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PAPER

FCReducer: Locating Symmetric Cryptographic Functions on the
Memory

Ryoya FURUKAWA†,††, Nonmember, Ryoichi ISAWA†††a), Member, Masakatu MORII††, Senior Member,
Daisuke INOUE†††, Member, and Koji NAKAO†††, Fellow

SUMMARY Malicious software (malware) poses various significant
challenges. One is the need to retrieve plain-text messages transmitted be-
tween malware and herders through an encrypted network channel. Those
messages (e.g., commands for malware) can be a useful hint to reveal their
malicious activities. However, the retrieving is challenging even if the mal-
ware is executed on an analysis computer. To assist analysts in retrieving
the plain-text from the memory, this paper presents FCReducer (Function
Candidate Reducer), which provides a small candidate set of cryptographic
functions called by malware. Given this set, an analyst checks candidates
to locate cryptographic functions. If the decryption function is found, she
then obtains its output as the plain-text. Although existing systems such as
CipherXRay have been proposed to locate cryptographic functions, they
heavily rely on fine-grained dynamic taint analysis (DTA). This makes
them weak against under-tainting, which means failure of tracking data
propagation. To overcome under-tainting, FCReducer conducts coarse-
grained DTA and generates a typical data dependency graph of functions
in which the root function accesses an encrypted message. This does not
require fine-grained DTA. FCReducer then applies a community detection
method such as InfoMap to the graph for detecting a community of func-
tions that plays a role in decryption or encryption. The functions in this
community are provided as candidates. With experiments using 12 sam-
ples including four malware specimens, we confirmed that FCReducer re-
duced, for example, 4830 functions called by Zeus malware to 0.87% as
candidates. We also propose a heuristic to reduce candidates more greatly.
key words: malware, dynamic taint analysis, binary analysis, sandbox,
community detection

1. Introduction

There exists a type of malicious software (malware) spec-
imens that encrypt the network channel between malware
specimens and their herders. Since the channel is encrypted,
analysts do not easily reveal their communication to answer,
for example, what commands are sent to the malware? and
which kinds of contents are transmitted? Examples of such
malware include Zeus malware, which was used at a serious
cyber banking fraud [1]. Zeus has been changed for Ad-
vanced Persistent Threats (APTs) [2], and its variants aim
to seek and steal confidential information from the target
in APTs, receiving commands from their herders on an en-
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crypted channel. Bot [3] also uses encrypted channels to
communicate with their herders.

When this type of malware is captured before/after car-
rying out cyber-attacks, one of essential steps for analysts is
to reveal the malware’s activities to prevent/mitigate the in-
cident caused by the malware. In this context, our research
focuses on how to retrieve the plain text transmitted between
the malware and its herder on an encrypted channel. More
precisely, we execute the captured malware on an analysis
computer, and then we try to retrieve the transmitted plain-
text messages from the memory of the computer. The plain
text representing their communication is a useful hint to re-
veal the malware’s activities, and it leads to making preven-
tion/mitigation.

Retrieving the plain text is not easy even though the
malware is executed on an analysis computer. One reason
is that the malware usually calls too many functions to rec-
ognize which function is the cryptographic function. If it
can be recognized, its output is a plain text in the case of
the decryption function. However, it is impractical to check
whether or not each function is the cryptographic function
even if an analyst checks each within a few minutes. The
number of called functions can peak at thousands, and she
ends up spending much time on checking all the called func-
tions.

Existing systems such as ReFormat [4] and Ci-
pherXRay [5] have been proposed to locate cryptographic
functions. To do so, an idea shared between them is to
use dynamic taint analysis [6], which is for tracking the
propagation of an encrypted message on the memory. Ci-
pherXRay, for example, locates a function as the crypto-
graphic function that causes avalanche effect [7], [8]. The
avalanche effect is an essential property of cryptographic al-
gorithms, which means that a bit data affects many other
bits. This observation requires a fine-grained taint analysis
at bit level granularity.

One drawback of these existing systems is that they
heavily rely on dynamic taint analysis, and typical dynamic
taint analysis can cause under-tainting [9], [10], which
means failure of tracking data propagation. Under-tainting
results in failing to pick up the correct cryptographic func-
tion because the existing systems need to track the propa-
gating data at fine-grained granularity. Even worse, under-
tainting is known to be easily caused by just implementing
programs with some tricks such as pointer indirection (de-
scribed in Sect. 2.2). This means that effectiveness of the
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systems can be degraded easily.
In this paper, we propose FCReducer (Function Candi-

date Reducer), a system for reducing candidates of crypto-
graphic function on the memory. Its main purpose is to pro-
vide a small candidate set without relying on fine-grained
dynamic taint analysis. To this end, it generates a data de-
pendency graph between functions as follows. Given a pro-
gram, FCReducer takes called functions that access the data
propagated originally from an encrypted message, and it
links the functions that share any data with each other in the
data dependency graph. This does not require fine-grained
taint analysis because FCReducer just cares about whether
or not functions share any data. It then takes all the func-
tions in the graph as candidates because they access the data
propagated from an encrypted message.

FCReducer reduces those candidates because many
candidates can be nominated in that manner. With com-
munity detection [11], FCReducer divides the functions in
the graph into some groups called community, based on the
density of the links. The decryption function can exist in a
community roughly corresponding to the decryption phase
of a given program. FCReducer considers the functions in
the community as candidates. To more greatly reduce the
candidates, another heuristic can be added to FCReducer.
We use a heuristic focusing on an I/O (input-output) size of
each function in this paper. This is based on the fact that the
I/O size of symmetric cryptographic functions is the same.
Due to this heuristic, this paper targets only symmetric cryp-
tographic functions.

With experiments using eight testing programs linked
to open source cryptographic libraries and four real world
malware specimens, we measured effectiveness of five com-
munity detection methods and the I/O-size heuristic. Ex-
amples of those community detection methods include In-
foMap [12] and FastGreedy [13]. The experiments con-
firmed that FCReducer reduced 1736 functions to 0.24%
(4.1 functions) on average with two false negative cases
out of 12 samples by combining InfoMap and the I/O-size
heuristic. With no false negative cases, FCReducer reduced
1736 called functions to 4.63% (80.3 functions) on average
by using FastGreedy. If an analyst can check each function
in a candidate set within a few minutes, she can find the
cryptographic function in a practical amount of time. Thus
we can tell that FCReducer supports analysts to obtain and
examine the input or output as plain-text messages.

