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SUMMARY  Descriptor aggregation techniques such as the Fisher vec-
tor and vector of locally aggregated descriptors (VLAD) are used in most
image retrieval frameworks. It takes some time to extract local descriptors,
and the geometric verification requires storage if a real-valued descriptor
such as SIFT is used. Moreover, if we apply binary descriptors to such a
framework, the performance of image retrieval is not better than if we use
a real-valued descriptor. Our approach tackles these issues by using a dual
representation descriptor that has advantages of being both a real-valued
and a binary descriptor. The real value of the dual representation descriptor
is aggregated into a VLAD in order to achieve high accuracy in the image
retrieval, and the binary one is used to find correspondences in the geomet-
ric verification stage in order to reduce the amount of storage needed. We
implemented a dual representation descriptor extracted in semi-real time
by using the CARD descriptor. We evaluated the accuracy of our image
retrieval framework including the geometric verification on three datasets
(holidays, ukbench and Stanford mobile visual search). The results indi-
cate that our framework is as accurate as the framework that uses SIFT. In
addition, the experiments show that the image retrieval speed and storage
requirements of our framework are as efficient as those of a framework that
uses ORB.

key words: image retrieval, local descriptor

1. Introduction

Descriptor aggregation techniques such as the Fisher vec-
tor and vector of locally aggregated descriptors (VLAD) are
used for instance searches or object-based image retrieval
because of their robustness and runtime efficiency [1]. The
frameworks are composed of four stages, i.e., local descrip-
tor extraction, descriptor aggregation, search, and geomet-
ric verification.

Image retrieval frameworks often use SIFT as a local
descriptor because of its robustness [2]. SIFT descriptors,
however, require a lot of time to extract local descriptors
from an image. Geometric verification filters out search er-
rors by using spatial invariant features. Search errors arise
when the query image does not always include any objects
in the database and incorrect results are returned by nearest
neighbor search in the Search stage. The geometric verifi-
cation stage needs to store descriptors of all images in the
database.

A straightforward approach to tackling the issues of
speed and storage size of image retrieval is to use a binary
descriptor. The binary descriptors such as ORB and BRISK
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that have bits at each keypoint [3]-[5]. Aggregation vectors
with binary descriptors are not as robust as aggregation vec-
tors with real-valued descriptors such as SIFT [6]. Thus, this
approach sacrifices accuracy of image retrieval.

We propose a framework based on a dual representa-
tion descriptor that extracts real-valued and binary descrip-
tors simultaneously and quickly. CARD can extract dual
representations in semi-real time by probing the real-valued
descriptors before binarizing them. The existing frame-
works do not use two descriptors that are extracted simulta-
neously for different purposes. Our framework is as robust
as typical frameworks that use SIFT [1], [7], [8], and it can
reduce both the time needed to extract local descriptors and
storage size as well as an approach that uses binary descrip-
tors [6].

Our contributions are as follows. First, we propose
a fast and compact image retrieval framework based on a
dual representation descriptor. Second, we implemented the
framework with the CARD descriptor [9]. Third, we con-
ducted evaluations on three datasets showing that our frame-
work accelerates image retrieval and reduces the amount of
storage needed for the geometric verification without sacri-
ficing accuracy of image retrieval. In particular, in terms of
the receiver operating characteristic (ROC) curves of image
retrieval, our framework outperforms the existing methods
on databases that include a lot of planar objects.

2. Related Work

2.1 Local Descriptor Extraction and Descriptor Aggrega-
tion

Local descriptor extraction is the most time-consuming step
in image retrieval frameworks based on the descriptor ag-
gregation technique because extracting real-valued descrip-
tors like SIFT entails high computational costs. In particu-
lar, one has to compute rotations of many image patches in
order to keep the orientation invariance of the descriptors.
SUREF descriptors can be extracted much faster by making
an approximation of SIFT descriptors [10], but even these
cannot be extracted as fast as binary descriptors. The bi-
nary descriptors such as CARD, ORB, and BRISK obtain
binary values by using simple binary tests between pixels
in a smoothed image patch instead of computing gradients
from the patch[3]-[5], [9]. The extracted descriptors are
passed to the next descriptor aggregation stage.

Descriptor aggregation aggregates local descriptors
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into a single vector as a signature of an image. The vec-
tor is an aggregation vector. The accuracy of an image re-
trieval framework depends on the type of local descriptor
and the method of aggregating them. Most frameworks use
the Fisher vector or vector of locally aggregated descriptors
(VLAD). The Fisher vector is a gradient vector of an in-
put image’s likelihood with respect to the parameters of a
distribution, and it is scaled with the Fisher information ma-
trix [11]. It is often computed under the assumption that
SIFT descriptors are generated from a Gaussian mixture
model. VLAD simplifies the Fisher vector in order to reduce
the computational cost [1]. It ignores terms that include the
covariance and weights from the Fisher vector.

