
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017
2197

PAPER

Bit-Quad-Based Euler Number Computing

Bin YAO†, Nonmember, Lifeng HE†,††a), Member, Shiying KANG†††, Xiao ZHAO†,
and Yuyan CHAO††††, Nonmembers

SUMMARY The Euler number of a binary image is an important topo-
logical property for pattern recognition, image analysis, and computer vi-
sion. A famous method for computing the Euler number of a binary image
is by counting certain patterns of bit-quads in the image, which has been
improved by scanning three rows once to process two bit-quads simulta-
neously. This paper studies the bit-quad-based Euler number computing
problem. We show that for a bit-quad-based Euler number computing al-
gorithm, with the increase of the number of bit-quads being processed si-
multaneously, on the one hand, the average number of pixels to be checked
for processing a bit-quad will decrease in theory, and on the other hand, the
length of the codes for implementing the algorithm will increase, which
will make the algorithm less efficient in practice. Experimental results on
various types of images demonstrated that scanning five rows once and
processing four bit-quads simultaneously is the optimal tradeoff, and that
the optimal bit-quad-based Euler number computing algorithm is more ef-
ficient than other Euler number computing algorithms.
key words: Euler number, topological property, computer vision, pattern
recognition, image analysis

1. Introduction

The topological properties of binary images are very impor-
tant features in the fields of pattern recognition and com-
puter vision. Among others, the Euler number of a binary
image, which is defined as the difference between the num-
ber of connected components and that of holes in the image,
is one of the most important topological properties [1]. The
Euler number of a binary image will not change when the
image is stretched, flexed or rotated. Therefore, it has been
used in many applications: processing cell images in med-
ical diagnosis [2], document image processing [3], shadow
detection [4], reflectance-based object recognition [5], and
robot vision [6]. Moreover, the Euler number is the most
clinically useful feature for discriminating many cervical
disorders [7].

Manuscript received January 9, 2017.
Manuscript revised May 4, 2017.
Manuscript publicized June 20, 2017.
†The authors are with Artificial Intelligence Institute, College

of Electrical and Information Engineering, Shaanxi University of
Science and Technology, Xi’an, Shaanxi 710021, China.
††The author is with Faculty of Information Science and Tech-

nology, Aichi Prefectural University, Nagakute-shi, 480–1198,
Japan.
†††The author is with School of Computer Science, Xianyang

Normal University, Xianyang, Shaanxi 712000, China.
††††The author is with Faculty of Environment, Information and

Business, Nagoya Sangyo University, Owariasahi-shi, 488–8711
Japan.

a) E-mail: helifeng@ist.aichi-pu.ac.jp (Corresponding author)
DOI: 10.1587/transinf.2017EDP7012

Various types of algorithms have been proposed for
computing the Euler number of a binary image. There
are: (1) skeleton-based algorithm [8], which computes the
Euler number by use of the number of terminal points
and the number of three edge points in a skeletonized ver-
sion of the image; (2) bit-quad-based algorithm (BQ al-
gorithm) proposed by Gray [9], which computes the Euler
number by counting certain bit-quad (2 × 2 pixels) patterns
in the image; (3) run-based algorithm (RUN algorithm) [10],
which computes the Euler number by use of the numbers of
runs and the neighboring runs in the image; (4) labeling-
based algorithm (HCS algorithm) [11], which computes the
Euler number by labeling connected components and
holes in the image; (5) graph-based algorithms (GT algo-
rithm) [12], [13], which compute the Euler number by the
number of vertices, edges and basic faces in the shape cor-
responding to the given image.

Because the BQ algorithm is simple in principle,
and quite efficient in practice, it is adopted by the fa-
mous commercial image processing tools MATLAB [14].
This algorithm has been improved in Refs. [15] and [16].
For convenience, we denote the algorithms proposed in
Refs. [15], [16] as the 1-BQ algorithm and 2-BQ algorithm,
respectively.