We more clearly define a goal in this paper: FCReducer
aims to provide a small function-candidate set that an ana-
lyst can check within a practical amount of time for a mal-
ware specimen. As an example, suppose that a set contains
50 candidates and that the elapsed time for checking one
candidate is from one minute to five minutes. Under this as-
sumption, an analyst spends from 50 minutes to around four
hours to find out the cryptographic function. As a worst
case, we accept four hours as a practical amount of time,
considering results of a simple method focusing on the or-
der of called functions. Actually, we show that FCReducer
was able to provide smaller candidate sets than a set of 50

candidates in Sect. 4.6, and in that section we also show that
it is more effective than that simple method.

Our contributions in this paper are follows:

• We propose FCReducer, a novel system to reduce can-
didates of cryptographic function. In particular, it is
strong against programs that cause under-tainting.
• We add a heuristic based on I/O-size of functions to

FCReducer. This shows extensibility of FCReducer.
Like this heuristic, readers also apply their heuristics
to specialize FCReducer against their target malware.
• We measured effectiveness of five community detec-

tion methods. This measurement helps analysts to
choose the best method among them. There is a trade-
off between reduction rate and false negative rate.

The rest of the paper is organized as follows. Section 2 in-
troduces background knowledge of this research, and Sect. 3
presents FCReducer. Section 4 then evaluates effectiveness
of FCReducer using eight testing programs and four real
world malware specimens. After that, Sect. 5 briefly sum-
marizes related work to clearly show the differences be-
tween FCReducer and existing systems. Finally, Sect. 6 con-
cludes this paper.

2. Background Knowledge

2.1 How to Trace Functions

FCReducer traces all functions called by a given program
during the execution of the program. This can be im-
plemented by customizing virtualization solutions such as
QEMU [14], PEMU [15], VirtualBox [16], and Xen [17] for
monitoring each executed instruction (e.g., add, push, jmp,
and call) at hypervisor level. It can be also implemented
by using dynamic binary instrumentation tools such as In-
tel Pin [18] and Valgrind [19]. In this paper, we implement
FCReducer based on QEMU because we are more familiar
with it than the other solutions and tools.

QEMU provides an ability to flexibly call user-defined
functions in the middle of execution of a given program.
This kind of user-defined functions is named helper†.
FCReducer traces functions with a helper that logs the be-
havior of functions called by a given program. For example,
we create a helper that takes as input a 4-byte value of func-
tion address, and we insert this helper into the disas insn
function embedded in QEMU, as is shown in Fig. 1. The
disas insn plays a main role in executing the instructions
of a given program. In the example, when the call in-
struction (0xe8) of a given program is executed, a helper
named gen helper TrackFunc is also executed. At this
time, the destination address of a call instruction is passed to
gen helper TrackFunc through tcg const i32(tval),
and then it logs that address, where we define the destina-
tion address of call instructions as the beginning address of

†Please refer to def-helper.h of QEMU for the description of
helper. This is contained in qemu-2.1.2.tar.xz, the source of QEMU
2.1.2. It can be downloaded from the web site [14].
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Fig. 1 A customized code of QEMU to trace functions. b: an instruc-
tion of a given program to be executed, next eip: the return address of
a call, tval added by next eip: the destination linear address of a call,
tcg const i32(·): a function embedded in QEMU for passing a value to
helper gen helper TrackFunc.

Fig. 2 Definitions of function and function ID, where i + n denotes the
function ID (i, n = 0, 1, 2, · · ·). The beginning address of a function is the
destination address of a call instruction. The end of a function is the point
where a ret instruction is executed (e.g., Function i + 2 ends at 0x9513c6).

functions. We can also monitor executed instructions (e.g.,
mov and xchg) of functions by inserting helpers into switch
cases in disas insn that correspond to instructions to be
monitored.

We here define function ID because FCReducer assigns
a function ID to each function while tracing functions in
Sect. 3. Figure 2 shows an example of executed instructions.
As is shown in the figure, the ID is incremented by one ev-
ery time a call instruction is executed. Note that we allow
different IDs to be assigned to an identical function.

2.2 Under-Tainting: Drawback of Dynamic Taint Analysis

Dynamic taint analysis (DTA for short) is a technique that
enables a system to track propagation of a certain input to
a given program as follows. A system marks a value of the
target input with a taint tag as tainted. When another value
is generated from the tainted value, its taint tag is propa-
gated to the generated value. By successively marking ev-
ery value that is generated from tainted values, the system
can track the values that are propagated originally from the
target input.

Fig. 3 A code snippet to cause under-tainting.

A serious drawback of typical DTA methods is under-
tainting. This is caused if DTA methods fail to mark a value
that in fact should be marked. Cavallaro et al. [20] demon-
strate that under-tainting can be easily caused, for example,
with the code snippet shown in Fig. 3 (a.k.a., pointer indi-
rection). Under typical DTA, the taint tag of var in is not
propagated to var out because the value of var in is im-
plicitly assigned to var out through array. Like this, typ-
ical DTA methods do not propagate a taint tag if a value is
generated implicitly from the tainted value.

2.3 Community Detection

In the science of networks [21], a graph representing a real
system (i.e., a set of things working together for their pur-
pose) is said to have community structure. That is, there
are many edges that link vertices in the same community
and comparatively few edges that link vertices in differ-
ent communities. Such communities can be considered as
fairly independent compartments of a graph, and vertices in
a community play a similar role [11].

Community detection methods such as InfoMap [12]
and WalkTrap [22] have been proposed, and they are imple-
mented as modules in various programming languages, for
example in the python-igraph module [23], [24]. By using
such modules, we can detect communities in a graph.

3. Function Candidate Reducer

In the rest of the main body of this paper, we explain about
the approach to decryption function alone for simplicity. To
encryption function, we summarize that in Appendix A.