Uchida et al. proposed an image retrieval method that
aggregates ORB descriptors [6]. Their approach computes
Fisher vectors by aggregating ORB descriptors under the as-
sumption that they are generated from a Bernoulli mixture
model [12]. Fisher vectors composed of ORB descriptors
were compared with bag of binary words [13] on the Stan-
ford mobile visual search dataset (SMVSD) [14]. Although
they were found to be better than the competitor, they did
not compare their approach with the typical VLAD.

2.2 Search and Geometric Verification

The search stage finds candidate images in the database that
is the most similar to the query image. We can apply a near-
est neighbor search to this stage. Generally speaking, search
returns a ranked list composed of the top N most similar im-
ages to the query, whereas the next stage, geometric verifi-
cation, removes search errors from the ranked list by using
spatially invariant features [15].

The search and geometric verification stages have been
studied from the viewpoints of efficiency and precision. The
search stage can use nearest neighbor searches. In particu-
lar, PQTable is 10? to 10° times faster than other existing
methods, and it calculates the nearest neighbor of 64-bit bi-
nary vectors among a list containing 10° vectors in 10 mil-
liseconds [16]. Xinchao et al. proposed an efficient method
that enables one to check the geometric relation of a pair of
images in 1 millisecond for the purpose of making a geo-
metric verification [17].

2.3 Issues

Image retrieval involves three important measurements, i.e.,
accuracy, speed of image retrieval, and amount of storage
for descriptors. There haven’t been any attempts yet aimed
at resolving these issues simultaneously.

1. Local descriptor extraction is important for accelerat-
ing most image retrieval frameworks. We can execute
the search and geometric verification 10 to 10> times
faster than SIFT extraction during the local descriptor
extraction step if we use adequate methods for those
components.

2. The geometric verification needs to store all positions
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in the image and descriptors of keypoints in order
to find correspondences between them. Because the
amount of storage linearly increases with the number
of database images, the descriptor must be compact.

3. These two issues can be resolved if we use ORB as
the local descriptor to be aggregated. The frameworks
that have been developed so far that use an aggregation
vector with binary descriptors have not shown suffi-
cient retrieval performance compared with real-valued
descriptors like SIFT.

3. Image Retrieval Framework Based on Dual Repre-
sentation Descriptor

3.1 Dual Representation Descriptor

We propose an image retrieval framework based on a dual
representation descriptor that obtains real-valued and binary
descriptors at each keypoint. The real-valued descriptors are
aggregated into a single vector in order to represent an im-
age, and they are based on a histogram of gradients. Such
an aggregation vector is as robust as one with SIFT descrip-
tors. Our approach applies binary descriptors to the geomet-
ric verification. The geometric verification needs the posi-
tions and descriptors of all images of the keypoints in order
to compute correspondences. We can reduce the amount of
storage needed because binary descriptors are more compact
than real-valued ones.

3.2 Our Image Retrieval Framework

It is difficult to implement the dual representation descriptor
by using straightforward methods or by combining existing
approaches. We cannot obtain two types of descriptor at
the same time by using a typical binary descriptor approach,
which directly outputs binary values by making simple bi-
nary tests between pixels. Moreover, while we could convert
the SIFT descriptor into a binary descriptor by using locality
sensitive hashing (LSH) [18], this approach would clearly
take more time than the original SIFT approach takes.

We implemented a dual representation descriptor incor-
porating the CARD descriptor [9]. The binary descriptor of
a CARD descriptor is indirectly obtained. It is converted
from real-valued descriptors after quickly extracting real-
valued ones from the image patches. The implementation
of the dual representation descriptor is described below.

