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PAPER

Optimal Permutation Based Block Compressed Sensing for Image
Compression Applications

Yuqiang CAO†a), Weiguo GONG†b), Bo ZHANG††c), Nonmembers, Fanxin ZENG††d), Member,
and Sen BAI††e), Nonmember

SUMMARY Block compressed sensing (CS) with optimal permutation
is a promising method to improve sampling efficiency in CS-based image
compression. However, the existing optimal permutation scheme brings a
large amount of extra data to encode the permutation information because
it needs to know the permutation information to accomplish signal recon-
struction. When the extra data is taken into consideration, the improve-
ment in sampling efficiency of this method is limited. In order to solve this
problem, a new optimal permutation strategy for block CS (BCS) is pro-
posed. Based on the proposed permutation strategy, an improved optimal
permutation based BCS method called BCS-NOP (BCS with new optimal
permutation) is proposed in this paper. Simulation results show that the
proposed approach reduces the amount of extra data to encode the permuta-
tion information significantly and thereby improves the sampling efficiency
compared with the existing optimal permutation based BCS approach.
key words: block compressed sensing, optimal permutation, image com-
pression, image coding

1. Introduction

Recently, compressed sensing (CS) has attracted more and
more attention in signal processing field [1]–[3], which
states that sparse or compressible signals can be exactly
recovered from a small number of random measurements.
Natural images are well known to be compressible in some
transform domain, such as wavelet domain, discrete cosine
transformation (DCT) domain, and overcomplete dictionar-
ies. This means that natural images can be compressed by
using CS. However, it has been shown that traditional CS
combined with ordinary quantization is not a good com-
pression technique in view of compression efficiency [4].
Nonetheless, the CS-based image compression has become
a hot topic in recent years, because it has been demonstrated
very efficiency in some special image compression applica-
tions, such as robust image coding [5] and encrypted image
compression [6].

Usually, CS is applied to one-dimensional (1D) signals.
In order to use CS to encode two-dimensional (2D) image
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signals, we can reshape the 2D image to a long vector firstly,
and then sample the vector-reshaped image. An example of
such sampling scheme with a random measurement matrix
is the single-pixel camera proposed in [7]. Since each mea-
surement is a linear combination of all pixels of the image to
be sensed, we call the method proposed in [7] as global CS.
However, the global CS faces two main challenges. First,
the computational complexity of codec is very expensive.
Second, it requires massive storage space for the random
measurement matrix.

To solve the above problems, block CS (BCS) [8]–[12]
is proposed. The basic idea of BCS is that we can divide the
2D image into small blocks and then sample these vector-
reshaped blocks individually by using a same measurement
matrix. BCS schemes save the memory storage for the sam-
pling matrix and computational complexity for codec very
significantly, which makes the application of CS theory in
image compression applications more practical. However,
in traditional BCS schemes [8]–[12], the sampling rate of
each block is always identical without considering the spar-
sity level differences among the blocks. Therefore, it is in-
effective to encode the blocks of nature images via a fixed
sampling rate directly in view of sampling efficiency.

One of effective methods to solve the above problem is
the permutation-based BCS [13]–[16]. The central concept
is straightforward: we rearrange the 2D signal which is com-
posed of the transform coefficients of the nature image by
using permutation strategy and then sample the permutated
2D signal by using block-based sampling. A good permuta-
tion strategy can make the nonzero entries evenly distributed
among the blocks, i.e., the maximum block sparsity level of
the 2D signal after permutation is far smaller than that be-
fore, thereby improving sampling efficiency. Thus, the crux
is finding a good permutation strategy. There are two fea-
sible permutation strategies: random permutation [13]–[15]
and optimal permutation [16]. It has been shown that the op-
timal permutation proposed in our past work [16] has better
performance than random permutation, but it brings a large
amount of extra data to encode the permutation information
because it needs to know the permutation information to ac-
complish signal reconstruction. When the extra data is taken
into consideration, the improvement in sampling efficiency
of this method is limited.

