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Proof and Evaluation of Improved Slack Reclamation for Response
Time Analysis of Real-Time Multiprocessor Systems

Hyeongboo BAEK†, Member, Donghyouk LIM††, and Jinkyu LEE†a), Nonmembers

SUMMARY RTA (Response time analysis) is a popular technique to
guarantee timing requirements for a real-time system, and therefore the
RTA framework has been widely studied for popular scheduling algorithms
such as EDF (Earliest Deadline First) and FP (Fixed Priority). While a
number of extended techniques of RTA have been introduced, some of them
cannot be used since they have not been proved and evaluated in terms
of their correctness and empirical performance. In this letter, we address
the state of the art technique of slack reclamation of the existing generic
RTA framework for multiprocessors. We present its mathematical proof
of correctness and empirical performance evaluation, which have not been
revealed to this day.
key words: response time analysis, real-time multiprocessor systems, slack
reclamation

1. Introduction

Real-time systems have been widely used in avionics, au-
tomobile, and medical devices, in which violation of tim-
ing requirements may result in a catastrophe [1]. To this
end, the real-time systems community has developed var-
ious techniques for guaranteeing timing requirements, and
RTA (Response Time Analysis) is one of the most pop-
ular techniques. Starting with FP (Fixed priority) [2] on
uniprocessors [3], the generic RTA framework has been ex-
tended to multiprocessor systems for popular scheduling al-
gorithms [4]–[6].

Slack reclamation is a novel technique, which is a part
of the generic RTA framework to improve analytic capa-
bility by exploiting a slack value of each task (defined as
the difference between the response time and the relative
deadline). There have been two different slack reclamation
strategies (forward and backward ones) for multiprocessor
systems, which exploit a slack value of each task in opposite
principles. While the forward strategy proposed a decade
ago [4] scans the slack values from zero to the largest feasi-
ble value, the backward strategy introduced recently [7] in-
vestigates the values on the other way round. Although the
forward strategy was exploited and studied in several stud-
ies [4]–[6], the backward strategy (which dominates the for-
ward one) has not been identified in terms of its correctness
and empirical performance to this day, and thus it has not
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been used.
In this letter, we focus on the backward strategy, and

aim at identifying its correctness and empirical perfor-
mance. We first prove the correctness of the backward strat-
egy (Sect. 3). Then, we perform a case study, which ap-
plies the RTA framework with the backward strategy to EDF
(Earliest Deadline First) [2], and demonstrate the effective-
ness in terms of schedulability (Sect. 4). According to our
case study, the backward strategy improves performance of
the forward strategy up to 37%. We emphasize that the ap-
plicability of the backward strategy is not limited to EDF;
it can be used for any existing scheduling algorithm whose
RTA has been developed. Therefore, proof and evaluation
of the backward strategy to be done in the letter makes it
possible to further improve a number of existing scheduling
algorithms, which indicates significance of our study. The
contribution of this letter is summarized as follows: Formal
proof of the correctness of the state of the art slack reclama-
tion technique of RTA, and demonstration of its empirical
effectiveness with a case study.

2. System Model

We consider a set of sporadic real-time tasks τi ∈ τ, which
is expressed by τi(Ti,Ci,Di), denoting the minimum sepa-
ration (or period), the worst-case execution time, and the
relative deadline, respectively [8]. We consider constrained-
deadline tasks, in which Di ≤ Ti holds. A task τi invokes
a series of jobs, each separated from its predecessor by at
least Ti time units, executed at most Ci time units, and fin-
ished within Di time units after its release. Without loss of
generality, we let a quantum length be one time unit, and
therefore all task parameters are integer values.

We consider a multiprocessor system consisting of m
identical processors. We consider global, preemptive, and
work-conserving scheduling algorithms, which imply that a
job can be executed in any core allowing migration (global),
a higher-priority job can preempt a lower-priority job at any
time (preemptive), and any processor cannot be left idle
as long as there exists at least one active job which is not
currently-executing (work-conserving).

3. Slack Reclamation for the Generic RTA Framework

In this section, we first introduce how the generic RTA
framework works with the forward and backward strategies
of slack reclamation, and then we prove the correctness of
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the backward strategy.
The generic RTA framework calculates the response

time of τk as follows; the response time (denoted by Rk) rep-
resents the largest finishing time of the job of τk (we let j∗k
denote such a job) among finishing times of all jobs released
by τk. Let Si denote a slack value of τi, meaning that every
job of τi finishes its execution at least Si time units earlier
than its deadline. The framework computes Ik←i(�, Si) for
every τi ∈ τ \ {τk}, representing an upper-bound of a cumu-
lative length of time intervals such that jobs of τi execute but
j∗k cannot in an interval of length � starting from the release
time of j∗k, under a target scheduling algorithm. Then, the
generic RTA framework can compute a task’s response time
Rk with given slack values of other tasks, as follows [4].

