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PAPER

An Analysis of Time Domain Reed Solomon Decoder with FPGA
Implementation

Kentaro KATO†a), Member and Somsak CHOOMCHUAY††b), Nonmember

SUMMARY This paper analyzes the time domain Reed Solomon De-
coder with FPGA implementation. Data throughput and area is carefully
evaluated compared with typical frequency domain Reed Solomon De-
coder. In this analysis, three hardware architecture to enhance the data
throughput, namely, the pipelined architecture, the parallel architecture,
and the truncated arrays, is evaluated, too. The evaluation reveals that the
number of the consumed resources of RS (255, 239) is about 20% smaller
than those of the frequency domain decoder although data throughput is
less than 10% of the frequency domain decoder. The number of the con-
sumed resources of the pipelined architecture is 28% smaller than that of
the parallel architecture when data throughput is same. It is because the
pipeline architecture requires less extra logics than the parallel architec-
ture. To get higher data throughput, the pipelined architecture is better than
the parallel architecture from the viewpoint of consumed resources.
key words: FPGA, reed solomon decoder, error correcting code, time do-
main

1. Introduction

Error control coding has become an essential means of en-
suring data integrity in a variety of applications including
satellite and mobile communications and the storage of data
in magnetic and optical media. Among the various codes
available for correcting multiple errors, the Reed-Solomon
code is one of the most important codes. The notation RS(N,
k) is commonly used to donate a Reed-Solomon code of
block size N symbols with each block containing k informa-
tion symbols. Each symbol is an n bit word, which is usually
interpreted as an element in GF[2n]. This can correct for t
errors, where t = (N − k)/2. The time domain algorithm
has been developed by Blahut [1] by taking the inverse DFT
of all the sequences and operators of the Berlekamp-Massey
(BM) algorithm. This operates directly on the received data
and generates the error sequence in the domain in which
the data is received. Hence it eliminates the need for trans-
form and inverse transformation operators such as syndrome
computation and Chien search. As a result, the complete al-
gorithm can be implemented by the repeated application of
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a single operation, which is of importance for hardware im-
plementation.

However, the main drawback of the time domain algo-
rithm is its high computation count. This is brought about
by the fact that time domain key equation solving algorithm
has to operate on the complete data sequence of length N,
while the frequency domain algorithm needs to work only
the syndrome sequence of length N − k. The computational
count can be reduced by modifying the algorithm or consid-
ering hardware architecture [2].

It is known that time domain Reed Solomon decoder
has lower area and longer computational time in general.
But it is not well analyzed quantitatively in circuit level from
practical point of view.

This paper analyzes the time domain Reed Solomon
Decoder with FPGA implementation. Data throughput and
area is carefully evaluated compared with typical frequency
domain Reed Solomon Decoder. In this analysis, three hard-
ware architecture to enhance the data throughput, namely,
the pipelined architecture, parallel architecture, and the trun-
cated array, is carefully evaluated in addition to the analysis
of the normal time domain Reed Solomon decoder.

The contribution of this paper is as follows.

• We first analyzed the performance of three different
styles of the architecture of time domain Reed Solomon
Decoder shown in [2] in the circuit level.
• We first revealed quantitatively that the pipelined archi-

tecture of the time domain Reed Solomon Decoder is
better than the parallel architecture from the viewpoint
of area cost.
• We provided the data for design of practical time do-

main Reed Solomon Decoder.

The rest of the paper is organized as follows. Section 2
shows the related works. Section 3 explains the detail of the
partially parallel time-domain Reed Solomon decoder. Sec-
tion 4 gives the evaluation results. Finally Sect. 5 concludes
the paper.