3.1 Assumptions about Execution Phases

FCReducer takes functions that access the data propagated
from an encrypted message for generating the data depen-
dency graph of functions. It then divides the functions in
the graph into communities with community detection un-
der the following assumptions.

We assume that network applications using an en-
crypted channel usually process an encrypted, input mes-
sage and respond with an encrypted output message through
the four execution phases [4]: decrypt the input message,
process the decrypted message, generate the output mes-
sage, and encrypt the output message. Network applications
include a malware type of bot, which is our target in this
paper. We also assume that the data dependency graph of
functions has the community structure. That is, functions in
the same community plays a similar role.
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Fig. 4 An example of data dependency graph.

Under these assumptions, we expect that there is a
community roughly corresponding to the decryption phase
(i.e., the first phase). This community should be one of
earlier communities since the decryption phase is the first
phase. Thus we focus on the first community in this paper,
which we describe as root community in Sect. 3.2.

3.2 Key Ideas

FCReducer aims to provide a small candidate set of crypto-
graphic functions even if a given program possesses the code
that causes under-tainting. More precisely, this set contains
candidate addresses of the cryptographic function’s begin-
ning address on the memory.

1) Data Dependency Graph: A key idea behind FCRe-
ducer to avoid under-tainting is that it generates a data de-
pendency graph of functions like Figure 4. In the graph, the
root vertex corresponds to a function that reads an encrypted
message received by the given program, and two functions
are linked if a function reads the data propagated from the
encrypted message written by the other function. As you can
see in Fig. 4, any functions in the graph access the data prop-
agated originally from an encrypted message. FCReducer
takes all the functions in the graph as candidates, based on
the fact that the decryption function must access such prop-
agated data.

The above key idea strengthens FCReducer against
under-tainting such as the code described in Sect. 2.2. In
that code, the value of var in is assigned to var out
through array to hinder the propagation of var in’s taint
tag to var out. FCReducer overcomes this code be-
cause it does not have to propagate var in’s taint tag to
var out. Suppose that var in is marked with the taint
tag of function 1 and that function 2 assigns a value
of var in to var out through array. Even in this case,
FCReducer just links function 1 to function 2, and it
marks var out with the taint tag of function 2.

2) Community Detection: In exchange for avoiding
under-tainting, coarse-grained taint analysis usually nom-
inates many function candidates in the graph. To reduce
those candidates, a key idea behind FCReducer is that it de-
tects communities hidden in the graph with community de-
tection methods, based on the internal edge density of ver-
tices (i.e., functions) in subgraphs. To this end, we treat data
dependency graphs as the directed graph in graph theory,

Fig. 5 A procedure for generating a graph.

where vertices and edges correspond to functions and data
dependency, respectively.

We use the internal edge density to detect communities.
This is because Functions in the same community pass data
to each other for their role, and functions in different com-
munities rarely pass data outside the community. That is, the
internal edge density in a community should become high
due to passing data inside the community. After detecting
communities, FCReducer takes as candidates the functions
in the first community that contains the root vertex. We call
this community root community.

3) I/O-size Heuristic: We adopt a heuristic that priori-
tizes functions in the root community whose I/O (Input and
Output) size is the same. This is based on the fact that the
I/O size of symmetric cryptographic functions is the same
such as AES [25] and RC4 [26]. Given a candidate set, an-
alysts first check those prioritized candidates, and then they
check the rest of candidates.

3.3 Methods

We describe FCReducer in more detail and formalize some
methods applied to it in this section.

1) Data Dependency Graph: FCReducer generates a
directed graph representing data dependency between func-
tions in the following manner. It executes a given program
on QEMU with helpers, and it monitors each instruction
to track if the given program receives an encrypted mes-
sage from a server. If it is, FCReducer marks the mem-
ory area with ID 0 where the encrypted message has been
restored. Then, if function 1 reads the memory area
marked with ID 0, FCReducer memorizes function 1 as
the root function. When this function writes any data into
a memory area, it marks this area with ID 1. After that, if
function 2 reads the area marked with ID 1, FCReducer
links function 1 to function 2. FCReducer then links
function 1 to function 3 if function 3 reads the area
marked with ID 1.

We formalize this graph-generation algorithm as pro-
cedure GenerateGraph in Fig. 5, where the symbols in this
procedure are listed in Table 1. Before GenerateGraph is
called, graph G is initialized with empty set ∅, and variable
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Table 1 List of the symbols used in the procedure in Fig. 5.

Symbol Description
G A directed graph G=(V,E)
V A set of vertices representing functions of a given program
Vn The n-th vertex representing a function
E A set of edges representing data dependency between vertices

Ep,q The edge linking Vp to Vq (p, q = 1, 2, · · · , n)
Ii The instruction executed for the i-th time since an encrypted

message was received
id Positive integers representing the ID of functions

addr A memory address
Maddr The ID of a function that writes data to the memory area of addr

(i.e., the memory area of addr is tainted.)
stack LIFO (Last In and First Out)

global id is set to zero. After a given program has received
an encrypted message from the server, FCReducer begins
and keeps passing each executed instruction to Generate-
Graph for generating the graph.

2) Community Detection: Taking G as input, FCRe-
ducer detects communities hidden in G with a community
detection method. The community detection can be done by
using python igraph. For example, InfoMap is implemented
as community infomap [27]. After detecting communities,
FCReducer takes as candidates the beginning addresses of
the functions in the root community.

3) I/O-size Heuristic: FCReducer prioritizes functions,
focusing on their I/O size. We define input and output of a
function as a contiguous memory area read by the function
and one written by the function, respectively. FCReducer
memorizes every contiguous read area as input and every
contiguous written area as output. It then takes a function
as candidate if any one of input and any one of output are
the same size. If not, FCReducer determines this function
should not be a symmetric cryptographic function.