In order to solve this problem, an improved optimal
permutation based BCS strategy called BCS-NOP (BCS
with new optimal permutation) is proposed in this paper.
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Firstly, we propose a new block-based sampling model for
image signals in which optimal permutation strategy and
reweighted sampling strategy are applied simultaneously.
In our proposed method, the sampling efficiency depends
on the permutation matrices used in permutation operation.
Then, an optimal permutation matrix generating algorithm
is proposed, which can be used to reduce the maximum
block sparsity level of the 2D signal significantly. As a re-
sult, better sampling efficiency and/or reconstructed-images
quality can be achieved. Finally, simulation results show
that the proposed approach reduces the amount of extra
data to encode the permutation information significantly and
thereby improves the sampling efficiency compared with the
existing optimal permutation based BCS approach.

The rest of this paper is organized as follows. Section 2
introduces the theoretical backgrounds of CS. A BCS-NOP
method for image compression applications is proposed in
Sect. 3. Simulation results are presented in Sect. 4. Finally,
conclusions are drawn in Sect. 5.

2. Overview of Compressed Sensing

2.1 Traditional Compressed Sensing

For the convenience of elaboration, we denote the set of all
K-sparse vectors by

ΣK = {x ∈ RN×1 | ‖x‖0 ≤ K} (1)

where ‖ · ‖0 stands for l0-norm of a vector, i.e., the number
of nonzero entries of the vector.

The basic idea of CS theory is that we can recover
sparse signals from only a small set of random measure-
ments. Consider a K-sparse signal x, and letΦ be an M ×N
(M � N) measurement matrix, then the measurement vec-
tor of x can be obtained by

y = Φx (2)

The CS theory asserts that y can be used to recover
any “sparse enough” signal efficiently provided that the
measurement matrix satisfies restricted isometry property
(RIP) [1], [2].

The reconstruction of sparse signals from random mea-
surements can be achieved by solving the following l1-norm
minimization problem

x̂ = arg min ‖x‖1 s.t. y = Φx (3)

This is a convex optimization problem that conve-
niently reduces to a linear program known as basis pursuit
(BP) [17]. Other related reconstruction algorithms, includ-
ing orthogonal matching pursuits (OMP) [18], iterative gra-
dient projection algorithm [19], and iterative hard threshold-
ing (IHT) algorithm [20], can also be used to solve the l1-
norm minimization problem effectively.

2.2 Block Compressed Sensing

Consider an image D ∈ R
√

N×√N with N pixels, which can

be represented by sparsifying transformation

X = ΨDΨT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 · · · x1

√
N

x21 x22 · · · x2
√

N
...

...
. . .

...
x√N1 x√N2 . . . x√N

√
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where Ψ ∈ R
√

N×√N is an sparsifying basis, (·)T denotes the
transposition of a matrix, X ∈ R

√
N×√N is the coefficient

matrix of D and xi j is the element of X located in (i, j).
A 2D signal is said to be sparse if most of the coeffi-

cients of X are zero or they can be discarded without much
loss of “information.” Let XK be the 2D signal where only
the K largest coefficients of X are kept and the rest are set
to zero. When properly selecting K, X can be well approx-
imated by XK . Natural images are known to be sparse or
compressible when represented on an appropriated sparsify-
ing basis, such as wavelet basis, DCT basis or overcomplete
dictionaries. Therefore, natural images can be compressed
by using CS.

Usually, CS is applied to 1D signals. In order to use CS
to encode 2D image signals, we can reshape the 2D image
to a long vector firstly, and then sample the vector-reshaped
image. Since each measurement is a linear combination of
all pixels of the image to be sensed, we call this method
as global CS. However, the global CS faces two main chal-
lenges. First, the computational complexity of codec is very
expensive. Second, it requires massive storage space for the
random measurement matrix.