2. Related Works

Among codes employed to ensure data integrity, RS code is
preferably desired for burst error correction whilst convolu-
tional code is good for random error correction. The emerg-
ing of convolution code and LDPC code has led to the inten-
sive interest in iterative decoding. The Koetter Vardy (KV),
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a soft-input algebraic decoding [3] is quite well known. In-
spired by the research published by Yedidia et al. [4], Jiang
et al. [5] has proposed a stochastic shifting based itera-
tive decoding (SSID) scheme in decoding RS codes. They
showed that Belief Propagation algorithm (BPA) can be
used to decoded RS code. It should be noted that BPA
and SPA [6], [7] are commonly not practical for high den-
sity parity check code such as RS code in [5]. Regardless,
the extensive computation caused by Gaussian elimination
(GE), Jiang’s work can outperform about 2 dB (FER, at 200
outer rounds and 50 SPA) compared to HDD (Hard decision
decoding). However, their method diminishes as the code-
word length becomes long, i.e. With such a regard, Bel-
lorado et al. [8] has proposed an iterative RS decoder based
on reduced-density, binary, parity check matrix. The com-
putation complexity is reduced notably as the error rate is
better. They said algorithm seems to be implementable in
hardware. However, for the application which FER is not as
that low and energy saving is more concerned, the tradition
HDD is still reveal.

Architecture of higher performance Reed Solomon de-
coder has been researched for a long time, which is still one
of the hot research topics. A syndrome-based RS decoder
generally consists of three main blocks: a syndrome calcu-
lation (SC) block, a key equation solver (KES) block, and a
Chien search and error evaluation (CSEE) block [9]. Dayal
et al. [10] proposed the RS (255, 239) decoder for wireless
network 802.16 introduced pipelining in Chien-Search com-
ponent of decoder to improve the maximum frequency of
Reed-Solomon codes. Jiang et al. [11] proposed a multi-
gigabit Reed-Solomon (RS) convolutional codes (CC) de-
coder architecture for 60 GHz systems. They introduced
reformulated inversionless Berlekamp-Massey (RIBM) al-
gorithm via double-clock methods to improve the decod-
ing speed in the RS decoder part. Lee et al. proposed a
low-complexity, high-speed RS (255, 239) decoder architec-
ture using Modified Euclidean (ME) algorithm for the high-
speed optic communication systems [12]. These days, com-
munication system is often implemented on FPGA for lower
development costs and its re-configurability [13]. RS de-
coders for several communication systems have been im-
plemented on FPGA [14], [15]. However because FPGA is
vulnerable to soft error, soft error tolerant system design is
important for communication systems on FPGA [16].

3. Time Domain Reed Solomon Decoder

This section explains the target time domain Reed Solomon
decoder [2]. Either the Modified Euclidean (ME) algorithm
or BM algorithm can be used to solve a key equation for
an error locator polynomial and an error evaluator polyno-
mial [9]. The target decoder uses BM algorithm. Section 3.1
explains the decoding algorithm briefly. Section 3.2 de-
scribes hardware architecture.

3.1 Decoding Algorithm

The target algorithm is Algorithm D proposed in [2]. The
algorithm consists of 3 phases. In the first phase, the 9 pa-
rameters for this algorithm are initialized. After that, in the
2nd phase, the process to update the parameters following
the Eqs. (1a) and (1b) is repeated 2t times. This algorithm
does not require transform and inverse transformation oper-
ators such as syndrome computation and Chien search. As
a result, the complete algorithm can be implemented by the
repeated application of a single operation, which is of im-
portance for hardware implementation. Finally, in the 3rd
phase, error magnitude in each location i is calculated by
the Eq. (1c).
Algorithm D:
Initialize : λ0

i = γ
0
i = ω

0
i = 1;

ζ0
i = ξ

0
i = μ

0
i = 0;

L0 = 0;
K0 = u0 = 1;

for r = 1, 2, . . . 2t
begin
δr = 1 if both Δ � 0 and 2Lr−1 � r − 1; otherwise δr = 0. If
δr = 0, ur = ur−1 + 1;otherwise ur = 1.
for i = 0, 1, . . . ,N − 1
begin
Δr =

∑N−1
0 viλ

r−1
i α

i(r−1) (1.a)
Lr = δr(r − Lr−1) + (1 − δr)Lr−1

Kr = δrΔ
−1
r + (1 − δr)Kr−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λr
i
γr

i
ζr

i
ξri

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ΔrKr−1α
−iur 0 0

λr (1 − δr) 0 0
0 −ΔrKr−1urα

−i(ur+1−t0) 1 −ΔrKr−1α
−iur

0 0 δr (1 − δr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λr−1

i
γr−1

i
ζr−1

i
ξr−1

i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1.b)