(1) Local descriptor extraction

The real-valued descriptors of CARD are obtained by using
a lookup table (LUT) after obtaining a histogram of gradi-
ents in a circular patch, like GLOH [19]; this avoids having
to rotate image patches in order to keep orientation invari-
ance. Real-valued descriptors x is aggregated into a VLAD.
Next, the real-valued descriptors are converted into binary
descriptors by using a random projection technique. Here,
let b be an binary vector, B be the dimension of the bi-
nary vector (In the default parameters of CARD, B = 128,
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D = 136), and W be a sparse random projection matrix; X is
converted into a binary vector b as follows:

sgn(W-x) + 1
2

where b € {0,1}2, x € R?, W € {-1,0,1}®*P, Equa-
tion (1) can be executed without incurring a high compu-

tational cost because W takes only three entries {—1,0, 1},
each with probabilities {ﬁ, - L, L} Wis very sparse

because zero elements have a large probability, for example,
91.4% when D = 136.

b= (1)

(2) Descriptor aggregation

x is converted into a VLAD vector. VLAD uses the residual
between the original vector X, and its nearest centroid ob-
tained by k-means clustering. Here, let y be the centroids
of k-means clusters, T’ be the number of keypoints in an im-
age, NN(x;) be x,’s nearest centroid, and K be the number
of centroids; the dimension of VLAD vectors vis D - K, and
a block of VLAD vectors is:

Vi = Z X —Hi,

X, :NN(x,)=i

2)

wherev; e RP, i =1,...,K, t = 1,...,T. Both the Fisher
vector and VLAD are composed by concatenating compo-
nents, and each component has a different scale. The con-
catenated vector should be normalized at each component
instead of using general L2 normalization. Intra L2 and
power-law normalization methods are often used in order
to normalize the concatenated vector [1], [20].

(3) Search and geometric verification

A lot of methods can be used in these two stages. We chose
methods on the basis of the evaluation of the image retrieval
framework. The VLAD database stores VLAD vectors that
were computed from reference images beforehand. The
search stage creates a ranked list composed of the N nearest

<

Search
Create ranked list

Geometric verification

CARD binary

C /i >

descriptor database

Result

9,2)(1,0,0,0,0,0...) (B, 4(1,1,0,1,0,0...)

Overview of proposed framework.

VLAD vectors to the query image’s VLAD. To reduce the
computational cost and size of the database of the search
stage, aggregation vectors are usually compared with each
other by using approximate nearest neighbor searches. One
approach is random projection, which is CARD’s binarizing
technique. In addition, there are various approaches such
as product quantization [21] and FLANN [22]. We used the
random projection technique in the experimental evaluation.
In comparative experiments, the cosine distance between the
two aggregation vectors was computed without any approx-
imations in order to eliminate the effect of such algorithms
on the results.

The geometric verification eliminates search errors
from the ranked list. The ranked list includes the N nearest
neighbors as candidate images. For each candidate image,
the positions and descriptors of all keypoints in the image
are loaded from the descriptor database. The homography
matrix between the query image and the candidate image
is estimated by applying RANSAC [23] to their correspon-
dences. Finally, the number of inlier correspondences of
which the projection error from the query image to the can-
didate image was less than a certain threshold is obtained.
The ranked list is ordered by the number of inlier correspon-
dences again. The image retrieval result is the top one of the
re-ordered ranked list. Furthermore, if the number of inlier
correspondences of the top one is less than a threshold, it
is rejected regardless of the nearest neighbor of the query.
Our framework enables one to adjust the balance between
the true-positive and false-positive rates of image retrieval
by changing the threshold, which is defined as the geomet-
ric verification threshold.

4. Experiments
4.1 Overview and Protocol

First, we studied how well our framework, which ag-
gregates CARD real-valued vectors into VLAD and uses
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Table1  Number of positive and negative samples for each database.
Detail holidays | ukbench | SMVSD
References (database) 500 2,550 492

Positive samples (query) 1,491 10,200 1,968
Negative samples (query) 1,500 4,000 2,000

binary-valued vectors for geometric verification, works in
a practical runtime environment. Next, we studied how
much our framework accelerates the image retrieval pro-
cess and reduces the amount of storage required compared
with other approaches. We conducted experiments on three
datasets, holidays [24], ukbench [25], SMVSD'[14]. All
images were resized to less than 480 pixels beforehand. The
SMVSD images are categorized into references or queries,
but the images in the other databases have not been catego-
rized in this way. Holidays and ukbench are composed of
many sets of images. The images in each set include the
same object. We chose one image from each set as a refer-
ence image and let the remaining images be positive-sample
query images. Furthermore, we selected from mirflickr25k
negative samples that did not include any objects in the
three datasets. Table 1 describes the samples. Each of
the positive-sample query images should be assigned to an
appropriate reference image, whereas all negative-samples
should be rejected.

We used the mirflickr25k dataset'" to learn each param-
eter for the descriptor aggregation. For VLAD and bag of
visual words vector (BOVW), the centroids that are needed
to calculate them were learned using the k-means algorithm.
The parameter sets of the Bernoulli mixture model that is
needed to calculate Fisher vectors from the binary vectors
were learned with the EM-algorithm. These three parame-
ter sets were learned using one million descriptors extracted
from mirflickr25k.