The BCS scheme is proposed to solve the above prob-
lems. In the BCS scheme, the 2D signal X is divided into
small blocks with size of

√
n × √n. The block matrix form

of X can be written as

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1 X2 · · · X√L

X√L+1 X√L+2 · · · X2
√

L
...

...
. . .

...
XL−√L+1 XL−√L+2 . . . XL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where Xi (i = 1, 2, . . . , L) is i-th block of X and L = N/n.
Without any loss of generality, we assume that L is an
integral.

Let Ki be the sparsity level of Xi. Then, the block
sparsity level of X can be denoted by a sparsity level vec-
tor K = [K1,K2, . . . ,KL]. Let K̄ = �K/L	 be the average
block sparsity level and Kmax = ‖K‖∞ be the maximum
block sparsity level, here �·	 denotes the ceiling function,
and ‖·‖∞ stands for the Chebyshev norm of a vector. The
Chebyshev norm of a vector is equal to the largest magni-
tude of the entries in the vector.

Let xi be the vectorized signal of the i-th block through
raster scanning. Then, the measurement vector of xi can be
obtained by

yi = ΦBxi (6)

where ΦB ∈ Rm×n is a Gaussian random matrix.
If ΦB satisfies RIP with order Kmax, we can recover
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each block of X separately by solving l1-norm minimization
problem, and then recover the original image D via inverse
sparsifying transformation. This reconstruction scheme is
called separate reconstruction, because the reconstruction of
X is done block-by-block. In order to reduce the computa-
tional complexity in decoder side, we adopt separate recon-
struction in this paper.

3. The Proposed Method

As stated above, ΦB should satisfy RIP with order Kmax to
guarantee all blocks of X can be recovered precisely by us-
ing CS reconstruction. Therefore, when separate reconstruc-
tion is used in BCS, the maximum block sparsity level of the
2D signal needs to be taken into consideration with the pur-
pose of improving the sampling efficiency.

3.1 A Motivated Example

In this section, we briefly introduce permutation matrix
firstly, and then give a motivated example for permutation-
based BCS strategy.

A permutation matrix P ∈ Rn×n is a square matrix
that has exactly one entry 1 in each row and each col-
umn and 0s elsewhere else. Every permutation of the num-
bers (1, 2, . . . , n) corresponds to a unique permutation ma-
trix. Therefore, there are n! permutation matrices of size
n. Let J = (J1, J2, . . . , Jn) be a permutation of the numbers
(1, 2, . . . , n), then we can use J to produce a permutation
matrix P = [eJ1 , eJ2 , . . . , eJn ], here eJi ∈ Rn denotes a col-
umn vector with 1 in the Ji-th position and 0 in every other
position. We denote PJ be the permutation matrix produced
by J, here the subscript ‘J’ is used for indicating that PJ is
produced by J. We omit the subscript in this paper when-
ever it will not lead to misunderstanding. It is well known
that, when a permutation matrix P is multiplied with a ma-
trix M ∈ Rn×n from the left, it will permute the rows of M,
and when a permutation matrix P is multiplied with M from
the right, it will permute the columns of M.

In order to better understand why permutation can be
used to reduce the maximum block sparsity level of the 2D
signal, let us consider the following example.
Example 1: When N = 64, the following matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

can be divided into small blocks with size of 4 × 4. We can
rewrite X into its block matrix form

X =
[

X1 X2

X3 X4

]
(8)

where, Xi ∈ R4×4, i = 1, 2, . . . , 4 is the i-th block of X.
Apparently, the block sparsity vector of X is K = [16, 6, 6, 0]
and the average block sparsity level of X is K̄ = 7. Since
the nonzero entries of X aren’t evenly distributed among the
blocks, the maximum block sparsity level Kmax = 16 is far
greater than the average sparsity level K̄ = 7.