We formalize this heuristic as follows. For input, let
RR = {RRid | 0 ≤ id ≤ n − 1} be a set of memory areas
read by function id, where n denotes the number of func-
tions called by a given program. RRid is then expressed as
{RRid, j | 0 ≤ j ≤ m − 1}, and RRid, j represents the memory
area read by IR j, where IR j and m denote a read instruction
of function id executed for j-th time ( j = 0, 1, · · ·) and the
number of read instructions of function id. Here we use no-
tation [l, h] to denote the memory area between addresses l
and h, inclusive†, and RRid, j = [lid, j, hid, j]. For example, if
the second read instruction of function 3 reads the memory
area between 0x100 and 0x200, RR3,1 = [0x100, 0x200] is
added to RRid. While monitoring each instruction, FCRe-
ducer memorizes the read memory areas in RR.

FCReducer sorts the elements of each RRid by lower
address l to recognize contiguous memory areas. We ex-
press the sorted RRid as S Rid. For example, if RR0 =

{[0x150, 0x400], [0x500, 0x600], [0x100, 0x200], [0x050,
0x100]}, it is sorted as S R0 = {[0x050, 0x100], [0x100,
0x200], [0x150, 0x400], [0x500, 0x600]}. At this time,
S R0,0 is contiguous with S R0,1, and S R0,1 overlaps with
S R0,2. FCReducer then merges memory areas S Rid,k that

†We quote this notation from paper [28].

Fig. 6 A procedure for mering overlapped areas. null: a flag signalizing
that this area is merged, S id ∈ {S Rid , S Wid}.

overlaps or are contiguous with each other, according to
procedure MergeAreas in Fig. 6. In the above example, the
memory areas in S R0 are merged as {(null), (null), [0x050,
0x400], [0x500, 0x600]}, where null denote a flag signaliz-
ing that this area is merged. Output can be formalized as
S Wid in the same manner as input.

Finally, for each function candidate, FCReducer prior-
itizes function id if the following conditions are satisfied.
First, the merged S Rid contains a memory area S Ri,k whose
size is equal to at least one of memory areas contained in
the merged S Wid. Second, that size is larger than b bytes.
The second condition is to avoid the situation where their
size matches by accident, and we set b to eight in this paper,
which is the same as CipherXray [5] uses. If S Rid contains
[0x500, 0x600] and S Wid contains [0x750, 0x850], func-
tion id is prioritized.

In summary, to get a candidate set of decryption func-
tions, FCReducer first executes a given program, and gen-
erates the data dependency graph by taking functions that
access the data propagated from an encrypted message. It
then detects communities in the generated graph, and takes
functions in the root community as candidates. After that,
among those candidates, FCReducer prioritizes functions
whose I/O size is the same. Given this candidate set, an an-
alyst first check whether or not each prioritized candidate is
a decryption function, and then check the rest of candidates
if the decryption function does not exist in the prioritized
candidates.

3.4 Limitations

FCReducer has the following two limitations. First, the cur-
rent version of FCReducer cannot deal with malware spec-
imens that call functions without call and/or ret instruc-
tions because it recognizes functions based on a pair of those
instructions. An example of such obfuscation techniques is
as follows: a malware specimen executes a push instruction
to put a return address on the stack, and then it transfers the
instruction pointer (a.k.a. program counter) to the beginning
of a function with a jmp instruction. After this function is
finished, the malware executes a pop instruction to obtain
the return address and transfers the instruction pointer to
that address. Currently, this kind of obfuscations is out of
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our scope. In our future work, we should implement spe-
cial case rules for such obfuscated function calls as a pair of
push-jmp and pop-jmp to defeat them.

Second, the I/O-size heuristic will definitely cause false
negative cases (i.e., it will prioritize candidates that are,
in fact, not decryption functions) in cases where malware
authors design decryption functions that return the output
whose size intentionally differs from the input. For those
obfuscated functions, an analyst is forced to check the incor-
rectly prioritized candidates first, and then checks the rest of
candidates (i.e., not-prioritized candidates). This makes her
malware analysis late. However, after that, she can reach
the decryption function if it is contained in the rest of can-
didates. In addition, the I/O-size heuristic works without
depending on community detection, and so it can be replace-
able and also should be replaced with another heuristic at the
time when the I/O-heuristic has become clearly ineffective
against malware specimens to be analyzed.

4. Experimental Evaluation

Every sample used in this evaluation contained one decryp-
tion function and one encryption function. We checked how
many candidates of decryption function were reduced by
FCReducer to measure its effectiveness.

4.1 Dataset and Environment

We generated eight testing programs that communicated
with our C&C (Command and Control) server on an en-
crypted network channel. This channel was created us-
ing cryptography libraries, which were Beecrypt [29], Brian
Gladman [30], Crypto++ [31], and OpenSSL [32]. Col-
umn 2 of Table 2 lists the symmetric-key algorithms imple-
mented by those libraries. Each testing program used one
algorithm of a library.

In addition, we captured four real world malware spec-
imens on the Internet, which were Alina, Grum, Pony, and
Zeus. They were all categorized into bot, and they commu-
nicated with a C&C server on an encrypted channel. Alina
and Grum used an XOR operation for the encrypted chan-
nel, and Pony and Zeus used RC4. We configured those
malware specimens to communicate with our C&C server.

For checking if FCReducer was strong against under-
tainting, we customized the above 12 samples (i.e., the eight
testing programs and the four malware specimens) with the
code shown in Fig. 3 to cause under-tainting on purpose.
With that code, they copied an encrypted message received
from our C&C server to another memory area.

As an evaluation environment, we modified QEMU
2.1.2 to implement FCReducer in it, and installed Windows
7 (32-bit) into the modified QEMU as a guest OS. We set
up this QEMU and our C&C server in an isolated network.
Each of the 12 samples was executed under FCReducer until
the sample sent an output message to our C&C server.

The community detection methods FCReducer used
were InfoMap [12], WalkTrap [22], FastGreedy [13], Mul-

Table 2 Results of community detection methods. B-GLAD: Brian
Gladman, Bfish: Blowfish, All: # of all functions called by a sample, RAF:
a ratio of # of provided candidates to “All” (RAF is defined in Eq. (1)),
Graph: graph G (whose RAF value is calculated as: # of functions in G di-
vided by # of all functions shown in “All”), IM: InfoMap, WT: WalkTrap,
FG: FastGreedy, ML: MultiLevel, SG: SpinGlass, *: a false negative case
(the decryption function was not contained).