4.2 Evaluation

We verified our method by comparing the proposed method
with a naive one that does not execute the geometric veri-
fication after the search. In this evaluation, all VLAD vec-
tors in the database were quantized in order to shorten the
time needed to execute the search and reduce the size of the
database. VLAD vectors were converted into binary vectors
with the random projection method. We calculated the mean
VLAD vector, which was the center of the VLAD vectors
of all images in mirflickr25k, beforehand. The mean VLAD
vector was subtracted from all VLAD vectors. The centered
VLAD vectors were normalized by using the intra L2 nor-
malization method before converting them into binary vec-
tors [20]. The number of centroids for VLAD, K, was 64.
Each of the 64 blocks among the normalized VLAD vectors
was converted into 256 bit binary vectors by using random
projection.

"We used the book covers, cd covers, dvd covers, museum
paintings, and video frames categories.
TThttp://press.liacs.nl/mirflickr/mirdownload.html
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Table 2  Extraction speed and data size of local descriptors.
Name Time [ms] | Size [byte] | Type Implementation
ORB 6 16 Binary | OpenCV
CARD 10 16 Binary | Original (in C)
SURF 60 256 Real OpenCV
SIFT 160 512 Real OpenCV

We calculated the true positive rate (a correct result is
returned when a positive-sample is posted as a query im-
age) and false positive rate (a negative-sample is not re-
jected when it is posted) while varying thresholds over the
three datasets. The naive method outputs the top one of
the ranked list as the image retrieval result. As well as
the proposed method, the naive one should reject negative-
samples in order to evaluate the true positive and false pos-
itive rates. The naive method rejects the top one in the list
if its search score is less than the threshold, which is de-
fined as the naive threshold. We drew the receiver operating
characteristic (ROC) curves for each dataset while varying
the geometric verification threshold and naive threshold in
Fig. 2. We simultaneously calculated top-1 (naive) and top-5
precision (probability that the ranked list includes an appro-
priate reference image) in the search step and the precision
of the geometric verification step (proposed) (Fig.3). Fig-
ure 2 shows that our method has better precision and repro-
ducibility compared with the naive one. Figure 3 shows that
the geometric verification of our framework improves the
results of search.

4.3 Comparative Experiments

We compared our framework using the dual representa-
tion descriptor with straightforward frameworks using ORB,
SIFT, and SURF. We assumed that the VLAD composed of
CARD real-valued vectors is as robust as SIFT and more
than robust than the Fisher vectors of ORB. To verify this
assumption, we needed to demonstrate that the accuracy
of our approach can be compared with the SIFT-based ap-
proach and that our method outperforms the approach using
the Fisher vector of ORB.

We extracted these descriptors by using the default pa-
rameters of each implementation (Table 2). SIFT, SUREF,
and CARD (real-valued vector) were converted into VLAD,
and ORB was converted into a Fisher vector. Moreover, a
bag of visual words vector (BOVW) was calculated using
SIFT in order to compare our approach with BOVW, which
is a popular aggregation method [7]. In particular, ORB was
converted into a Fisher vector by using the method described
by Uchida et al. [6].

We normalized VLAD by using the intra L2 normal-
ization method and the Fisher vector of ORB by using
power-law and intra L2 normalizations [20]. To study the
effect of varying K, the number of centroids for VLAD and
BOVW was set to 8, 16, 32, 64, 128, or 256. The size
of the Bernoulli mixture model was set to the same val-
ues. To eliminate the effect of approximate nearest neighbor
searches from the results, the cosine distance between the
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Fig.2  Receiver operating characteristic (ROC) curves of true-positive and false-positives rates in
image retrieval test on the three datasets, comparing the proposed method with the naive one that does
not execute geometric verification after search.
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two aggregation vectors was computed without any approx-
imations.

4.3.1 Efficiency

We evaluated the time it took to extract the local descrip-
tors and their data size in an actual runtime environment.
Here, the time needed to extract each descriptor a thousand
times was measured and the average taken. The scores were
measured on a 16-core 3GHz Xeon CPU, mutli-threaded,
without any GPUs. Table 2 shows the results. In addition,
Fig.5 compares the total image retrieval times in the case
of CARD and the descriptors. We refer to the results of
Chen et al.’s system for the times of the search and geomet-
ric verification [8]. Their system takes 410 milliseconds for
image retrieval, and the descriptor extraction takes 230 mil-
liseconds on average. Our local descriptor extraction was
faster than the other descriptors, excluding ORB. These re-
sults show that total image retrieval time in the case of using

CARD or ORB were about twice as fast as SIFT.
4.3.2 Aggregation Performance

We evaluated the performance of our aggregation vector by
using the mean average precision computed over the three
datasets. The mean average precision was obtained using
the ranked list ordered by the cosine distance, which was
composed of candidate images in the database. Figure 4
shows the mean average precision of each descriptor for the
three datasets. Our method gave better results than the oth-
ers on all datasets; ORB and BOVW did not work as well.