In order to make the nonzero entries of the permutated
2D signal evenly distributed among the blocks, we can pro-
cess X by the following permutation operations: (1) ex-
changing 2-th with 8-th row, and 3-th with 5-th row of X,
respectively; (2) exchanging 2-th with 8-th column, and 4-
th with 6-th column of X, respectively. Thus, we can get a
new 2D signal as

X† =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

The above permutation operations can be achieved by
multiplying X with permutation matrices. Let P1 = [e1, e8,
e5, e4, e3, e6, e7, e2]T and P2 = [e1, e8, e3, e6, e5, e4, e7, e2] be
the corresponding row permutation matrix and column per-
mutation matrix, respectively. Then, the above permutation
operations can be rewritten into the following matrix form

X† = P1XP2 (10)

We can also rewrite X† into its block matrix form

X† =
⎡⎢⎢⎢⎢⎢⎣ X†1 X†2

X†3 X†4

⎤⎥⎥⎥⎥⎥⎦ (11)

here, X†i ∈ R4×4, i = 1, 2, . . . , 4 is the i-th block of X†. Ob-
viously, the block sparsity vector of X† is K = [7, 7, 7, 7].
The nonzero entries of X† are evenly distributed among the
blocks. As a result, the maximum block sparsity level is
equal to the average block sparsity level.

In conclusion, by selecting appropriate permutation
matrices in permutation operation, we can make the nonzero
entries of the permutated 2D signal evenly distributed
among the blocks, which leads to reduce the maximum
block sparsity level of the 2D signal significantly. Therefore,
we can get better reconstruction performance by adding ap-
propriate permutation operation prior to sampling.

3.2 Overview

In order to make the nonzero entries of the permutated
2D signal evenly distributed among the blocks, a BCS
with optimal permutation (BCS-OP) is proposed in our past
work [16]. Although BCS-OP improves the sampling effi-
ciency significantly, it still faces some challenges. The most
important one is that it brings a large amount of extra data
to encode the permutation information because it needs to
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Fig. 1 Block diagram of the proposed method

know the permutation information to accomplish signal re-
construction. To solve this problem, a new optimal permu-
tation strategy which can significantly reduce extra data of
encoding the permutation information is proposed in this pa-
per. In addition, reweighted sampling proposed in [11] is
also incorporated into our method with purpose of further
improving the sampling efficiency. The proposed method
mainly contains four steps:

Step 1 Use orthogonal wavelet basis (Without any loss
of generality, we illustrate our algorithm by taking wavelet
basis as the sparsifying basis of natural image signals. How-
ever, for other types of sparsifying basis, such as DCT,
curvelet, or overcomplete dictionaries, our method remains
effective.) to transform original image signals. Suppose that
X is the corresponding wavelet coefficient matrix.

Step 2 Set small coefficients of the wavelet coefficient
matrix to zero by adaptively selecting hard threshold. Let
XK be the 2D signal where only the K largest coefficients
of X are kept and the rest are set to zero. Instead of using
the constant threshold, we select K = C1M/(log(N/M) + 1)
in adaptive manner with the purpose of guaranteeing that
the large entries of X can be reconstructed precisely by CS
reconstruction, where M = mL is the total number of mea-
surements. We use C1 = 0.6 for the experimental results
to follow latter, which we have found to perform well in
practice.

Step 3 Process XK with the following optimal permu-
tation operation

X† = P1XK P2 (12)

where P1 ∈ R
√

N×√N and P2 ∈ R
√

N×√N are permutation ma-
trices, and X† ∈ R

√
N×√N is the permutated coefficient ma-

trix. By selecting a pair of appropriate permutation matrices
in permutation operation, we can make the nonzero entries
of the permutated 2D signal evenly distributed among the

blocks, which results in improving sampling efficiency. The
optimal permutation matrices generating algorithm will be
discussed detailed in Sect. 3.3.

