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PAPER

An Efficient Algorithm for Location-Aware Query Autocompletion

Sheng HU†a), Chuan XIAO††b), Nonmembers, and Yoshiharu ISHIKAWA†††c), Senior Member

SUMMARY Query autocompletion is an important and practical tech-
nique when users want to search for desirable information. As mobile
devices become more and more popular, one of the main applications is
location-aware service, such as Web mapping. In this paper, we propose
a new solution to location-aware query autocompletion. We devise a trie-
based index structure and integrate spatial information into trie nodes. Our
method is able to answer both range and top-k queries. In addition, we
discuss the extension of our method to support the error tolerant feature
in case user’s queries contain typographical errors. Experiments on real
datasets show that the proposed method outperforms existing methods in
terms of query processing performance.
key words: query autocompletion, spatial databases, top-k queries

1. Introduction

Query autocompletion is an important feature in search en-
gines, command shells, desktop search, software develop-
ment environments, and mobile applications. It reduces the
number of keystrokes input by the users and helps improve
the throughput of the system as query or intermediate re-
sults can be effectively cached and reused. With the growing
popularity of mobile devices, a recent trend is to integrate
query autocompletion into location-based services. One of
the main applications is to complete the queries with the
textual descriptions of nearby points of interest in a Web
mapping service as illustrated in Example 1.

Example 1: In Fig. 1, a user at point P wants to search
for nearby Starbucks. He zooms in the region around and
types in the first few characters such as “starb”, and then the
system automatically suggests “starbucks” and “starboost”.
The two results are also marked as points on the map as A
and B.

We call this problem location-aware query autocom-
pletion. A query of this problem includes a location, such as
the point P or the area R in Fig. 1. The query also includes a
string prefix, a point of interest will be returned if it is close
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Fig. 1 Location-aware error-tolerant autocompletion.

to the spatial location and its textual contents begin with the
given string prefix.

In addition, the error-tolerant autocompletion also be-
comes very popular, because misspellings may occur due
to typos in the queries or data uploaded by users, especially
when users are typing with the error-prone keyboards of mo-
bile devices. Error-tolerant feature can help to suggest cor-
rect results even when there are typos on both query prefix
and data sides as showed in Example 2.

Example 2: In Fig. 1, suppose the user types in characters
such as “sdarb”, and then the system with error-tolerant fea-
ture suggests “starbucks”, “starboost” and “statbucks”. The
three results are marked as points on the map as A, B and C.

There have been several solutions to location-aware
query autocompletion. All of them are based on a combina-
tion of spatial and textual indexes to process queries. They
can be categorized into text-first [1], space-first [2], [3], and
tightly-combined [4] methods, according to the ways in
which the indexes are combined. For text-first methods,
string descriptions of data objects are indexed in a trie,
where objects as well as their locations can be retrieved
on leaf nodes of the trie. For space-first methods, data ob-
jects are indexed in an R-tree or quadtree by their locations,
and textual filters are applied when processing queries. For
tightly-combined methods, textual and spatial information
are both considered to build the index. However, all of
the existing approaches suffer from inefficiency when the
dataset is large, and the performance is deteriorated when
large amount of simultaneous queries occur.

In this paper, we investigate the problem of location-
aware query autocompletion and aim at answering range
and top-k queries. We discuss the advantages of text-first
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indexes over space-first and tightly-combined indexes, and
propose a novel trie-based text-first method to efficiently
process the two types of queries. The existing text-first ap-
proach MT [1] is only applicable to top-k queries and com-
putes score upper bounds by enumerating query locations.
Hence the space overhead is huge, and it has to material-
ize score upper bounds for regions with coarse granularity
and only a subset of trie nodes. Unlike MT which stores on
trie nodes the spatial information of queries, we choose to
store the spatial information of data objects instead. Sev-
eral pruning techniques are developed on top of our index.
We propose to use pointers to quickly locate data objects, in
contrast to MT which traverses subtrees to find data objects.
In addition, the error-tolerant feature is also taken into con-
sideration. We extend our method to handle this feature and
suggest correct queries. Finally, we demonstrate the superi-
ority of our solution through extensive experimental evalua-
tions on real datasets.