[
ωr

i
μr

i

]
=

[
1 −ΔrKr−1α

−iur

λr (1 − δr)
] [
ωr−1

i
μr−1

i

]

end
end
ei =

ω2t
i

ζ2t
i

where λi = 0 (1.c)

3.2 Hardware Architecture

Here the hardware architecture of the time domain Reed
Solomon decoder to reduce the computational time is ex-
plained. The processing module computes the arithmetic
calculation formulated (1a), (1b), and (1c). The data are de-
coded by 2t times calculation with the processing modules.
First the processing module, which is the basic unit for the
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time domain decoder, is described in Sect. 3.2.1. Choom-
chuay proposed three hardware architectures to make the
computational time practical, namely pipelined architec-
ture, parallel architecture, and truncated arrays [2]. Sec-
tions 3.2.2, 3.2.3, and 3.2.4 explain the architecture, respec-
tively.

3.2.1 Processing Module

Figure 1 depicts the block diagram of the processing mod-
ule. The processing module calculates Δr and updates the 6
parameters λi, γi, ζi, ξi, ωi, μi (0 ≤ i ≤ N − 1). The left side
is the input-side. The right side is the output-side. The mod-
ule consists of Δr computation unit for calculating Δr and
the units for updating the 6 parameters, matrix coeff gener-
ation, iteration decision, and vector modification unit. N bit
shift register D(N) is connected to vi and each input line of
the 6 parameters. The processing module calculates N ele-
ments of each parameter sequentially with shift operation of
D(N). In addition to the N clock cycles, 1 clock cycle for
initialization and 1 clock cycle for updating Δr are needed.
Therefore, N + 2 clock cycles are required for the calcula-
tion. The waveforms of the logic simulation of a processing
module for RS (15, 9) is shown in Fig. 3.

Figure 2 shows the sequential decoding architecture us-
ing single Processing Module. The time domain architec-
ture decodes the encoded codeword by repeating computa-
tion of (1.a) and (1.b) 2t times. The precomputed Δr and
the 8 parameters are applied to the Processing Module and
the Processing Module generates the updated parameters.
The updated parameters are looped back to the inputs of the

Fig. 3 Waveform of logic simulation of RS (15, 9).

Fig. 1 Processing module

Fig. 2 Sequential architecture.
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Fig. 4 Pipelined architecture.

Processing Module via MUX. This process is repeated 2t
times. The value of Δ(r+1) is calculated simultanously. This
calculation requires N clock cycles. Here, let PM(N) be the
Processing Module including shift registers whose length is
common N.

In this case, data throughput TH (bit/s) of RS (N, k) is
expressed by the following formula.

TH =
f nk

2t(N + 2)
, (2)

where f is the cock frequency of the decoder, n is the bit
width of a code word, k is the number of information sym-
bols, and N is the block size.

3.2.2 Pipelined Architecture

As shown in Fig. 4, fully pipelined architecture consists of
2t processing modules connected serially each other. Each
processing module carries out each iteration from 1 to 2t of
the algorithm. The Δr comp unit of each stage calculates
the value of Δr+1 used in the next stage. In this case, data
throughput TH (bit/s) of RS (N, k) increases 2t times com-
pared with the sequential architecture. Accordingly, the data
throughput is expressed by the following formula.

TH =
f nk

(N + 2)
. (3)

This architecture requires 2t processing modules. There-
fore, the required hardware resources increase linearly as
the iteration time increases.

3.2.3 Parallel Architecture

Figure 5 shows the p-parallel processing architecture. The
decoding architecture is based on the sequential decoding
architecture shown in Fig. 2. However in the parallel archi-
tecture, the single Processing Module is replaced by the p
parallel Processing Modules. Let Br−1(i) be the set of pa-
rameters of the location i in the loop r − 1. The Process-
ing Modules calculate Br(i) · · · Br(i + p − 1) simultaniously.
Thus, the p parallel processing reduces the number of the
loop back operation and the length of shift registers of each
Processing Modules from N to (N + 1)/p. The number of
inputs of Δr comp unit increases p times compared with that
of the sequential architecture because the data of p locations
are processed simultaniously. The required resources for the
Δr comp unit is p times theoretically, too. On the other hand,
the clock cycles are reduced from N to (N + 1)/p.

Fig. 5 p parallel architecture.

Fig. 6 Truncated arrays.