This paper studies the bit-quad-based Euler number
computing problem. We show that by scanning more rows
simultaneously to process more bit-quads once and using the
information obtained when processing previous pixels, the
average number of pixels needed to be checked for process-
ing a bit-quad can continuously decrease in theory, which
will lead to a more efficient processing. However, with the
increase of the number of bit-quads being processed simul-
taneously, the length of the codes for implementing a corre-
sponding algorithm will increase, which will make the algo-
rithm less efficient in practice. Experimental results on var-
ious types of images showed that scanning five rows once
and processing four bit-quads simultaneously is the best
choice for the implementation of bit-quad based Euler num-
ber computation.

The rest of this paper is organized as follows: in the
next section, we review conventional Euler number com-
puting algorithms. We study bit-quad-based Euler num-
ber computation in Sect. 3. In Sect. 4, we use experimen-
tal results on various types of images to show the best im-
plementation for bit-quad-based Euler number computation
and compare it with conventional Euler number comput-

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



2198
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

ing algorithms. Lastly, we give our concluding remarks in
Sect. 5.

2. Reviews of Conventional Euler Number Computing
Algorithms

For an N × M-size binary image, we assume that the object
(foreground) pixels and non-object (background) pixels in a
given binary image are represented by 1 and 0, respectively.
As in most image processing algorithms, we assume that
all pixels on the border of an image are background pixels.
Moreover, we only consider 8-connectivity for object pixels
in this paper.

2.1 Bit-Quad-Based Algorithms

2.1.1 The BQ Algorithm

The BQ algorithm [9] for computing the Euler number of a
binary image is based on counting certain 2 × 2 pixel pat-
terns called bit-quads in the image. For each pixel b0 in
the raster scan, the BQ algorithm checks the four pixels in

the corresponding bit-quad

[
a0 b0

a1 b1

]
to confirm whether the

bit-quad is one of patterns Q1, Q2, and Q3 shown in Fig. 1.
Let W1, W2, and W3 be the numbers of patterns Q1, Q2, and
Q3 in a binary image, respectively. Then, the Euler number
of the image, namely E, can be computed by the following
formula.

E = (W1 −W2 − 2W3)/4 (1)

2.1.2 The 1-BQ Algorithm

The 1-BQ algorithm proposed in Ref. [15] is an improve-
ment on the BQ algorithm. Notice that the left two pixels
in the current bit-quad being processed occurred in the pre-
vious bit-quad, the 1-BQ algorithm utilizes the information
about the two pixels obtained during processing the previous
bit-quad for processing the current bit-quad, i.e., the 1-BQ
algorithm only needs to check the right two pixels in the cur-
rent bit-quad. Thus, for processing a bit-quad in the 1-BQ
algorithm, the number of pixels to be checked is 2.

Fig. 1 Bit-quads for computing the Euler number of a binary image in
the BQ algorithm.

2.1.3 The 2-BQ Algorithm

The 2-BQ algorithm [16] is a further improvement on the 1-
BQ algorithm. For computing the Euler number of a binary
image, the 2-BQ algorithm scans every other row of the im-
age. For the current pixel b0 in the scan, the 2-BQ algorithm

processes the bit-quad block

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 b0

a1 b1

a2 b2

⎤⎥⎥⎥⎥⎥⎥⎥⎦, to decide whether

the two bit-quads

[
a0 b0

a1 b1

]
and

[
a1 b1

a2 b2

]
are the patterns

to be counted or not. When processing a bit-quad block⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 b0

a1 b1

a2 b2

⎤⎥⎥⎥⎥⎥⎥⎥⎦, similar as in the 1-BQ algorithm, by use of the

information about the pixels a0, a1 and a2 obtained during
processing the previous bit-quad block, the 2-BQ algorithm
only needs to check three pixels b0, b1 and b2. Thus, for
processing a bit-quad, the number of pixels to be checked is
3/2 = 1.5.

