3

(
e1eT

1 + e2eT
2 + e3eT

3

) (18)

where λ′Bq = 3λBq,SBq(u, θ) = eu,θeT
u,θ, f (u, θ) = 1

4π .
Thus, the analytic solution to ball tensor voting, named

as ABTV(analytic ball tensor voting) would be

ABTV(Bq, v)

= 3λBq

1∫
u=−1

2π∫
θ=0

ASTV(SBq(u, θ), v) f (u, θ)dudθ

= cRHBqRT

(19)

where

HBq = 3λBq

1∫
u=−1

2π∫
θ=0

[
SBq(u, θ) − vT SBq(u,θ)vSBq(u,θ)

λS Bq(u,θ)vT v

]
f (u, θ)dudθ

= Bq − 1
5λBqvT v

(
vT BqvBq + 2BqvvT Bq

)
.

(20)

It can be concluded that (19) and (20) hold the same proper-
ties as that in original plate tensor voting defined in (5).

As a result, ASTV (defined in (9) and (10)), APTV (de-
fined in (13) and (14)) and ABTV (defined in (19) and (20))
guarantee each voting of tensor could be compute through
several matrix operations, avoiding the time consuming nu-
merical integration in original plate or ball tensor voting.

5. Experimental Results

5.1 Efficiency

Formulations were coded in Matlab on Intel Core 2 Quad
Q6600 with a 4GB RAM. Efficiencies of ATV are exam-
ined and compared with efficient (ETV in [3]), simplified
tensor voting (STV in [3]) and MM (in [6]) for their better
efficiency respect to OTV.

Averaged running time of ETV, STV, MM and pro-
posed ATV were examined and summarized in Table 1. An
observation with respect to this table is ETV, STV and MM
yield similar performance, taking nearly 0.05, 0.17, and 0.04
milliseconds for per stick, plate, and ball vote, respectively.
While, the proposed ATV takes nearly 0.01, 0.02 and 0.005
milliseconds for every stick, plate, and ball vote, respec-
tively. Especially, the proposed APTV yields significant im-
provement in efficiency with respect to comparing methods,

Table 1 Speed comparison of tensor voting methods (in ms per vote)

Methods Stick Votes Plate Votes Ball Votes
ETV 0.0524 0.1845 0.0537
STV 0.0511 0.1493 0.0392
MM — 0.2036 0.0397
ATV 0.0094 0.0216 0.0047
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Fig. 2 Point cloud used in the experiments (each with 3,721 points and
Gaussian noise with standard deviation of 0.2). (a) Point-sampled surfaces
of semisphere. (b) Point-sampled surfaces of cone.

Table 2 Mean angular error of e1 and e3 in degrees for the data sets of
Fig. 2

Methods Semisphere Cone
e1 e3 e1 e3

OTV 5.02 2.54 5.09 3.48
MM 5.09 3.20 5.12 4.24
ETV 5.01 2.53 5.09 3.46
STV 4.96 2.51 5.05 3.45
ATV 5.15 2.72 5.17 3.46

which guarantees more efficient curved structure inference
in structural analysis. The efficiency of ATV mainly bene-
fits from the analytic tensor voting formulation, which guar-
anteed each voting of tensor could be compute through sev-
eral vectors, matrix and exponential operations, avoiding the
time consuming computation of arcsine for angle θ, as well
as that of s′ip, in ETV and STV, which is usually fitted by
exponential functions using precomputed results by OTV.

5.2 Accuracy

In order to examine the accuracy of normal and tangent es-
timation for surface and curve points respectively, different
tensor voting techniques were applied to synthetic data sets
shown in Fig. 2. Accuracies were examined by comparing
the groundtruth with the results of obtained by different ten-
sor voting techniques.

For evaluating the accuracy of normal and curve tan-
gent estimation of different tensor voting techniques, mean
angular error between e1 and ideal normals on surface
points, e3 and ideal tangent at edge points have been used to
measure the accuracy, respectively. Tables 2 summarize the
results for data sets in Fig. 2, which shows that all methods
yielded similar accuracy for used noisy data sets. In addi-
tion, different noise level of data sets were used to examine
the accuracies of the tensor voting techniques, experimen-
tal results were shown in Fig. 3. As can be seen, all tested
methods performed similar accuracy descendence as noise
get larger. The proposed performed better than MM, but
slightly worse than OTV, ETV and STV (no more than 1 de-
gree larger mean angular error than OTV for normal and
tangent estimation respectively). This accuracy loss par-
tially comes the proposed decaying function in (7), which
is not identical to that used in OTV, although they follows
same spirit. Especially, for ATV, the π4 cut-off, which is of-

Fig. 3 Mean angular error of e1 and e3 for different noise level of cone.
(a) Mean angular error of e1 for different noise level of cone. (b) Mean
angular error of e3 for different noise level of cone.

ten used in most tensor voting techniques, is omitted for an-
alytic derivation. The authors think this level of accuracy
loss is affordable for most structural inference applications.

6. Concluding Remarks

In this letter, a novel tensor voting method — analytic ten-
sor voting was proposed. A new decaying function was de-
signed and explicit formulations for voting of stick, plate
and ball tensor were derived mathematically. These make
the tensor voting process can be accomplished through sev-
eral non-iterative matrix operations, which improves the ten-
sor voting efficiency notably. Experimental results on syn-
thetic data sets validated that the proposed ATV can yield
promising performance on efficiency with affordable accu-
racy loss. Extra efforts can be made on the extension of
proposed ATV to higher dimensions.
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