Step 4 Sample X† by using reweighted CS. We divide
X† into small blocks with size of

√
n × √n firstly, and then

sample each block with the same measurement matrix. In-
stead of using the conventional sampling scheme, we con-
sider the following reweighted sampling [11] on each block:

y†i = orth(ΦB)Wx†i (13)

where the operation orth stands for orthogonalizing the
columns of a matrix, W is a diagonal weighting matrix with
weighting coefficients {|x†i (1)|, |x†i (2)|, . . . , |x†i (n)|} on the di-
agonal and zeros elsewhere, x†i ∈ Rn represent the vector-
ized signal of the i-th block of X† through raster scanning,
and y†i ∈ Rm is the measurement vector of x†i .

We also illustrate the block diagram of encoding in
Fig. 1 (a). Since the decoding procedure is the inverse op-
eration of the encoding, we omit it for the purpose of avoid-
ing duplication. The block diagram of decoding is shown in
Fig. 1 (b).
Remark. The general advantage of BCS is reducing the
computational complexity in both sampling and reconstruc-
tion process. The BCS deployed in transform domain like
we described above retains this advantage for reconstruc-
tion, but will slightly increase the computational complexity
of sampling process. However, it has been shown that the
BCS deployed in transform domain can improve the sam-
pling efficiency significantly [12]–[16]. Thus, it is deserved
to deploy BCS in the transform domain in terms of the sam-
pling efficiency.

3.3 A New Optimal Permutation Strategy

In Sect. 3.2, a novel permutation-based BCS strategy for 2D



CAO et al.: OPTIMAL PERMUTATION BASED BLOCK COMPRESSED SENSING FOR IMAGE COMPRESSION APPLICATIONS
219

image signals is proposed. By selecting a pair of appropri-
ate permutation matrices, the maximum block sparsity level
of the permutated 2D signal can be reduced significantly, so
better sampling efficiency can be obtained. However, for a
given 2D signal X (For presentation simplicity, we abuse X
and XK in this paper whenever it will not lead to misunder-
standing.), how to solve a pair of appropriate permutation
matrices is not discussed yet. We will carefully study this
problem in this section.

Let the column sparsity level vector of X and X† be k ∈
R
√

N and k† ∈ R
√

N , respectively. Let the block sparsity level
vector of X† be K† ∈ RL. The maximum block sparsity level
and the average block sparsity level of X† can be denoted as
K†max = ‖K†‖∞ and K̄† = �‖K†‖1/L	, respectively.

In practice, it is desired that, after a permutation, the
nonzero entries of the permuted 2D signal are evenly dis-
tributed among the blocks. It can be described by the fol-
lowing minimization problem

min µ =
L∑

i=1

(K†i − K̄†)2

s.t. X† = P1XP2

(14)

We can calculate the value of µ over all possible P1

and P2 to find a pair of optimal permutation matrices. Since
there are

√
N! permutation matrices of size

√
N, this method

essentially require exhaustive searches, and a procedure
which clearly is combinatorial in nature and has exponen-
tial complexity. This computational intractability led us to
develop an alternative solving method. We will discuss the
solving method in the following.

It is well known that when a permutation matrix P
is multiplied with a matrix from the right (or left), it will
permute the columns (or rows) of the matrix. Therefore,
solving the optimal column (or row) permutation matrix is
equivalent to find a column (or row) permutation which can
make the nonzero entries of X† evenly distributed among
the blocks. For easy of elaboration, let’s take solving op-
timal column permutation matrix P2 as an example to il-
lustrate in detail. The optimal row permutation matrix can
be solved in the same way. Firstly, we initialize X† with a
zero matrix with size of

√
N × √N, and divide it into small

blocks with block size of
√

N × √n (It is important to note
that the block size isn’t

√
n × √n here). Secondly, we allot

the columns of X into the blocks of X†. Since the number of
columns of X is

√
N, we can allot the

√
N columns of X into

the blocks of X†, each block with
√

n columns in iteration
manner. The total number of iterations is

√
n. At each itera-

tion, we extract
√

L columns from X successively and allot
them to each block of X†, each block with one column. As
a rule of thumb, we allot the columns with few nonzero en-
tries into the blocks with large sparsity level. The elaborated
procedure can be described as follows.