Our contributions can be summarized as follows:
• We propose a novel location-aware query autocompletion

method to efficiently answer range and top-k queries with
an acceptable index size. We are able to index a dataset
with 13 million points of interest in 32GB main memory
on a commodity machine, and answer both range queries
and top-k queries in microseconds or even faster.

• We integrate the error-tolerant feature into our method so
as to handle the case when users input queries with error-
prone devices.

• We conduct experiments to evaluate the efficiency of the
proposed methods with comparisons to existing solutions.

The rest of this paper is organized as follows. Section 2
defines the problems. Section 3 surveys related work. Sec-
tion 4 presents our index structure for location-aware query
autocompletion. Section 5 introduces the query processing
algorithms. Section 6 reports experiment results and analy-
sis. Section 7 concludes this paper.

2. Preliminaries

2.1 Problem Definition

Let O be a set of data objects in a spatial database. Each
object o ∈ O is represented by a tuple {o.str,o.loc,o.scr}.
o.str is the string description. o.loc = (x,y) and describes
the location in 2-dimensional space. o.scr is the static score
which can be used to reflect the popularity of the object.
global max scr denotes the maximum static score of the ob-
jects. global max dist denotes the maximum distance be-
tween two objects in O . An example is shown in Table 1
and Fig. 2.

Given two strings s and s′, “s′ � s” denotes that s′ is a
prefix of s; i.e., s′ = s[1 . . |s′|]. In this paper, we focus on
supporting two types of queries:

Range Query. The query q consists of a query string q.str
which the user is typing in and a range q.rng defined by a
rectangle. The answer to the query q consists of the objects
o ∈O such that q.str � o.str and o.loc is in the range q.rng.

Table 1 An example database O .

Object ID o.str o.loc o.scr
o1 navitime (24, 25) 0.4
o2 nagoyadome (18, 12) 0.9
o3 nagoyaport (11, 19) 0.8
o4 nursing (1, 19) 0.7
o5 stone (7, 27) 0.1
o6 studio (27, 12) 0.1
o7 starbucks (22, 18) 1.0
o8 starboost (5, 5) 0.3
o9 station (19, 9) 0.8
o10 school (15, 29) 0.6

Fig. 2 O in 2-dimensional space.

Top-k Query. The query q consists of a query string q.str
which the user is typing in and a location q.loc. The answer
to the query q consists of the top-k objects o ∈ O such that
q.str � o.str, sorted by a ranking function F(o,q). We focus
on the following ranking function that gives an overall score
of an object with respect to the query q, but our method can
be extended to support other monotonic functions.

F(o,q) = α · o.scr
global max scr

+(1−α) ·
(

1− dist(o.loc,q.loc)
global max dist

)
. (1)

The first component o.scr
global max scr in the ranking func-

tion measures the popularity with the object’s static score
normalized into the range of [0, 1]. The second component
(1− dist(o.loc,q.loc)

global max dist ) measures the spatial proximity by sub-
tracting from 1 the normalized Euclidean distance between
the object and the query. The two components are balanced
by a weight variable α . It is determined by application. A
higher α indicates that the user is more towards popularity.
When α = 0, the user only cares about proximity, and hence
the query becomes k nearest neighbors. When α = 1, the
user only cares about popularity, and hence the results are
the top-k objects ranked by static score.

Example 3: Figure 3 shows an example of a range query.
The query range is defined by the red rectangle. Suppose the
query string is “sta”. The results are o7 and o9. Figure 4
shows an example of a top-k query. The query location is
shown by the red cross. Suppose the query string is “na”,
k = 2, and α = 0. The results are o2 and o3.

In some applications, especially for mobile devices,
the user’s input tends to contain typographical errors. In
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Fig. 3 A range query.

Fig. 4 A top-k query.

this case, we also support the error-tolerant feature so that a
number of errors are allowed in the query. We choose to use
edit distance to measure the input errors. ed(s, t) returns the
edit distance between two strings s and t, which measures
the minimum number of edit operations, including insertion,
deletion, and substitution of a character, to transform s to t,
or vice versa. Given a threshold τ , we return the results
such that ∃o.str′ � o.str,ed(o.str′,q.str) ≤ τ; i.e., the edit
distance between the query string and a prefix of the object
string is within τ .