Lemma 1 (Sect. 4.3 in [4]). For given {Si}τi∈τ\{τk}, τk’s re-
sponse time is calculated as follows.

Step 1. Set Rk to Ck.
Step 2. Check Rk > Dk; if it is true, we deem τk unschedu-

lable, finally.
Step 3. Check Eq. (1); if it is true, we set the response time

of τk to Rk, finally. Otherwise, we set Rk to the RHS
(Right-Hand Side) of Eq. (1), and go to Step 2.

Rk

≤ Ck +

⌊ 1
m
·

∑
τi∈τ\{τk}

min
(
Ik←i(Rk, Si),Rk −Ck + 1

)⌋
.

(1)

Proof. The proof is given in [4]; here we present a high-
level explanation. For j∗k not to execute in a single time slot,
there should exist m other jobs executed in the time slot.
Also, the number of such time slots is at least Rk−Ck+1, for
j∗k not to execute Ck time units within Rk time units. There-
fore, if the RHS of Eq. (1) holds, Ck amount of executions
are finished within Rk time units, implying that the response
time is at most Rk. �

Using Lemma 1, the following RTA framework with
the forward strategy of slack reclamation can compute re-
sponse time of every task τk ∈ τ along with slack value
update.

Lemma 2 (Sect. 4.3 in [4]). Setting Sk to 0 for every task
τk ∈ τ, we calculate the response time of every task τk ∈ τ
by Lemma 1. Thereafter, for every task τk ∈ τ, we update
Sk = Dk − Rk in case of Dk − Rk > Sk. Then, we repeat this
process until every task τk ∈ τ satisfies Rk ≤ Dk (τ is deemed
schedulable) or there is no slack value update (τ is deemed
unschedulable).

Proof. The proof is given in [4]; here we present a high-
level explanation. Suppose that Lemma 2 deems τ schedu-
lable but there exists a task τ j satisfying Rj > Dk. This
implies that Lemma 1 is wrong, which contracts. �

Here, we focus on the way how to update slack values

Algorithm 1 Backward strategy (τ)
1: for k = 0 to n do
2: Rk = Ck

3: Sk = Dk −Ck

4: end for
5: Update← TRUE
6: while Update == TRUE do
7: Update← FALSE
8: for k = 0 to n do
9: r← compute right-hand side of Eq. (1) in Lemma 1

10: if r > Dk then
11: return unschedulable
12: end if
13: if r > Rk then
14: Rk ← r
15: Sk ← Dk − Rk

16: Update← TRUE
17: end if
18: end for
19: end while
20: return schedulable

by the forward strategy. As shown in Lemma 2, slack values
are initially set to zero (which is the smallest possible one),
and a task’s slack value is updated on top of current slack
values of other tasks. However, the forward strategy can be
pessimistic as shown in the following example.

Example 1. Suppose that τ = {τ1(T1 = 6,C1 = 2,D1 =

6), τ2(3, 2, 3), τ3(2, 1, 2)} is scheduled on EDF on a two-
processor platform. Then, if we apply RTA for EDF us-
ing Lemma 2 (detailed interference calculation will be de-
scribed in Sect. 4), the first iteration with zero slack values
yields R1 = 5, R2 > 3 (unschedulable), and R3 > 2 (un-
schedulable), implying that S1 = 1, S2 = 0, and S3 = 0.
Even with further iteration, we cannot increase any slack
value; therefore, RTA for EDF using the Lemma 2 deems
τ unschedulable. However, τ is actually schedulable with
R1 = 4, R2 = 3, and R3 = 1, implying that S1 = 2, S2 = 0,
and S3 = 1.

Note that the generic RTA framework with the forward
strategy of slack reclamation does not scan S1 = 2, S2 = 0,
and S3 = 1. This is because, from S1 = 1, S2 = 0, and
S3 = 0, no slack value can be increased without increasing
other slack values. Therefore, we need to find a better way
to find feasible slack value combination.