Algorithm 1 Optimal Column Permutation Matrix
Generating Algorithm (OCPMGA)

Input:
The column sparsity level of the 2D sparse signal k =

[
k1, k2, . . . , k√N

]
, the number of entries in each block n and

the number of blocks L.
Procedure:
(1) Initialize the column index set of the blocks J1

0 =

J2
0 = · · · = J

√
L

0 = ∅, the sparsity level accumulation of the

blocks S 1
0 = S 2

0 = · · · = S
√

L
0 = 0, and the iteration counter

T = 1.
(2) Sort the elements of k in descending order. The

sorted vector and its corresponding index vector are denoted
by b =

[
b1, b2, . . . , b√N

]
and q =

[
q1, q2, . . . , q√N

]
, respec-

tively, here qi is the original index of bi in k, i.e. bi = kqi .

(3) Sort
{
S 1

T , S
2
T , . . . , S

√
L

T

}
in ascending order, i.e.

S w1
T ≤ S w2

T ≤ · · · ≤ S
w√L

T , and record the index vector

w =
[
w1,w2, . . . ,w√L

]
.

(4) For each block j, update the column index set and
the sparsity level accumulation by J

w j

T = J
w j

T−1 ∪
{
q(T−1)

√
L+ j

}
and S

w j

T = S
w j

T−1 + b(T−1)
√

L+ j, respectively.
(5) Increase T , and return to Step 3 if T ≤ √n.
(6) Using the column index set of all the blocks to gen-

erate the column permutation J =
[
J1

T J2
T · · · J

√
L

T

]
.

(7) Using J to generate an optimal column permutation
matrix P∗2 = PJ .

Output:
Optimal column permutation matrix P∗2

3.4 An Example of the Proposed Strategy

Now, in order to better understand why the proposed op-
timal permutation strategy can reduce the maximum block
sparsity level of 2D sparse signals, we consider the follow-
ing example.

Example 2: Suppose that the block size is 4 × 4. Now
we use the proposed optimal permutation strategy to rear-
range the 2D signal X of Example 1.

Step 1 (Generating optimal column permutation ma-
trix) Use Algorithm 1 to calculate optimal column permu-
tation matrix. Obviously, we can easily obtain the col-
umn sparsity level vector of the 2D signal k = [7, 6, 5, 4,
3, 2, 1, 0]. Sorting the entries of k in descending order, the
sorted vector of k and the corresponding index vector are
b = [7, 6, 5, 4, 3, 2, 1, 0] and q = [1, 2, 3, 4, 5, 6, 7, 8], respec-
tively.

For the convenience of elaboration, we describe the it-
eration process of Algorithm 1 in Table 1. At each iter-
ation, we allot two columns of the original 2D signal X
to the blocks of X†. In order to make the nonzero en-
tries of X† evenly distributed among the blocks, we al-
lot the columns with few nonzero elements into the blocks
with large sparsity level. After four times of iteration, all
columns of X are allocated into the blocks of X†. The
corresponding column permutation is J. Finally, we can
use J to generate an optimal column permutation matrix
P∗2 = [e1, e4, e5, e8, e2, e3, e6, e7].

Step 2 (Generating optimal row permutation matrix)
Using the similar method as Step 1 (we omit details
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for the purpose of avoiding duplication), we also can gen-
erate an optimal row permutation matrix P∗1 = [e1, e4, e5,
e8, e2, e3, e6, e7]T.

Step 3 (optimal permutation) Process X with the fol-
lowing permutation operation

X† = P∗1XP∗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1 1 1
1 1 0 0 1 1 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0
1 1 1 0 1 1 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

Obviously, the block sparsity level vector of X† is
K = [6, 8, 8, 6]. The nonzero entries of X† are almost evenly
distributed among the blocks. As a result, the maximum
block sparsity level is reduced significantly by using our
proposed permutation strategy.