2.2 The RUN Algorithm

The RUN algorithm [10] computes the Euler number of a
binary image by use of the number of runs and the number
of neighboring runs in the image.

A run is defined to be a maximal sequence of consec-
utive object pixels in a row. A run R1 is said to be a neigh-
boring run of another run R2 if there is at least a pixel in R1

such that it is 8-connected with a pixel in R2. For example,
in Fig. 2, there are three runs in the first row, four runs in the
second row and four neighboring runs marked by black oval
shape between two rows. Let R and NR be the number of
runs and that of neighboring runs in a binary image, respec-
tively, the Euler number of the image can be computed by
the following formula.

E = R − NR (2)

Then, the Euler number E of the image shown in Fig. 2
will be 3 + 4 − 4 = 3.

2.3 The HCS Algorithm

The HCS algorithm [11] computes the Euler number of a bi-
nary image according to the definition of the Euler number:

E = C − H (3)

where C is the number of the connected components, and H

Fig. 2 An example for explaining runs and neighboring runs in a binary
image.



YAO et al.: BIT-QUAD-BASED EULER NUMBER COMPUTING
2199

is that of the holes in the image, respectively.
For computing C and H in a binary image, this algo-

rithm extends the first scan of the labeling algorithm pro-
posed in Ref. [17] to calculate the numbers of connected
components and holes in the image. For each pixel in the
scan, the HCS algorithm assigns it a provisional label, and
all provisional labels assigned to an 8-connected component
or a 4-connected hole in the processed area of the image are
combined in an equivalent label set. Thus, after the raster
scan, all provisional labels assigned to a connected compo-
nent or a hole in the image will be combined in an equiv-
alent label set, respectively. Then, by counting the num-
ber of the equivalent label sets corresponding to connected
components and that for holes, we can obtain the number
of connected components, i.e., C, and that of holes, i.e., H,
respectively. Last, we can calculate the Euler number of the
image by the formula (3).

2.4 The GT Algorithm

Both of the algorithms proposed in Ref. [12] and Ref. [13]
are graph-based methods. The algorithm proposed in
Ref. [12] computes the Euler number of a binary image for
4-connectivity by use of graph theory. A binary image is
taken as a square graph, which is constructed by taking all
object pixels as vertices and adding all edges ei j such that
object pixels pi and p j is 4-neighbored. Let v, s, e be the
number of vertices, basic square faces† and 4-connected
edges, respectively, then the Euler number E can be com-
puted by the following formula.

E = v − e + s (4)

This algorithm can be extended to compute the Euler
number in a binary image for 8-connectivity as follows [13]:
Let v, s, e be the number of vertices, basic right-angled trian-
gle faces†† and 8-neighbored edges except those hypotenuse
edges inside basic square faces, respectively, then the Euler
number E of the image can also be computed by the formula
(4).

3. Study on Bit-Quad-Based Euler Number Comput-
ing

As mentioned above, the BQ algorithm [9], i.e., the basic bit-
quad-based Euler number computing algorithm, is simple in
principle and efficient in practices. The BQ algorithm has
been improved by use of the following two strategies: one is
proposed in Ref. [15], which uses the information obtained
when processing previous bit-quads to avoid checking pixels
repeatedly; the other is proposed in Ref. [16], which reduces
the number of pixels to be checked by scanning every other

†A basic square face is a pattern

[
1 1
1 1

]
in an image.

††A basic right-angled triangle face is one of the patterns[
1 1
1 0

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
and

[
0 1
1 1

]
in an image.

Fig. 3 Example for explaining our method in the Euler number compu-
tation of a binary image.

row and processing bit-quads two by two simultaneously.
For any bit-quad-based algorithm, when processing the

current bit-quads, by use of the information obtained during
processing the previous bit-quads, we can avoid checking
those pixels occurring in the previous bit-quads. In the other
words, for processing the current bit-quads, we only need
to check the pixels that did not occur in the previous bit-
quads. Thus, the number of pixels to be check for processing
a block of bit-quads is equal to the number of the pixels that
did not occurred in the previous bit-quad block. Suppose
that we need to check u pixels for processing a pixel block
consisting of v bit-quads, the average number of pixels to be
checked for processing a bit-quad will be u/v.