We now illustrate how the backward strategy of slack
reclamation works with Algo. 1 (briefly introduced in [7]).
It first sets Rk to Ck and Sk to Dk − Ck for every task τk ∈ τ
(Lines 1–4), and then it calculates the response time of every
task τk ∈ τ by Lemma 1 (Line 9). Thereafter, for every task
τk ∈ τ, it updates Sk = Dk − Rk in case of Dk − Sk < Rk

(Lines 13–17). Then, it repeats this process until there is no
slack value update (τ is deemed schedulable) (Lines 6–20)
or there exists at least one task τ j satisfying Rj > Dj (τ is
deemed unschedulable) (Lines 10–11).

Then, we prove the correctness of the backward strat-
egy in Algo. 1 as follows.

Theorem 1. The resulting values {Rj}τ j∈τ in Algo. 1 upper-
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bound the response time of {τ j}τ j∈τ.

Proof. (Our own new proof) Suppose that Algo. 1 calculates
that the response time of every task τ j ∈ τ (denoted by Rj) is
no larger than Dj, but there exists a task τk whose actual re-
sponse time is strictly larger than Rk. We prove by showing
contradiction.

Let t0 denote the earliest time instant when there exists
a job (invoked by τk) whose actual response time is about
to be larger than the calculated response time Rk; we denote
the job J. From the definition, every job of every task τk ∈ τ
finishes its execution at least Dk − Rk time units earlier than
its deadline, until t0. Then, from Eq. (1), the response time
of J cannot be larger than Rk until t0, since the response time
of every job of every task τk ∈ τ is not larger than Rk with
slack values Dk − Rk. This yields contradiction. �

Now, we explain the difference between the RTA
frameworks with the forward and backward strategies of
slack reclamation (i.e., Lemma 2 and Theorem 1). In
Lemma 2, once a slack value of a task τk is set to Sk, the RTA
framework guarantees that every job of τk finishes its execu-
tion at least Sk time units earlier than its deadline. Therefore,
the lemma always seeks to find larger a task’s slack value on
top of valid slack values of other tasks. On the other hand, in
Theorem 1, even if a slack value of a task τk is set to Sk, the
RTA framework cannot guarantee its validity. Instead, the
validity holds only when there is no slack update. Since the
theorem starts the largest possible slack values, it is possible
for Theorem 1 to find larger slack values than Lemma 2.

4. Case Study: RTA for EDF

In this section, we apply the generic RTA framework with
the backward strategy, to EDF scheduling. To this end,
we first explain existing inference calculation for EDF, and
compare EDF schedulability by the framework with the
backward strategy (i.e., Theorem 1), with that by the frame-
work with the forward strategy (i.e., Lemma 2).

Under any work-conserving scheduling, Ik←i(�, Si) is
upper-bounded by Wi(�, Si) representing the maximum
amount of execution of jobs of τi in an interval of length
� calculated as follows [4]:

Wi(�, Si) = Ni(�, Si) ·Ci

+min
(
Ci, � + Di − Si −Ci − Ni(�, Si) · Ti

)
,
(2)

where Ni(�, Si) =
⌊
�+Di−Si−Ci

Ti

⌋
. As shown in Fig. 1 (a), the

amount of execution of jobs of τi in an interval of length
� is maximized when the first job of τi executes as late as
possible, the other jobs of τi execute as early as possible,
and the interval starts with the beginning of the first job’s
execution [4].

Under EDF, Ik←i(�, Si) is upper-bounded by Ek←i(Si)
denoting the amount of execution of jobs of τi in an interval
of length Dk when the deadline of the last job of τi is aligned
with the job of τk of interest, calculated as follows [4]:

Fig. 1 Two worst-case scenarios under any work-conserving scheduling
algorithm and EDF, for the maximum amount of execution of τi in an in-
terval of length �.

Table 1 Detailed calculation of response times of tasks in τ shown in
Example 1 by Lemma 2 (the forward strategy).

Iteration # S1 S2 S3 R1 R2 R3

1 0 0 0 2→ 4→ 5 2→ 4(> 3) 1→ 2→ 3(> 2)
2 1 0 0 2→ 4→ 5 2→ 4(> 3) 1→ 2→ 3(> 2)
3 1 0 0

Table 2 Detailed calculation of response times of tasks in τ shown in
Example 1 by Theorem 1 (the backward strategy).

Iteration # S1 S2 S3 R1 R2 R3

1 4 1 1 2→ 3→ 4 2 1
2 2 1 1 2→ 3→ 4 2→ 3 1
3 2 0 1 2→ 3→ 4 2→ 3 1
4 2 0 1

Ek←i(Si) =

⌊
Dk

Ti

⌋
·Ci

+min

(
Ci,max

(
0,Dk −

⌊
Dk

Ti

⌋
· Ti − Si

))
.