In this case, data throughput TH (bit/s) is expressed by
the following formula.

TH =
f nk

2t((N + 1)p−1 + 1)
. (4)

The p parallel architecture requires p Processing Modules
and p MUXs. It causes area overhead. The number of whole
registers for storing the parameters is not changed because
the number of parameter values is not changed even if the
architecture is modified for parallel processing theoretically.

3.2.4 Truncated Arrays

The pipelined architecture can be truncated. An array con-
sisting of only t processing modules can be used and the
data recycled twice through the array as shown in Fig. 6.
Data throughput and hardware are halved in this case. It is
possible to truncate the array further.



KATO and CHOOMCHUAY: AN ANALYSIS OF TIME DOMAIN REED SOLOMON DECODER WITH FPGA IMPLEMENTATION
2957

4. Evaluation

Performance of time domain Reed Solomon decoder is ana-
lyzed compared with frequency domain Reed Solomon de-
coder on FPGA. The performance of Reed Solomon de-
coder depends on the number of the information symbols
per block size. Section 4.1 evaluates the sequential archi-
tecture. Sections 4.2, 4.3, and 4.4 analyze the performance
of the pipeline architecture, the parallel architecture, and the
truncated arrays, respectively. In this evaluation, the block
size N is fixed to 255. The bit width of an information sym-
bol n is 8 bit. Each hardware architecture of the time domain
Reed Solomon decoder is described by VHDL. QuartusII
13.1 Web Edition and ModelSim-Altera 10.1d are used for
the implementation. The target devices are CycloneIII, and
CycloneIVGX. The clock frequency of CycloneIII and Cy-
cloneIVGX are 50MHz and 100 MHz, respectively. Altera
Reed-Solomon II IP Core [17] is used as the frequency do-
main Reed Solomon Decoder for this evaluation. Here, the
two parameters for the evaluation, the ratio of data through-
put RT H and the ratio of consumed resources RN , are defined
as follows.

RT H =
THT

THF
, (5)

where THT and THF are data throughput of the evaluated
time and frequency domain Reed Solomon decoder, respec-
tively.

RN =
NT

NF
, (6)

where NT and NF are the number of logic elements used
for the syntheses of the time and frequency domain Reed
Solomon decoder, respectively.

RT H indicates the ratio of the data throughput of the
frequency domain decoder against the time domain decoder.

4.1 Sequential Architecture

This section evaluates the basic sequential architecture. In
this evaluation, the block size is fixed to 255. First, the
data throughput and the number of consumed resources, is
evaluated when the size of information symbols k = 249,
243, 239, 233, and 223. Data throughput is calculated from
the Eq. (2). The number of consumed resources is obtained
from the synthesis result.

Table 1 shows the evaluation result. As size of infor-
mation symbol increases, data throughput increases. The
column CIII is the results of Cyclone III. The column CIV
is the results of Cyclone IV. According to the result, data
throughput of time domain decoder is lower than that of
frequency domain decoder. The frequency domain decoder
does require no iteration of calculation. On the other hand
the time domain decoder requires 2t iterations. Therefore as
the size of information symbols decreases the data through-
put becomes lower. The value of RT H is 0.08 when k=243.

Table 1 Data throughput of sequential architecture of time domain Reed
Solomon Decoder (Mbit/s).

N k
freq domain time domain RT H

CIII CIV CIII CIV CIII CIV

255 249 390.6 781.2 64.6 129.2 0.17 0.17
255 243 381.2 762.4 31.5 63.0 0.08 0.08
255 239 374.9 748.8 23.2 46.5 0.06 0.06
255 233 365.5 731.0 16.5 33.0 0.05 0.05
255 223 349.8 699.6 10.8 21.7 0.03 0.03

Table 2 Resources used for synthesizes of frequency and time domain
decoder (N = 255).

k res
freq domain time domain RN

CIII CIV CIII CIV CIII CIV

lelm 1,585 1,585 1,742 2,471 1.10 1.56
249 comb 1,478 1,478 1,697 1,687 - -

reg 645 645 96 852 - -
mem 5,120 5,120 795 120 - -
lelm 2,218 2,218 1,742 2,471 0.65 0.94