For convenience, hereafter, we denote a bit-quad-based
algorithm which processes n bit-quads simultaneously as n-
BQ algorithm.

As shown in Fig. 3, if we scan image rows every n rows,

and process the bit-quad block

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 c0

b1 c1
...
...

bn cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
corresponding to

the current pixel c0, we can process n bit-quads

[
b0 c0

b1 c1

]
,

. . . ,

[
bn−1 cn−1

bn cn

]
simultaneously. Because the pixels b0,

b1, . . . , bn have been checked when processing the bit-quad

block

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0

a1 b1
...
...

an bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
corresponding to each current pixel b0, we

only need to check the (n+1) pixels c0, c1, . . . , cn. Thus, the
average number of pixels checked for processing a bit-quad
will be (n + 1)/n.

Obviously, the larger n, the smaller the average num-
bers of pixels to be checked for processing a bit-quad, i.e.,
the more efficient the corresponding bit-quad-based algo-
rithm will be.

On the other hand, with the increase of n, for imple-
menting the n-BQ algorithm, we need to consider more and

more cases. When n = 1, the bit-quad block is

[
a0 b0

a1 b1

]
,

where there are four pixels, we should consider 24 cases.



2200
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

When n = 2, the bit-quad block is

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 b0

a1 b1

a2 b2

⎤⎥⎥⎥⎥⎥⎥⎥⎦, where there

are six pixels, we should consider 26 cases. In the same
way, there are 28 cases for n = 3, 210 cases for n = 4, . . . ,
and 22×(n+1) cases for n, to be considered.

Obviously, when the number of bit-quads to be pro-
cessed increases by 1, the number of cases to be consid-
ered will increase by 4 times, i.e., the length of the code
for implementing an algorithm will also increase by about 4
times; thus, the efficiency of the algorithm may decrease in
practice.

According to the above discussion, with the increase of
n, for the n-BQ algorithm, the average number of pixels to
be checked for processing a bit-quad, i.e., (n+1)/n, will de-
crease, which is advantageous for enhancing the efficiency.
On the other hand, the cases to be considered, i.e., 22×(n+1)

will increase, which is disadvantageous for enhancing the
efficiency. Thus, there will be an optimal n such that the
n-BQ algorithm is the most efficient. In the next section,
we will show, by experimental results on various types of
images, that the 4-BQ algorithm will be the most efficient.

Now we show that for any n, the n-BQ algorithm can
compute the Euler number in a given binary image correctly.
Because the BQ algorithm proposed in Ref. [9] is correct, we
do this work by showing that for any n, the n-BQ algorithm
does the exactly same work as does in the BQ algorithm.

As introduced above, for any n, the n-BQ algorithm
computes the Euler number of a binary image in the same
way as in the BQ algorithm, i.e., it first counts the certain bit-
quad patterns Q1, Q2, and Q3 shown in Fig. 1 in the image
and then uses the formula (1) to calculate the Euler number
of the image. Therefore, to show the correctness of the n-
BQ algorithm, we only need to show that each bit-quad is
checked once and only once by the n-BQ algorithm.

According to the above introduction, the pseudo codes
of the n-BQ algorithm for calculating the Euler number E of
an N × M binary image can be given as follows†.

†For convenience, we assume that N is dividable by n. If N =
nq + r, where q and r are integrals and 1 ≤ r < n, we can use the
n-BQ algorithm to process the first nq rows, and then use the r-BQ
algorithm to process the last r rows.

Obviously, each bit-quad in the image is checked once
and only once. Therefore, the n-BQ algorithm can calculate
the Euler number correctly.