3.5 Extra Data of the Proposed Strategy

By adding optimal permutation operation prior to sampling,
the maximum block sparsity level of the permutated 2D sig-
nal can be reduced significantly, so better reconstruction per-
formance can be obtained. However, we have to encode the
permutation matrices in encoder side since we need to know
permutation matrices to accomplish signal reconstruction,
which brings some extra data overhead. Fortunately, a per-
mutation matrix can be unique expressed by a permutation,
so the amount of extra data is very small.

In our proposed strategy, it needs to additionally en-
code two permutations with length

√
N while the former

strategy proposed in [16] needs to additionally encode a per-
mutation with length

√
NL. If the extra data is encoded into

bit stream, 2
⌈
log2

√
N
⌉
· √N bits are needed for our pro-

posed method while
⌈
log2

√
NL
⌉
· √NL bits are needed for

the former strategy proposed in [16]. Therefore, the pro-
posed method can reduce the amount of extra data signifi-
cantly compared with the former permutation strategy.

Table 1 Iteration computational process of OCPMGA

4. Simulation Results

In this section, we will report the overall, extensive exper-
imental results to verify the compression performance of
the proposed method. In our first experiment, we compare
the permutation performance of the new optimal permuta-
tion strategy with that of other permutation strategies used
in BCS, i.e. random permutation strategy described in [13]–
[15] and the existing optimal permutation strategy described
in our past work [16]. The wavelet coefficient matrix of
Lena with dimension of 256 × 256 is used in the experi-
ment. Here, the sparsifying basis used in the experiment
is the well-known Daubechies 9/7 wavelet transform. The
block size is selected to be 16 × 16. The maximum block
sparsity levels of the coefficient matrix before and after per-
mutation are shown in Table 2. Since the average block spar-
sity level is the low bound of the maximum block sparsity
level, we also include the average block sparsity level in the
table. The best K-term approximation is chosen according
to different magnitude thresholds, i.e., keeping wavelet co-
efficients whose magnitudes are not less than the magnitude
threshold and setting the remaining to be zeros. It can be
seen from the table that the new optimal permutation has
the suboptimal permutation performance among the three
permutation strategies.

Permutation strategies can decrease the maximum
block sparsity level significantly, which implies that better
reconstruction performance can be achieved by adding per-
mutation operation prior to sampling. In our second exper-
iment, we evaluate the reconstruction performance of the
proposed method and compare it with that of the other BCS
methods. The experiments are tested on several gray-level
natural images with size 512 × 512, such as, Lena, Pep-
pers, Barbara, and Mandrill. These test images are shown
in Fig. 2. We consider the following configurations: (1) tra-
ditional BCS [9]; (2) BCS with random permutation (BCS-
RP); (3) BCS-OP; (4) BCS-NOP. The re-orthogonalizing
Gaussian matrix is used for sensing matrix. Each CS sam-
ple is quantized to 8 bits for all of schemes. As discussed
above, we need to reserve some space to encode the per-
mutation information for Scheme (3) and Scheme (4). The
extra data to encode the permutation information for differ-
ent methods are tabulated in Table 3. As can be seen from
the table, the proposed method can reduce the amount of ex-
tra data significantly compared with the former permutation

Table 2 Comparison of the maximum block sparsity levels for different
permutation schemes
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Fig. 2 Four original test images used in the simulation experiment.

Table 3 Comparison of the extra bits for different permutation schemes

strategy.
The smoothed projected Landweber [9] reconstruction

algorithm is used for image reconstruction in Scheme (1). In
Scheme (2), Scheme (3) and Scheme (4), the reconstruction
is implemented by using IHT algorithm in block-by-block
manner, which is fast and effective. Peak signal-to-noise
ratio (PSNR) is employed to evaluate the objective quality
of the reconstructed images, which is defined as

PSNR = 20 log10 R/RMSE (16)

with

RMSE =

√√√ √
N∑

i=1

√
N∑

i=1

(Xi j − X̂i j)2 (17)

where Xi j and X̂i j denote the pixel values of the recon-
structed image and the original image, respectively. R is
the maximum value of the image gray level range.