Samples All RAF (%)
(#) Graph IM WT FG ML SG

Beecrypt AES 1260 19.37 0.79 3.81 6.75 7.62 8.81
Bfish 1137 8.71 0.53 6.24 8.53 8.53 8.27

B-GLAD AES 1575 20.95 0.70 0.25 4.00 2.54 3.24
OpenSSL AES 1155 23.81 0.26 0.43 0.52 5.45 8.74

Bfish 1433 8.37 0.35 0.28 7.82 4.54 3.07
DES 1308 22.55 0.23 0.23 0.46 0.46 12.54
RC4 1549 22.72 0.39 0.32 0.39 0.65 0.65

Crypto++RC4 1102 29.49 0.27 0.27 0.27 0.27 0.27
Alina XOR 2275 18.33 0.66 8.75 6.64 7.03 *4.44
Grum XOR 2038 8.78 0.74 2.55 3.43 2.70 2.99
Pony RC4 1171 68.06 *0.26 *0.26 3.25 5.89 26.39
Zeus RC4 4830 31.76 0.87 1.80 6.77 6.67 10.31
Average 1736 23.84 0.59 2.32 4.63 4.73 7.42

tiLevel [33], and SpinGlass [34]. They were implemented
as a python library named python igraph [24], and we used
default parameters of community detection methods set up
in python igraph.

4.2 Evaluation Metric and Purposes

To evaluate effectiveness of FCReducer over 12 samples, we
measure how small candidate sets FCReducer provided. To
this end, we define the following ratio:

RAF =
# of provided candidates
# of all called functions

× 100 (1)

RAF (a Ratio to All called Functions) represents a ratio of
the number of candidates provided by FCReducer to the
number of all unique functions called by a given sample.
The unique indicates that we increment # of all called func-
tions by one only once even if an identical function is called
more than once. In the right-hand side of Eq. (1), the ratio
is multiplied by 100 to notate RAF as a percentage. RAF
means that the smaller it is, the fewer candidates an analyst
should check, and so we can tell that obtained results are
better when RAF values are smaller.

In addition, we check if false negative cases caused or
not. False negative cases means the cases in which a can-
didate set does not contain the beginning address of the de-
cryption function.

The main purposes of the experiments in Sects. 4.3,
4.4, and 4.5 are to check RAF values to see how many
function candidates were reduced with the data depen-
dency graph, community detection methods, and the I/O-
size heuristic, respectively. Basically, we can see more
and more candidates were reduced overall as we progress
from one section to the next. In addition, Sect. 4.4 presents
a countermeasure against false negative cases using multi-
ple community detection methods (Proc CD for short), and
Sect. 4.5 also presents a countermeasure taken with the I/O-
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size heuristic (Proc I/O for short).
The main purpose of Sect. 4.6 is to answer the ques-

tions: “How many candidates should be reduced for an ana-
lyst to find out the decryption function in a practical amount
of time?” and “Can FCReducer achieve it?” To this end,
the section first introduces a simple method focusing on the
order of called functions as a benchmark, and then it aims
to answer the questions by conducting a comparison mainly
between Proc I/O and that simple method.

4.3 Size of Data Dependency Graph

Of the 12 samples, FCReducer executed each and memo-
rized the addresses of all unique functions called by the sam-
ple. We took those unique functions as an initial candidate
set of the decryption function. The size of the initial can-
didate set is shown in column “All” of Table 2. In other
words, each value in column “All” means the number of the
addresses of all unique functions extracted from each sam-
ple.

Among “All”, the testing program of Crypto++ called
fewest unique functions, the number of which is 1102. Even
this testing program should assign a very time-consuming
task to an analyst when she checks if each called function
is the decryption function. Even worse, Zeus, a real world
malware, called most unique functions, the number of which
is 4830. We clearly confirmed that it was necessary to re-
duce the size of the initial candidate set.

While executing each sample, FCReducer generated
graph G according to the GenerateGraph procedure in
Fig. 5. We took those functions as the second candidate set,
which access the data propagated from an encrypted mes-
sage. In fact, we confirmed that the decryption function was
contained in the second candidate set of every sample.

The RAF values of the second candidate sets are shown
in column “Graph” of Table 2. In column “Graph”, the
RAF value of Zeus is 31.76%. This means that the can-
didates were reduced to 31.76% of “All”, the number of
which equaled 1534. The best case among malware sam-
ples was the result against “Grum”, in which the candidates
were reduced to 8.78% of “All”. Even in the best case, 179
candidates still remained, and we sensed that the candidates
should be more reduced.

4.4 Results of Community Detection Methods

After detecting communities hidden in the graph for each
sample, we took the functions in the root community as the
third candidate set. The RAF values of the third candidate
sets are shown in the right five columns of Table 2, where
columns “IM”, “WT”, “FG”, “ML”, and “SG” correspond
to InfoMap, WalkTrap, FastGreedy, MultiLevel, and Spin-
Glass.

Regarding Table 2, InfoMap, for example, obtained a
RAF value of 0.87% against Zeus. This means that the can-
didates were reduced from 4830 to 42. If an analyst can
check each candidate within a few minutes, this manual

Fig. 7 Part of the graph of Grum obtained with FastGreedy.

check can be achieved in a practical amount of time. In-
foMap also obtained a RAF value of 0.59% on average. It
was the best among all community detection methods. How-
ever, InfoMap caused a false negative case against Pony.
This is because the root community of Pony contained just
three functions, and it was so small that the decryption func-
tion could be excluded from the root community. InfoMap
detected 3494 communities in the graph of Pony.

The average number of communities detected by IM,
WT, FG, ML, and SG were 1214, 407, 51, 41, and 30,
respectively. Typically, the probability of false negative
cases occurring tends to increase as detected communities
increase, due to the decreasing of the candidates in the root
community. Based on this, the false negative cases of In-
foMap and WalkTrap for Pony could make sense; but rea-
soning about the false negative of SpinGlass for Alina is out
of scope in this paper.