Because any algorithm for computing the Euler number
of an N × M-size binary image will access all pixels of the
image at least once. Therefore, the lower bound of the time
complexity for Euler number computation is O(N × M).

It is obvious that for processing a bit-quad, the BQ
algorithm needs to check four pixels in the bit-quad, i.e.,
it requires four pixel accesses. Therefore, for an N × M-
size binary image, the total number of pixel accesses for
the BQ algorithm is 4N × M. On the other hand, as dis-
cussed above, for processing a bit-quad, the average number
of pixel accesses for the n-BQ algorithm is (n + 1)/n, thus,
the total number of pixel accesses for the n-BQ algorithm is
(n + 1)N × M/n.

As for space complexity, the BQ algorithm needs no
memory to calculate the Euler number. For the n-BQ algo-
rithm, as discussed above, in order to reduce the number of
pixels to be checked for processing a bit-quad, when pro-

cessing a bit-quad block

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a0 b0
...
...

an bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, it needs to record n + 1

pixels b0, . . . , bn for processing the next bit-quad block.
Thus, the necessary memory space for the n-BQ algorithm
is (n + 1).

4. Experimental Results

All algorithms used for our comparison were implemented
in the C language on a PC-based workstation (Intel Core i5-
3470 CPU@3.20GHz, 4GB Memory, Ubuntu Linux OS),
and compiled by the GNU C compiler (version 4.2.3) with
the option –O.

Because noise images have complicated geometric
shapes and complex connectivity, severe evaluations of al-
gorithms can be performed with these images. Forty-one
noise images of each of five sizes (128×128, 256×256, 512×
512, 1024×1024, and 2048×2048 pixels) were used for test-
ing (a total of 205 images). For each size, the 41 noise im-
ages were generated by thresholding of the images contain-
ing uniform random noise with 41 different threshold values
from 0 to 1000 in steps of 25. Moreover, fifty natural images
obtained from the Standard Image Database (SIDBA) devel-
oped by the University of Tokyo†† and the image database
of the University of Southern California†††, seven texture
images downloaded from the Columbia-Utrecht Reflectance
and Texture Database††††, twenty-five medical images ob-
tained from a medical image database of the University of
Chicago, and four specialized patterns images (stair-like,
spiral-like, saw-tooth-like, and checker-board-like images)
were used for testing these algorithms.

††http://sampl.ece.ohiostate.edu/data/stills/sidba/index.htm
(June 2010)
†††http://sipi.usc.edu/database/ (2017)
††††http://www1.cs.columbia.edu/CAVE/software/curet/ (2017)



YAO et al.: BIT-QUAD-BASED EULER NUMBER COMPUTING
2201

Fig. 4 Execution time versus image sizes of the n-BQ algorithms: (a) the
maximum execution time; (b) the average execution time.

All experimental results presented in this section were
obtained by averaging of the execution time for 5000 runs.

4.1 Finding an Optimal Bit-Quad-Based Euler Number
Computing Algorithm

We implemented the 3-BQ algorithm, 4-BQ algorithm and
5-BQ algorithm, respectively. Then, we compared the BQ
algorithm, 1-BQ algorithm, 2-BQ algorithm, 3-BQ algo-
rithm, 4-BQ algorithm, and 5-BQ algorithm on various types
of images.

4.1.1 Execution Time versus Image Sizes

All noise images were used for this test. The results are
shown in Fig. 4. From Fig. 4, we can find that for both the
maximum execution time and the average execution time,
all bit-quad-based algorithms have the ideal linear charac-
teristics versus image sizes. Moreover, the efficiency of the
n-BQ algorithm increases with the increase of n from 0 to 4,
but stops at n = 4.

4.1.2 Execution Time versus Image Densities

Forty-one noise images with a size of 512× 512 pixels were

Fig. 5 Execution time versus image densities of the n-BQ algorithms.