4.3.3 Image Retrieval Performance

This evaluation investigated the overall performance of the
image retrieval, including the geometric verification. In
addition, we measured the actual size of the database for
the geometric verification in order to confirm that our dual
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‘ Il Descriptor extraction [l Search [ ]Geometric verification‘

Proposed 1
ORB .
SURF .
SIFT .
0 56 160 150 260 230 360 350
Time[msec]

Fig.5 Total image retrieval time in the case of CARD and descriptors.
We referred to the results of Chen et al.’s system for the times of the search
and geometric verification [8].

representation descriptor actually reduced the size of the
database. We calculated the true positive rate and false pos-
itive rate while varying the geometric verification threshold.
We let the size of the ranked list N be five in the search and
geometric verification. We then drew the receiver operating
characteristic (ROC) curves for each K and dataset in Fig. 6.
Figure 7 shows the top-five precisions of these evaluations.
Results for ORB are eliminated from Fig. 6 because its top-
five precisions were almost 0% (Fig. 7). Our framework out-
performed SIFT and SURF under certain conditions.

Figure 8 shows the actual size of the database for the
geometric verification in the image retrieval experiments.
Our method and ORB made the database more compact than
SIFT and SURF did.

4.4 Discussion

The geometric verification of our framework improves the
results of search. Figure 2 shows that our approach can
reduce the false positive rate of image retrieval, but Fig.3
shows that it only slightly improves precision. Thus, the ge-
ometric verification of our framework improves the repro-

ducibility of the image retrieval rather than its precision.

Our CARD descriptor performed a little better than
SIFT and SURF on all datasets as regards the mean aver-
age precision of search using aggregation vectors. Regard-
ing the accuracy of the image retrieval, on the ukbench and
SMVSD, CARD outperformed the other descriptors in the
case of small K. The evaluation shows that CARD is better
than the other descriptors. However, CARD is theoretically
not as robust as SIFT because it approximates the orientation
invariance by using a LUT. The results of the evaluation are
due to the properties of the keypoint detector. SMVSD has
the most planar objects, with ukbench and holidays having
the second and third most. The Fisher vector and VLAD
become less robust as fewer stable keypoints are extracted
from an image. CARD’s keypoint detector is a corner de-
tector, so it can extract keypoints from images that include
book covers or CD/DVD covers more stably than can SIFT
using the BLOB detector. Such images have many clear
corners, for example, around the characters indicating the
content.

Let us point out why the ROC curves for ORB are
not as good as those for BOVW, whereas the mean average
precision of ORB is as good as that of BOVW. Our image
retrieval performance evaluations required that the descrip-
tor aggregation and search include a positive sample in the
ranked list. Mean average precision will be higher even if
none of the correct images are included in the top five. Fig-
ure 7 shows that the top-five precisions in the case of ORB
are lower than in the other cases. Therefore, we consider
that the aggregation vector with ORB is not suitable for the
purpose of image retrieval even though ORB’s mean aver-
age precision is better than that of BOVW.

5. Conclusion

We proposed an image retrieval framework based on the
dual representation descriptor that extracts real-valued and
binary descriptors simultaneously and quickly. The pro-
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Fig.6  Receiver operating characteristic (ROC) curves of true positive and false positives in image
retrieval test on the three datasets.
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posed descriptor has the advantages of both. Our framework
overcomes the trade-off between the retrieval speed, amount
of storage, and accuracy of such frameworks. We imple-
mented it using the CARD descriptor and evaluated it on
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Top-five precisions of image retrieval on the three datasets.

three datasets. The experimental results show that the image
retrieval of our framework is as fast as that of a framework
using ORB and that it reduces the storage requirements to
about 4% of SIFT. The mean average precision of the ag-
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Fig. 8

Size of database for geometric verification in image retrieval on the three datasets. The database

was composed of positions in an image and descriptors of all keypoints.

gregation vector and the accuracy of the total image retrieval
are as good as using SIFT or SURF.
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