243 comb 2,083 2,083 1,697 1,687 - -
reg 945 945 96 852 - -

mem 5,120 5,120 795 120 - -
lelm 2,664 2,623 1,742 2,471 0.65 0.94

239 comb 2,509 2,508 1,697 1,687 - -
reg 1,148 1,138 96 852 - -

mem 5.120 5,120 795 120 - -
lelm 3,312 3,312 1,742 2,471 0.52 0.75

233 comb 3,133 3,133 1,697 1,687 - -
reg 1,437 1,437 96 852 - -

mem 5,120 5,120 795 120 - -
lelm 4,383 4,342 1,742 2,471 0.39 0.57

223 comb 4,160 4,160 1,697 1,687 - -
reg 1,928 1,918 96 852 - -

mem 5,120 5,120 795 120 - -

It indicates that data throughput of time domain decoder is
less than 10%. The results of Cyclone IV is twice of those
of Cyclone III. It is because the clock frequency of Cyclone
IV is twice of that of Cyclone III.

Table 2 shows the evaluation result of the number of
the consumed resources for the implementation. The rows,
lelm, comb, reg, and mem, are the number of used logic ele-
ments, combinational functions, logic registers and memory
bits, respectively. The number of the used logic elements of
the frequency domain decoder increases as the size of infor-
mation symbols increases. It indicates that larger amount of
resources are required as t increases. On the other hand, the
number of the logic elements of the time domain decoder is
constant. It is because the time domain decoding uses the
common processing modules even when t is changed. The
value RN is larger than 1 when k=249, which means that the
area of the time domain decoder requires larger resources
than the frequency decoder.

In case of Cyclone III, RN is smaller than 1 when k is
smaller than 243. It indicates that the area of processing
module is lower than that of frequency domain decoder. In
case of Cyclone III, the area of the time domain decoder is
65% of that of frequency decoder when k = 239. In case
of Cyclone IV, the number of the used logic elements of the
time domain decoder is 94% of that of frequency decoder
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Table 3 Resources used for synthesis of fully pipelined architecture
(N = 255).

k res
time domain RN

CIII CIV CIII CIV

lelm 5,815 6,422 3.7 4.1
249 comb 5,511 4,358 - -

reg 495 2,292 - -
mem 4,770 720 - -
lelm 10,639 19,260 4.7 8.7

243 comb 10,047 10,028 - -
reg 985 10,156 - -

mem 9,540 1,440 - -
lelm 13,809 25,353 5.2 9.7

239 comb 13,025 13,049 - -
reg 1,317 13,548 - -

mem 12,720 1,920 - -

when k = 239. Like this, RN depends on the implemented
devices. However as a whole, the number of the used logic
elements of the time domain decoder tends to be smaller
than that of the frequency domain decoder according to the
evaluaton result. The number of used memory bits of the
synthesis result of Cyclone III is larger than that of Cyclone
IV. On the other hand, the number of used logic registers
of the synthesis result of Cyclone IV is larger than that of
Cyclone III. It is because the shift registers of D(N) of Fig. 1
are constructed using memory bits in case of Cyclone III,
and those are constructed using logic registers in case of
Cyclone IV.

4.2 Pipelined Architecture

This section evaluates the number of the consumed re-
sources for the fully pipelined architecture when the size of
information symbols k = 249, 243, and 239.

Theoretically, the data throughput of the typical sin-
gle input channel Reed Solomon Decoder including Alteara
Reed Solomon II IP Core is expressed by f nk/N (bit/s),
where f is the clock frequency, n is the bit width of a code
word, k is the number of information symbols, and N is the
block size. On the other hand, the data throughput of the
pipelined architecture of the time domain Reed Solomon
Decoder is express by Eq. (3). When N is enough larger
than 2, then we can approcimate that N + 2 � N. Because
257 � 255, the data throughput of the time domain Reed
Solomon Decoder can be approximated to be equal to that
of the frequency domain Reed Solomon Decoder.

Table 3 shows the result of the evaluation. The number
of all the required resources increases as k decreases. When
k=239, RN of Cyclone III and Cyclone IV is 5.2 and 9.7. It
indicates that the area of the fully pipelined time domain de-
coder are 5.2 times of the frequency domain decoder in case
of Cyclone III, and it is 9.7 times of the frequency domain
decoder in case of Cyclone IV.