Fig. 6 Noise images with various densities.

used for testing the execution time versus the density of the
object pixels in an image. The results are shown in Fig. 5.
From Fig. 5, we can find that for all images, the efficiency of
the n-BQ algorithm increases with the increase of n from 0
to 4, but the efficiency of the 5-BQ algorithm is worse than
that of the 4-BQ algorithm. Nine noise images with densities
0.1, 0.2, . . . , and 0.9, respectively, are shown in Fig. 6.

4.1.3 Comparisons in Terms of the Maximum, Mean, and
Minimum Execution Times on Various Types of
Real Images

In this test, all the 50 natural images, 25 medical images,
7 texture images, and 4 artificial images with specialized
shape patterns were used for evaluating the algorithms. The
resolution of all of these images is 512 × 512 pixels. The
results are shown in Table 1. From Table 1, we find that for
all types of images, the 4-BQ algorithm is much more effi-
cient than the BQ algorithm, the 1-BQ algorithm, the 2-BQ
algorithm and the 3-BQ algorithm for all of the minimum
time, average time and the maximum time. Moreover, the
4-BQ algorithm is more efficient than the 5-BQ algorithm
for almost all images for the average time and the maximum
time.



2202
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

Table 1 Maximum, mean, and minimum execution time on various
types of images.

Fig. 7 Length of the source code of the n-BQ algorithms.

4.1.4 Comparisons on the Length of the Code of the n-BQ
Algorithm

Obviously, if the number of bit-quads to be processed in-
creases by 1, the number of cases to be considered will in-
crease by 4 times. Thus, if the length of the source code
of the 1-BQ algorithm is L, then the length of the source
code of the n-BQ algorithm will be about 4n−1 × L. The
relation of the real length of the source code of the n-BQ al-
gorithm versus n is shown in Fig. 7, which is consistent with
our analysis.

4.2 Comparison with Other Conventional Euler Number
Computing Algorithms

In this subsection, we compare the most efficient bit-quad-
based algorithm, i.e., the 4-BQ algorithm with the RUN al-
gorithm, the HCS algorithm, and the GT algorithm.

4.2.1 Execution Time versus Image Sizes

All noise images were used for testing the execution time

Fig. 8 Execution time versus image sizes of conventional algorithms:
(a) the maximum execution time; (b) the average execution time.

Fig. 9 Execution time versus image densities of conventional algorithms.

versus image sizes of each algorithm. The results are shown
in Fig. 8. From Fig. 8, we can find that both the maximum
execution time and the average execution time of all algo-
rithms have ideal linear characteristics versus image sizes.
Moreover, for either the maximum execution time or the av-
erage execution time, the 4-BQ algorithm takes much less
time than any of the other algorithms.

4.2.2 Execution Time versus Image Densities

Similar as in 4.1.2, forty-one noise images with a size of
512 × 512 pixels were used for testing the execution time



YAO et al.: BIT-QUAD-BASED EULER NUMBER COMPUTING
2203

Table 2 Maximum, mean, and minimum execution times on various
types of images.

Fig. 10 Execution time for the selected six images: (a) a portrait image;
(b) a fingerprint image; (c) a text image; (d) a medical image; (e) a texture
image; (f) an artificial image.

of an algorithm versus the density of the object pixels in an
image. The results are shown in Fig. 9. From Fig. 9, we can
find that for all images, the 4-BQ algorithm is better than
all other algorithms, especially the HCS algorithm and RUN
algorithm.

4.2.3 Comparisons in Terms of the Maximum, Mean, and
Minimum Execution Time on Various Types of Real
Images

All the 50 natural images, 25 medical images, 7 texture im-
ages, and 4 artificial images with specialized shape patterns
were used for evaluating the algorithms. The results are
shown in Table 2.

From Table 2, we find that for all types of images, our
algorithm is much more efficient than the HCS algorithm,
the RUN algorithm and the GT algorithm for all of the min-
imum time, the average time and the maximum time. The
execution time (ms) for the selected six images is illustrated

in Fig. 10, where the object pixels are displayed in black.