We introduce a countermeasure† against false negative
cases as follows. An analyst checks the candidate sets ob-
tained with InfoMap, WalkTrap, FastGreedy, MultiLevel,
and SpinGlass in order. This order is determined by the av-
erage RAF values in Table 2. If an analyst takes this coun-
termeasure against Pony, she checks the first three sets in
total since the set of FastGreedy contained the decryption
function. She eventually checks 3.77% candidates of “All”
(i.e., 0.26% + 0.26% + 3.25%) including duplicate candi-
dates between those sets. Manually checking 3.77% candi-
dates (# of candidates: 44) can be done in a practical amount
of time. For the other malware samples, this countermeasure
produced the same results as InfoMap because InfoMap did
not cause no false negative cases for them. That is, the re-
sults are 0.66% of “All” for Alina, 0.74% for Grum, and
0.87% for Zeus.

†Proc CD (Community Detection) is short for the procedure of
this countermeasure, which is cited in Sects. 4.5 and 4.6.
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Table 3 Results of community detection methods with the I/O-size
heuristic.

Samples All RAF (%)
(#) Graph IM WT FG ML SG

Beecrypt AES 1260 15.71 0.48 2.86 4.92 5.56 6.75
Bfish 1137 6.33 0.18 4.40 6.24 6.24 5.98

B-GLAD AES 1575 8.57 0.06 0.06 0.83 0.19 1.08
OpenSSL AES 1155 8.83 0.09 0.09 0.09 1.90 2.77

Bfish 1433 2.44 0.28 0.21 2.16 1.26 1.12
DES 1308 7.72 0.23 0.15 0.23 0.23 4.43
RC4 1549 7.23 0.19 0.19 0.26 0.32 0.32

Crypto++RC4 1102 19.69 0.27 0.27 0.27 0.27 0.27
Alina XOR 2275 5.27 0.26 2.99 2.51 2.73 *1.76
Grum XOR 2038 *3.48 *0.34 *0.98 *1.32 *1.08 *1.13
Pony RC4 1171 19.13 *0.00 *0.00 1.02 1.79 8.54
Zeus RC4 4830 9.59 0.27 0.46 2.36 2.28 3.29
Average 1736 8.88 0.24 1.00 1.91 1.97 2.91

In Fig. 7, we give an example of graph G to show how
communities were organized. This example is generated
based on the graph of Grum obtained with FastGreedy in the
following manner. We first remove vertices corresponding
to windows API functions [35] such as CreateFile and Find-
FirstFile from the original graph to make the graph easy to
see. We then pick up three communities that contain func-
tions whose IDs are assigned earlier among all functions.
After that, we manually check the roles of those communi-
ties shown in the figure: decryption, configure setting, and
command parsing. In this example, we can see the commu-
nities roughly corresponding to their roles.

Regarding the results shown in Table 2 and the counter-
measure against false negative cases introduced in this sec-
tion, we can tell that FCReducer, in particular community
detection, can be effective to reduce function candidates of
decryption functions.

4.5 Results of I/O-Size Heuristic

InfoMap provided very good RAF values for the 12 sam-
ples; however, it caused a false negative case against Pony.
WalkTrap also caused it against Pony. In contrast, Fast-
Greedy did not cause any false negative cases for the 12
samples, but it was inferior to InfoMap and WalkTrap, in
terms of the average RAF value. In this section, we first
focus on how well the heuristic based on the input/output
(I/O) size of functions improved RAF values of FastGreedy.
We then introduce a countermeasure taken with the I/O-size
heuristic against false negative cases.

The I/O-size heuristic prioritized the candidates in the
third candidate sets, which had been obtained with the com-
munity methods. We took those prioritized candidates as the
forth candidate set. The RAF values of this set are shown in
the right five columns of Table 3. Overall, the RAF values
were clearly reduced. In particular, the RAF values of Fast-
Greedy for Alina and Zeus were reduced from 6.64% (# of
candidates: 160) to 2.51% (#: 62) and from 6.77% (#: 322)
to 2.36% (#: 110), respectively.

Against only Grum, the heuristic caused a false nega-
tive case. The reason of this was a hex encoding scheme of

Fig. 8 A result summary of FastGreedy against the four malware sam-
ples. The vertical axis is scaled logarithmically. The symbol of Grum for
the fourth candidate set is not plotted because this set did not contain the
decryption function. It contained 27 function candidates.

Grum. That is, when Grum received an encrypted message,
it had been encoded into a sequence of hex characters. Then
the decryption function of Grum first decoded an encoding
of the encrypted message to binary data, and then decrypted
the decoded data. At this time, the size of the binary data
was half that of the encoding. Consequently, the I/O size
varied. For the rest 11 samples, we confirmed that the I/O
size of their decryption functions was the same.

Figure 8 shows a result summary of FastGreedy. The
set for Zeus was largest among the fourth candidate sets.
Although it should be a tough task to check each candidate,
this task could be still done in a practical amount of time.
For Grum, although a false negative case happened, an an-
alyst could reach the decryption function by checking the
not-prioritized candidates (i.e., the third candidate set) after
checking those prioritized.

In more detail, we describe a countermeasure against
false negative cases caused with the I/O-size heuristic as
follows. FCReducer applies IM to obtain the third candi-
date set, and then it applies the I/O-size heuristic to obtain
the fourth candidate set. After that, an analyst checks the
fourth candidate set before the third. At this time, if the de-
cryption function is not found, the analyst then checks the
third candidate set. Again, if the decryption function is not
found, FCReducer applies WT and the I/O-size heuristic to
obtain the third and fourth candidate sets, respectively. Af-
ter that, the analyst checks this fourth candidate set. Like
this, FCReducer conducts this procedure for IM, WT, FG,
ML, and SG in turn until the decryption function is found.
In practice, FCReducer always conducts this procedure be-
cause in advance it does not know if false negative cases
occur or not.