4.3 Parallel Architecture

This section evaluates the number of the consumed re-
sources for the parallel architecture RS (255, 239) when the

Table 4 Data throughput of RS (255, 239) (Mbit/s).

p CIII CIV
1 23.2 46.5
2 46.3 92.6
4 91.9 183.8
8 181.1 362.1

16 351.5 702.9

Table 5 Resources used for synthesis of parallel architecture of
RS (255, 239).

device p lelm comb reg mem

CIII

1 1,742 1,697 96 795
2 3,095 2,983 147 1,590
4 5,673 5,465 249 3,180
8 11,018 10,618 453 6,360

16 21,323 20,539 861 12,720

CIV

1 2,471 1,687 852 120
2 4,559 3,007 1,668 240
4 8,551 5,463 3,300 480
8 16,700 10,540 6,564 960

16 32,706 20,402 13,092 1,920

parallel size p is 1, 2, 4, 8, and 16. Table 4 shows the evalua-
tion result of data throughput. The data throughput increases
linearly because k is fixed to 239. Therefore, we can con-
clude that data throughput is increase by p times when p
parallel architecture is applied.

Table 5 shows the consumed resources. The data
throughput of RS (255, 239) of p parallel architecture can
be approximated to be equal to the pipelined architecture of
RS (255, 239). The required resources of the p parallel ar-
chitecture is larger than those of the pipelined architecture.
It is because the p parallel architecture requires extra control
logics. Those logics result in the increase of the consumed
resources. The number of the consumed resources of the
pipelined architecture is 35% and 22% smaller than those of
the 16 parallel architecture when Cyclone III and Cyclone
IV are targeted, respectively.

The Eq. (3), which is used for calculation of the data
throughput of the fully pipelined architecture, can be ap-
proximated to f nk/N when N is enough larger than 2. On
the other hand, Eq. (4) is transformed to f nk/(N + 1 + 1)
when 2t is substituted to p. When N is enough larger than
2, the data throughput is approximated to f nk/N. Accord-
ingly, the data throughput of the fully pipelined architecture
and 2t parallel architecture can be approximated to be equal
to that of the frequency domain decoder.

Table 6 shows the consumed resources of the
fully pipelined architecture and 2t parallel architec-
ture of RS (255, 253), RS (255, 251), RS (255, 247), and
RS (255, 239). The ratio of the number of the used resources
for synthesis of the fully pipelined architecture against that
of the 2t parallel architecture RN2 is defined as follows.

RN2 = NFP/NP, (7)

where NFP is the number of used resources for synthesis
of the pipelined architecture and NP is that of the 2t paral-
lel architecture. RN2 of lelm and comb is smaller than 1.
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Table 6 Data throughput (Mbit/s) and area of pipelined architecture and parallel architecture.

N k
data throughput

resource
pipelined parallel RN2

CIII CIV CIII CIV CIII CIV CIII CIV

lelm 2,562 3,983 3,095 4,559 0.83 0.87
255 253 397 794 comb 2,450 2,431 2,983 3,007 0.82 0.81

reg 179 1,700 147 1,668 1.22 1.02
mem 1,590 240 1,590 240 1,00 1.00
lelm 4,204 7,052 5,673 8,551 0.74 0.82

255 251 394 787 comb 3,996 3,964 5,465 5,463 0.73 0.73
reg 345 3,396 249 3,300 1.39 1.03

mem 3,180 480 3,180 480 1.00 1.00
lelm 7,439 13,168 11,018 16,700 0.65 0.78

255 247 388 775 comb 7,039 7,008 10,618 10,540 0.63 0.64
reg 677 6,788 453 6,564 1.53 1.03

mem 6,360 960 63,600 960 1.00 1.00
lelm 13,809 25,353 21,323 32,706 0.65 0.78

255 239 375 750 comb 13,025 13,049 20,539 20,402 0.63 0.64
reg 1,317 13,548 861 13,092 1.53 1.03

mem 12,720 1,920 12,720 1,920 1.00 1.00
lelm - - - - 0.72 0.82

average of comb - - - - 0.71 0.71
RN2 reg - - - - 1.41 1.03

mem - - - - 1.00 1.00

Fig. 7 t specification of RN2 of lelm, comb,reg, and mem.