5. Conclusion

In this paper, we studied bit-quad-based Euler number com-
puting problem. On the one hand, we showed that the aver-
age number of pixels to be checked for processing a bit-quad
would decrease in theory with the increase of the number
of bit-quads being processed simultaneously. On the other
hand, the more bit-quads being processed simultaneously,
the more complicated an algorithm will be. Thus, the algo-
rithm will be less efficient in practice.

Experimental results on various types of images
demonstrated that scanning five rows once and processing
four bit-quads simultaneously is the optimal tradeoff, and
that the optimal bit-quad-based Euler number computing al-
gorithm is more efficient than other Euler number comput-
ing algorithms.

Acknowledgments

We thank the anonymous referees for their valuable com-
ments that improved this paper greatly. We are grateful to
our associate editor Dr. Shimada for his kind cooperation.
This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant No. 61603234, No.
61471227, No. 61601271, and the Scientific Research Pro-
gram Funded by Shaanxi Provincial Education Department
under Grant No. 16JK1099.

References

[1] R.C. Gonzalez and R.E. Woods, Digital Image Processing, third ed.,
Pearson Prentice Hall, Upper Saddle River, NJ 07458, 2008.

[2] A. Hashizume, R. Suzuki, H. Yokouchi, et al., “An algorithm of au-
tomated RBC classification and its evaluation,” Bio Medical Engi-
neering, vol.28, no.1, pp.25–32, 1990.

[3] S.N. Srihari, “Document image understanding,” Proc. ACM/IEEE
Joint Fall Computer Conference, Dallas, TX, pp.87–95, Nov. 1986.

[4] P.L. Rosin and T. Ellis, “Image difference Threshold strategies
and shadow detection,” Proc. British Machine Vision Conference,
pp.347–356, Sept. 1995.

[5] S.K. Nayar and R.M. Bolle, “Reflectance-based object recognition,”
International Journal of Computer Vision, vol.17, no.3, pp.219–240,
1996.

[6] B.P.K. Horn, Robot Vision, pp.73–77, McGraw-Hill, New York,
1986.

[7] B.W. Pogue, M.-A. Mycek, and D. Harper, “Image analysis for dis-
crimination of cervical neoplasia,” J. Biomedical Optics, vol.5, no.1,
pp.72–82, 2000.

[8] J.L. Dı́az de León S. and H. Sossa, “On the computation of the
Euler number of a binary object,” Pattern Recognition, vol.29, no.3,
pp.471–476, 1996.

[9] S.B. Gray, “Local properties of binary images in two dimensions,”
IEEE Trans. Comput., vol.C-20, no.5, pp.551–561, 1971.

[10] A. Bishnu, B.B. Bhattacharya, M.K. Kundu, C.A. Murthy, and T.
Acharya, “A pipeline architecture for computing the Euler number
of a binary image,” Journal of Systems Architecture, vol.51, no.8,
pp.470–487, 2005.

[11] L. He, Y. Chao, and K. Suzuki, “An algorithm for connected-
component labeling, hole labeling and Euler number computing,”
Journal of Computer Science and Technology, vol.28, no.3, pp.468–

http://dx.doi.org/10.1007/bf00128232
http://dx.doi.org/10.1117/1.429971
http://dx.doi.org/10.1016/0031-3203(95)00098-4
http://dx.doi.org/10.1109/t-c.1971.223289
http://dx.doi.org/10.1016/j.sysarc.2004.12.001


2204
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

478, 2013.
[12] M.H. Chen and P.F. Yan, “A fast algorithm to calculate the

Euler number for binary images,” Pattern Recognition Letters, vol.8,
no.5, pp.295–297, 1988.

[13] B. Yao, L. He, S. Kang, et al., “A novel bit-quad-based Euler number
computing algorithm,” Springerplus, 4(735), pp.1–16, 2015.