Conducting the procedure of this countermeasure
(Proc I/O for short), an analyst eventually checks 0.26%
candidates of “All” for Alina, 1.08% (i.e., 0.34% + 0.74%)
including duplicate candidates for Grum, 1.54% (i.e., 0.00%
+ 0.26% + 0.00% + 0.26% + 1.02%) including duplicate
candidates for Pony, and 0.27% for Zeus. The results for
Alina, Pony, and Zeus are better than the corresponding re-
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sults† that were obtained according to the countermeasure
taken without the I/O-size heuristic (Proc CD for short),
which is described in the third paragraph of Sect. 4.4. The
result of Proc I/O for Grum is worse than Proc CD, due to
the false negative case. For the eight testing samples, the
results of Proc I/O are better than Proc CD because of no
false positive cases occurring.

From the perspective of reducing the candidates, we
can tell that the I/O-size heuristic can be effective overall. In
addition, regarding the result for Grum, even if the I/O-size
heuristic causes false negative cases, an analyst can reach
the decryption function, thanks to Proc I/O. On the other
hand, however, we also confirm that false negative cases
caused with the I/O-size heuristic can degrade RAF values.
Thus this heuristic should be replaced if malware samples to
be analyzed often use binary-to-text encoding schemes like
the hex encoding of Grum. Other heuristics can be applied
to FCReducer without depending on community detection.

4.6 Benchmarking

As a benchmark for Proc CD and Proc I/O, we introduce a
simple procedure for locating decryption functions. After a
malware sample receives an encrypted message, an analyst
starts to check functions by hand in the order in which func-
tions are called by the malware until the decryption function
is found. During this, the analyst skips a function if it has
been already called and checked (i.e., a function is checked
only once even if it is called more than once).

To evaluate this simple procedure (Proc HAND for
short), we followed Proc HAND, and eventually checked 306
unique functions for Alina, 253 unique functions for Grum,
184 unique functions for Pony, and 811 unique functions for
Zeus. We then divided the number of checked functions by
each value in “All” of Table 2 (i.e., the number of all unique,
called functions) for each malware to make the number of
checked functions approximate to a RAF value. Table 4
shows the RAF values of Proc CD and Proc I/O, which
are shown in the previous section, and the approximate RAF
values of Proc HAND. This table confirms that both Proc CD
and Proc I/O outperformed Proc HAND, and it also ensures
that focusing on community structure in a data dependency
graph and the I/O-size of functions is much more effective
than the order of called functions for locating decryption
functions.

Finally, we consider whether or not Proc I/O provided
small candidate sets that an analyst could check within a
practical amount of time. For Proc I/O, the number of
checked candidates is calculated by ‘All’ × ‘RAF’ / 100 in
Table 4 under the assumption that the decryption function
was the finally-checked candidate in any sets. As the best
case, it was 6 for Alina, and for Pony it was 22 as the worst
case.

The elapsed time for checking one candidate heavily
†The corresponding results are 0.66% for Alina, 3.77% (i.e.,

0.26% + 0.26% + 3.25%) for Pony, and 0.87% for Zeus. The result
for Grum is 0.74%. The results are summarized in Table 4.

Table 4 Comparison between Proc CD, Proc I/O, and Proc HAND.
RAF: a ratio of # of provided candidates to “All” (RAF is defined in
Eq. (1)), All: # of all functions called by a sample.

All RAF (%)
(#) Proc CD Proc I/O Proc HAND

Alina 2275 0.66 0.26 13.45
Grum 2038 0.74 1.08 12.41
Pony 1171 3.77 1.54 15.71
Zeus 4830 0.87 0.27 16.79

Average 2579 1.51 0.79 14.59

depends on know-how of an analyst, but we assume it is
from one minute to five minutes from our experiences of
this evaluation. In this case, the total elapsed time for Alina
is from 6 to 30 minutes, and that for Pony is from 22 to
110 minutes. We accept around two hours as a practical
amount of time because even in the best case of Proc HAND,
which is the case of Pony, the total elapsed time is from 183
to 915 minutes. At least in this experiment, we conclude
that Proc I/O (i.e., FCReducer) was able to provide small
candidate sets.

5. Related Work

In this section, we introduce existing systems that can locate
cryptographic functions on the memory.

5.1 Systems Based on Dynamic Taint Analysis

Wang et al. [4] propose a system named ReFormat to iden-
tify the format of messages transmitted between a given pro-
gram and the server on an encrypted channel. It can also
locate cryptographic functions on the memory as follows.
With dynamic taint analysis, ReFormat records how an en-
crypted message is being processed by instructions, tracking
its propagation. If a ratio of bitwise and arithmetic instruc-
tions reaches a predefined threshold value, ReFormat deter-
mines this memory address is the beginning of the cryp-
tographic function. This is based on the fact that cryp-
tographic algorithms are usually implemented with those
types of instructions (e.g., xor and add). A drawback of
ReFormat is that it requires a fine-grained taint analysis to
track the propagation of an encrypted message. This makes
ReFormat weak against the code that causes under-tainting
like Figure 3.

Li et al. [5] propose a system named CipherXRay to lo-
cate cryptographic functions and secret keys embedded in a
given program even if the program is obfuscated with soft-
ware packers such as ASProtect [36]. To this end, with dy-
namic taint analysis, CipherXRay tracks the propagation of
an encrypted message to observe avalanche effect [7], [8],
which appears during the cryptographic processing. The
avalanche effect is an essential property of cryptographic
algorithms in which slight change in the input of cryp-
tographic functions causes significant change in the out-
put. If the avalanche effect is detected in a function, Ci-
pherXRay determines that it is the cryptographic function.
CipherXRay is robust against software packers under the
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assumption that the avalanche effect is still occurred under
obfuscation. However, it requires fine-grained dynamic taint
analysis to observe avalanche effect at bit level granularity.
Thus CipherXRay is also weak against under-tainting.

5.2 Systems Based on Prior Knowledge

Gröbert et al. [37] extracts signatures shared between stan-
dard cryptographic libraries such as OpenSSL and Beecrypt.
Based on extracted signatures, their system can identify
cryptographic algorithms of a given program such as AES
and RC4. It can also locate the cryptographic function on the
memory. However, their system heavily relies on the previ-
ously extracted signatures, and this means that it is weak
against modified cryptographic functions, as is described in
their paper itself [37]. In contrast, FCReducer does not rely
on such signatures.