They indicate the number of the logic elements, the combi-
national functions used for synthesis of the pipelined archi-
tecture is smaller than that of the 2t parallel architecture. It
is because the p parallel architecture requires extra control
logics. Those logics result in the increase of the consumed
resources. On average, the number of used logic element of
the fully pipelined architecture of Cyclone III and Cyclone
IV are 28% and 18% smaller than those of the 2t parallel
architecture, respectively. On the other hand, the number of
the logic registers used for synthesis of the fully pipelined
architecture is larger than that of the 2t parallel architecture.
It indicates the number of the logic registers used for synthe-
sis of the pipelined architecture is larger than that of the 2t
parallel architecture. The number of the registers for D(N)
is proportional to the number of the pipeline stages of the
fully pipelined architecture. On the other hand the number
of the registers for D(N) does not depend on p of the par-
allel architecture. The result is affected by the difference.
The number of the memory bits is constant. Figure 7 plots t

Table 7 Used resources for synthesis of truncated arrays.

res CIII CIV
lelm 7,472 13,206
comb 7,072 7,046
reg 677 6,788

mem 6,360 960

specification of RN2 of lelm, comb, reg, and mem. Although
RN2 of the logic register increases as t increases, RN2 of logic
elements decreases.

4.4 Truncated Arrays

Table 7 shows the result of the evaluation of the consumed
resources of the truncated arrays of RS (255, 239). The num-
ber of the consumed resources is about the half of the fully
pipelined architecture. Concretely, the number of the con-
sumed resources of the truncated arrays of RS (255, 239) are
43% and 46% smaller than those of the fully pipelined ar-
chitecture. However the data throughput is halved, too.

4.5 Discussion

The merit of the time domain Reed Solomon Decoder
comapred with typical frequency doman Reed Solomon De-
coder is as follows.

Universality: The time domain Reed Solomon Decoder is
an universal Reed Solomon Decoder [1]. This is a good
point. The universal decoder can decode the encoded
codeword including arbitrary information symbols un-
like the frequency domain Reed Solomon Decoder. Es-
pecially the sequential architecture shown in Fig. 2 can
decode arbitrary encoded codeword with single Pro-
cessing Modules. We can conclude that it is area ef-
ficient compared with typical frequency domain Reed
Solomon Decoder. The evaluation result of the area
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Fig. 8 Pipelined architecture of time domain decoder applied DMR (a)
and TMR (b).

efficiency of the sequential architecture of the time do-
main Reed Solomon decoder is shown in Table 2.

Simplicity of hardware architecture: Because the algo-
rithm can be implemented by the repeated application
of a single operation, it is easy to implement on hard-
ware. Especially, the devices with regular structure
such as FPGA and GPGPU [18] is suitable for the im-
plementation.

Ease to apply techniques for dependable design:
Because hardware architecture consisits of simple con-
troller and simple and regular Processing Modules, it
is easy to apply fault tolerant techniques such as dual
modular redundancy (DMR), or triple modular redun-
dancy (TMR) [19]. Especially, it is good point for the
implementation using SRAM-based FPGA, which is
vulnerble to soft error occuring during normal opera-
tion [16]. Figure 8 depicts the pipelined architecture of
the time domain Reed Solomon Decoder applied DMR
and TMR. The above statements are added to page 4,
right, 3rd line of the revised manuscript, too.

5. Conclusion

This paper has analyzed the time domain Reed Solomon
Decoder with FPGA implementation. Data throughput and

area is carefully evaluated compared with typical frequency
domain Reed Solomon Decoder. In this analysis, three hard-
ware architecture to enhance the data throughput, namely,
the pipelined architecture, the parallel architecture, and the
truncated arrays, have been evaluated, too. The evalua-
tion reveals that the number of the consumed resources of
RS (255, 239) is about 20% smaller than those of the fre-
quency domain decoder although data throughput is less
than 10% of the frequency domain decoder. The number
of the consumed resources of the pipelined architecture is
28% smaller than that of the parallel architecture when data
throughput is same. It is because the pipeline architecture
requires less extra logics than the parallel architecture. To
get higher data throughput, the pipelined architecture is bet-
ter than the parallel architecture from the viewpoint of con-
sumed resources.
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