[14] C.M. Thompson and L. Shure, Image Processing Toolbox, The Math
Works, 2012.

[15] B. Yao, H. Wu, Y. Yang, Y. Chao, A. Ohta, H. Kawanaka, and L.
He, “An efficient strategy for bit-quad-based Euler number com-
puting algorithm,” IEICE Trans. Inf. & Syst., vol.E97-D, no.5,
pp.1374–1378, 2014.

[16] B. Yao, L. He, S. Kang, X. Zhao, and Y. Chao, “A further improve-
ment on bit-quad-based Euler number computing algorithm,” IEICE
Trans. Inf. & Syst., vol.E99-D, no.2, pp.545–549, 2016.

[17] L. He, Y. Chao, and K. Suzuki, “An efficient first-scan method for
label-equivalence-based labeling algorithms,” Pattern Recognition
Letters, vol.31, no.1, pp.28–35, 2010.

Bin Yao received the B.E. and M.S. de-
grees from the Shaanxi University of Science
and Technology, China, in 2003 and 2006, re-
spectively. From 2006 to 2010, he was an As-
sistant Professor with the College of Electrical
and Information Engineering, Shaanxi Univer-
sity of Science and Technology. Since 2011,
he has been a Lecturer. His research interests
include image processing, artificial intelligence,
pattern recognition. He is a member of CCF.

Lifeng He received the B.E. degree from
the Northwest Institute of Light Industry, China,
in 1982, the second B.E. degree from Xian
Jiaotong University, China, in 1986, and the
M.S. and Ph.D. degrees in AI and computer sci-
ence from the Nagoya Institute of Technology,
Japan, in 1994 and 1997, respectively. He is
a Professor with Aichi Prefectural University,
Japan, and a Guest Professor with the Shaanxi
University of Science and Technology, China.
From 2006 to 2007, he was with the University

of Chicago, USA, as a Research Associate. His research interests include
intelligent image processing, computer vision, automated reasoning, pat-
tern recognition, string searching, and artificial intelligence. He has been
serving as a referee for more than ten journals in computer science fields,
including the IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, the IEEE Transactions on Image Processing, the IEEE Transactions
on Computers, Pattern Recognition, Computer Vision and Image Under-
standing, and Pattern Recognition Letter. He is a member of IPSJ, IEICE,
and AAR.

Shiying Kang received the B.E. and M.S.
degrees from the Shaanxi University of Science
and Technology, China, in 2004 and 2007, re-
spectively. From 2007 to 2010, she was an As-
sistant Professor with the School of Computer
Science, Xianyang Normal University. Since
2011, she has been a Lecturer. Her research
interests include image processing and pattern
recognition.

Xiao Zhao received the B.E. and M.S. de-
grees from the Shaanxi University of Science
and Technology, China, in 2001 and 2006, re-
spectively. From 2001 to 2006, she was an As-
sistant Professor with the College of Electrical
and Information Engineering, Shaanxi Univer-
sity of Science and Technology. Since 2007,
she has been a Lecturer. Her research interests
include image processing, artificial intelligence,
pattern recognition, and string searching.

Yuyan Chao received the B.E. degree from
the Northwest Institute of Light Industry, China,
in 1984, and the M.S. and Ph.D. degrees from
Nagoya University, Japan, in 1997 and 2000, re-
spectively. From 2000 to 2002, she was a Spe-
cial Foreign Researcher of the Japan Society for
the Promotion of Science, Nagoya Institute of
Technology. She is a Professor with Nagoya
Sangyo University, Japan, and a Guest Profes-
sor with the Shaanxi University of Science and
Technology, China. Her research interests in-

clude image processing, graphic understanding, CAD, pattern recognition,
and automated reasoning.

http://dx.doi.org/10.1587/transinf.e97.d.1374
http://dx.doi.org/10.1587/transinf.2015edl8159
http://dx.doi.org/10.1016/j.patrec.2009.08.012