The PSNR performance versus the compression ratio
for block sizes with 16 × 16 and 32 × 32 are shown in
Table 4 and Table 5, respectively. From the comparison
result, we can draw some conclusions as follow. Firstly,
all of three permutation-based BCS schemes can get bet-
ter reconstructed-images quality than traditional BCS with-
out permutation under the same compression ratio, which
means that permutation-based BCS schemes can improve
the sampling efficiency. Secondly, under the same com-
pression ratio, our proposed algorithm provides a substantial

Table 4 Comparison of PSNR (in dB) for different permutation-based
BCS schemes with block size of 16 × 16

Table 5 Comparison of PSNR (in dB) for different permutation-based
BCS schemes with block size of 32 × 32

gain of PSNR compared with BCS-RP algorithm, especially
at the low sampling rates. Since the maximum block spar-
sity level after the proposed optimal permutation is smaller
than that after random permutation, it shouldn’t be surpris-
ing that Scheme (4) has the better reconstruction perfor-
mance than Scheme (2). Finally, although the maximum
block sparsity level after the proposed optimal permutation
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Fig. 3 Reconstructed Lena images under sampling rate M/N = 0.2.

Fig. 4 More details of the reconstructed images (Lena).

is larger than that after the former optimal permutation, it
gets a substantial gain in terms of PSNR compared with
Scheme (3). The reason is that the extra data of Scheme (3)
is too large. When the extra data is taken into considera-
tion, the improvement in sampling efficiency of this method
is limited. The proposed method reduces the amount of ex-
tra data to encode the permutation information significantly,
so it provides a substantial gain of PSNR compared with
Scheme (3).

The visual quality comparison is also illustrated in
Fig. 3 and Fig. 4, where the 512 × 512 gray-level Lena.bmp

Fig. 5 Performance comparison of several compression methods.

is used for test. The block size is selected to be 32×32. Fig-
ure 3 displays some reconstructed images obtained by using
the three evaluated permutation-based BCS methods under
sampling rate M/N = 0.2. More Details of the reconstructed
images can be found in Fig. 4. According to the simulation
results, we can draw a conclusion that the visual quality of
the reconstructed image by our method is best among all of
the three methods, especially in edge details.

We also compare the proposed scheme with JPEG
compression [21] and other CS-based image compression
methods in Fig. 5. Lena with dimension of 512 × 512 is
used in the test. For CS-based image compression meth-
ods, the block size is selected to be 32 × 32. From the
figure, we can see that the proposed scheme is worse than
JPEG compression in terms of the rate–distortion perfor-
mance, but it narrows the gap between JEPG and the CS-
based image compression methods. In fact, the CS-based
image compression method is not a competitive technique
compared with JPEG standard in view of compression effi-
ciency. Nonetheless, the CS-based image compression has
become a hot topic in recent years because of two reasons.
Firstly, CS is a good candidate for robust image coding. A
representative work was presented by Deng et al. in [5], in
which the compressive measurements can be viewed as a
number of descriptions mainly because of their democracy
properties. We recommend the readers to see [5] for more
details. Secondly, CS-based image coding is very promis-
ing method in encrypted image compression applications.
It has been suggested in [6] that CS framework leads to an
encryption scheme, where the sensing matrix can be consid-
ered as an encryption key. Therefore, the CS-based image
compression methods like proposed in this paper is useful
in contexts where robust coding [5] and encrypted compres-
sion [6] are very important, but the subsequent storage and
communication of quantized samples is less constricted.

5. Conclusions

We present an improved optimal permutation based BCS
called BCS-NOP in this paper. As a result, the proposed
method can significantly reduce the extra data amount to
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encode the permutation information and thereby improves
the code efficiency compared with the method in [16], as
demonstrated by simulation tests.
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