Calvet et al. [38] propose a system named Aligot to
identify and locate cryptographic functions. Likewise to Ci-
pherXRay, Aligot is designed to be robust against software
packers as follows. Aligot finds a candidate of the crypto-
graphic function, focusing on cryptographic characteristics
like loops (i.e., executing a sequence of instructions multiple
times). It then extracts its input and output parameters, and
pass the input to known cryptographic functions. If the out-
put of a known cryptographic function matches the output of
the candidate, Aligot determines the candidate is the cryp-
tographic function. Aligot is robust against software pack-
ers under the assumption that the input-output relationship
is still maintained under obfuscation. In terms of this ro-
bustness and the ability to uniquely locate the cryptographic
function, Aligot is superior to FCReducer. However, Aligot
relies on known cryptographic functions.

5.3 Dynamic Taint Analysis against Under-tainting

There are existing schemes for dynamic taint analysis (DTA
for short) against under-tainting including DTA++ [39] and
Newsome’s scheme [40]. Those, however, limit their scope
to applying DTA to benign applications that should be
protected (e.g., from exploit code targeting applications’
vulnerabilities) [39], [40]. The under-tainting intentionally
caused by malware will be very complicated [9], [39]. In
this section, we briefly introduce DTA++, considering that
its key idea could be still extended for under-tainting caused
by malware.

Simply propagating taint tags along all implicit flows
can avoid under-tainting itself; however, it will cause the
explosion of tainting (i.e., over-tainting), instead. That
is, the matter is the trade-off between under-tainting
and over-tainting. To only propagate taint tags along
significant implicit flows, the key idea behind DTA++
is to focus on the implicit flows within information-
preserving transformations (IPT for short). For exam-
ple, an implicit flow “if (x==0) y=0 else if (x==1)
y=1· · ·else if (x==0xff) y=0xff” is within an IPT,
and an implicit flow “if (x==0) y=0 else y=1” is with-

out an IPT, where x and y are one-byte variables. In the for-
mer, each output value (y’s value) is determined by one in-
put value (x’s value), which means the information of input
is completely preserved within transformation. This means
that this kind of implicit flows can completely transform a
malicious input to the output with information-preserving,
and so it should be significant. In contrast, in the latter im-
plicit flow, the output value “y=1” can be caused by many
different input values, which means that transforming a ma-
licious input will be restricted or hampered. This is the
reason why the latter implicit flow will not be significant.
DTA++ can effectively detect implicit flows within IPTs
from execution traces of (benign) applications, and it ad-
ditionally propagate taint tags along them, in which under-
tainting would occur if DTA++ did not additionally propa-
gate the taint.

6. Conclusion

This paper presents FCReducer, a system for providing a
small candidate set of symmetric cryptographic functions.
Given this candidate set, an analyst checks if each candi-
date is the decryption function or not. Then she obtains
the output of the decryption function, which corresponds
to the plain-text message. This can be done in a practical
amount of time, which is confirmed by the evaluation of
Sect. 4. In addition, FCReducer is stronger against under-
tainting than existing systems because it just links func-
tions based on their data dependency with coarse-grained
dynamic taint analysis. This means that FCReducer covers
a kind of programs that cause under-tainting, which existing
systems cannot easily deal with.

In our future work, we should conduct parameter tun-
ing of community detection methods for obtaining smaller
candidate sets and avoiding false negative cases, although
there must be a trade-off between them. In addition, dealing
with malware specimens using multiple encryption is also
in our future work, and a consideration against it is given in
Appendix B.
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Appendix A: Approach to Encryption Function

For encryption functions, FCReducer stores the executed in-
structions of a given program until an encrypted message is
sent to the server. At this time, FCReducer marks the sent
message with ID 0, and the function that writes the encrypt
message is considered as the root function. It then conducts
procedure GenerateGraphForEnc shown in Fig. A· 1 to gen-
erate the graph, taking as input each of the stored instruc-
tions in descending order of time. After that, FCReducer
applies community detection and the I/O-size heuristic to
the generated graph.

We summarize the results of InfoMap. Without the
I/O-size heuristic, the RAF values against Alina, Pony, and
Zeus were 1.10, 1.20, and 0.35 with no false negative cases.

Fig. A· 1 A procedure for generating a graph for encryption functions.
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On the other hand, Grum did not encrypt a message sent
to our C&C server. Against only Crypto++ and OpenSSL
(AES) out of the 12 samples, InfoMap caused false negative
cases. The average RAF value for all the samples except
for Grum was 0.53. With the I/O-size heuristic, the RAF
values against Alina, Pony, and Zeus were 0.31, 0.34, and
0.35 with no false negative cases. The average RAF value
for all the samples except for Grum was 0.23. The results
for encryption functions did not greatly differ from those for
decryption function, and thus we could tell that FCReducer
could be also applicable to encryption functions.

Appendix B: Consideration of Multiple Encryption

There is multiple encryption, which encrypts a plain-text
message using multiple instantiations (e.g., functions and
tools) of a cryptographic algorithm (or algorithms) [41],
[42]. In this appendix, we consider whether or not FCRe-
ducer can be effective for multiple encryption in case mal-
ware specimens using it confront analysts.

Suppose that a function “multiple decrypt(key1, key2,
cipher text, outdata)” is given and that success means to lo-
cate this function. In this case, FCReducer will be effec-
tive because multiple decrypt is equivalent to (single)
decryption functions like RC4(key, cipher text, outdata), in
terms of the usage of functions. As another example, given
decrypt1(key1, cipher text, outdata1) and decrypt2(key2,
outdata1, outdata2), FCReducer will be effective to locate
decrypt1. However, locating decrypt2 could be diffi-
cult for FCReducer, in particular in cases where functions
are called between decrypt1 and decrypt2. Those called
functions could work to raise a possibility that decrypt1
and decrypt2 are contained in different communities (i.e.,
decrypt2 is excluded from the root community). Includ-
ing this case, we plan to check whether or not FCReducer is
effective for multiple encryption in our future work.
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