(3)

That is, as depicted in Fig. 1 (b), to maximize the amount of
higher-priority execution of jobs of τi than the job of τk of
interest in an interval from its release time to its deadline (of
length Dk), the interval should end with the deadline of the
last job of τi and all jobs of τi execute as late as possible [4].

Finally, we can use the following upper-bound for
EDF: Ik←i(�, Si) ≤ min(Wi(�, Si), Ek←i(Si)).

Example 2. Using the upper-bound, Tables 1 and 2
present detailed calculation of response times of tasks in
τ shown in Example 1 (τ = {τ1(T1 = 6,C1 = 2,D1 =

6), τ2(3, 2, 3), τ3(2, 1, 2)}). As shown in Table 1, Lemma 2
calculates that R1 = 5, R2 > 3, and R3 > 2, which means
τ is deemed unschedulable. On the other hand, Theorem 1
calculates that R1 = 4, R2 = 3, and R3 = 1, which means τ
is deemed schedulable, as shown in Table 2.
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Fig. 2 Evaluation result for m = 4.

To demonstrate the existence of many task sets like τ
in Example 1, we generate 100,000 task sets for m = 2,
4, and 8 using the technique widely used in a number of
studies [9], [10]. Following the same method in [9], [10],
we consider bimodal or exponential distribution for the task
utilization (Ci/Ti); each task utilization distribution shows
distinct average number of tasks in a task set (denoted by n)
and average task utilization (denoted by Ci/Ti), and 10,000
tasks are generated based on each distribution, thereby gen-
erating 100,000 tasks in total.

We investigate how much performance improvement
is achieved by the schedulaiblity analysis of the backward
strategy (denoted by BW) compared to that of the forward
strategy (denoted by FW) for different task utilization distri-
butions in order to show various average numbers of tasks
in a task set and various average task utilizations. Among
the ten task utilization distributions (bimodal and exponen-
tial utilization distributions with five input parameters), we
present bimodal distribution with 0.9 and exponential distri-
butions with 0.1 and 0.9 since they produce well-separated n
and Ci/Ti as the same was also exploited for a fair evaluation
in [10]. In our simulation setting for m = 4 (among m = 2,
4 and 8), each utilization distribution shows n of 9.5, 20.5
and 12.3, and Ci/Ti of 0.77, 0.25 and 0.5, respectively. The
similar trends are shown in [10]: n of 10.1, 43.1 and 14.5,
and Ci/Ti of 0.68, 0.1 and 0.39, respectively for m = 8. The
detail description of our task set generation method and the
fairness of considered task utilization distributions are pre-
sented in the supplement file [11].

Figure 2 presents ratio of the number of task sets
deemed schedulable by BW to that by FW (for constrained-
deadline task sets for m = 4) for bimodal distribution with
0.9 and exponential distributions with 0.1 and 0.9; note that
BW always better performs than FW as we discussed in the
previous section. Each line in Fig. 2 plots the ratio under
corresponding task utilization distribution over varying task
set utilization (Usys �

∑
τi∈T Ci/Ti).

We obtain a clear observation from Fig. 2 that BW
much outperforms FW for a smaller value of n (naturally,
a larger value of Ci/Ti); for a given utilization distribution,
values of n and Ci/Ti are inversely proportional as every uti-
lization distribution shares the similar average Usys owing

to our task set generation method. For example, BW im-
proves FW under bimodal distribution with 0.9 (n = 9.5 and
Ci/Ti = 0.77) up to about 37% while it does under exponen-
tial distribution with 0.1 (n = 20.5 and Ci/Ti = 0.25) up to
about 14% only. This is because both schedulability analy-
sis of FW and BW are based on the upper-bounded execution
(i.e., interference) calculated by Wi(�, Si) and Ek←i(Si). Such
upper-bounded executions are not exact ones, and thus the
pessimism stemming from the upper-bounded interference
of higher-priority tasks τi on a task τk of interest is propor-
tional to the number of tasks in a task set. Therefore, there is
a large room for BW’s schedulability to be improved if each
task set has fewer tasks (i.e., smaller n).

5. Conclusion

In this letter, we addressed the backward strategy of slack
reclamation of the existing generic RTA framework for
multiprocessors, by proving the correctness and demon-
strating its effectiveness. We performed a case study, in
which the proposed framework is applied to EDF; the study
demonstrates that the backward strategy improves perfor-
mance of the forward strategy up to about 37%.
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