In this paper, we compute the results incrementally as
the user types in characters. In addition, we focus on the in-
memory and stand-alone implementation of the algorithms.

3. Related Work

Location-aware Query Autocompletion. There have
been several existing studies to support location-aware
query autocompletion. These methods combine spatial and
textual indexes. They can be divided into three categories
according to the way the two indexes are combined: text-
first, space-first, and tightly-combined.

Materialized Trie (MT) is a text-first method proposed
by Roy and Chakrabarti [1] to find top-k results ranked by
a linear combination of static score and physical distance.
The strings of data objects are indexed in a trie, where ob-
jects as well as their locations can be retrieved on leaf nodes.
Spatial information is stored on trie nodes to speed up query
processing. For each node, it divides the whole space into
a grid, and stores for each region the score upper bound if
the query location is in the region. MT suffers from the con-
sumption of large amount of memory. Although a remedy
was proposed to materialize a subset of M trie nodes and

store R bounds in each of them, it is at the expense of run-
time performance.

Filtering-Effective Hybrid Indexing (FEH) is a space-
first method proposed by Ji et al. [2] to answer range
queries and kNN queries. The method builds an R-tree to in-
dex data objects by their locations. Textual filters are used in
each R-tree node to check whether the query string is a pre-
fix of the objects in the subtree. INSPIRE [3] is a space-first
method developed for a variety of spatial-textual queries.
Data objects are indexed in a quadtree and the nodes are
encoded by Hilbert curve. When traversing the quadtree,
textual filtering is carried out with the help of an inverted
index on the q-grams of object strings. The inverted index
is partitioned as per the Hilbert curve for fast lookup. The
major drawback of the space-first methods is that when the
query string is short or frequent, the pruning power of the
textual filters becomes very poor and thus the runtime over-
head drastically increases.

Prefix Region Tree (PR-Tree) [4] is a tightly-combined
method that considers textual and spatial partitioning simul-
taneously to build the index. Data objects are indexed in a
trie, and then each node is divided into four nodes, each rep-
resenting a region in a quadtree, with centroids selected as
the center for partitioning. The major problem of PR-Tree
is that although spatial conditions can be checked with the
quadtree, more nodes have to be accessed for query process-
ing due to the division of trie nodes.

Error-tolerant Query Autocompletion. Query auto-
completions with edit distance to tolerate errors were first
studied in [5] and [6]. Li et al. [7] improved the method pro-
posed in [5] for space and runtime performance. More effi-
cient methods were proposed in [8] and [9]. Apart from edit
distance, cosine similarity [10] and Markov n-gram transfor-
mation model [11] are also adopted for error tolerance in the
autocompletion task.

Spatial Keyword Search. Given a database of points of
interest (POIs) and a query composed of keywords and a lo-
cation, the spatial keyword search problem is to return the
relevant POIs considering both spatial proximity and tex-
tual relevance. This problem has been extensively studied in
the database community. Existing solutions are based on R-
tree [12]–[16], grid [17], [18], and space filling curve [19].
We also refer users to an experimental evaluation [20] that
compares these methods.

4. Index Structure

In this section, we introduce our indexing method for
location-aware query autocompletion.

Our index belongs to the text-first category. The rea-
sons why we resort to a text-first index are:
• For location-aware query autocompletion, a common sce-

nario is that the query string is short, hence rendering the
text filter of space-first indexes unselective. E.g., the fre-
quency of the q-gram “an” is 0.18 in the FSQ dataset,
which consists of 1 million worldwide points of inter-
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Fig. 5 The bit trie index.

est collected from Foursquare, meaning that on average
at least 18% objects under a tree node will be fetched
for verification if the query string contains a character
pair “an”. In contrast, text-first indexes are based on a
trie. We only need to traverse the trie to match the query
string, and thus good query processing performance can
be achieved.

• Tightly-combined indexes exhaustively divide nodes in
the tree using spatial information, thus resulting in re-
dundant node access when processing queries. For text-
first indexes, because a trie is compact (given a query
string, there is only one matching path), node access can
be saved.

• To verify spatial information in text-first indexes, we may
equip trie nodes with spatial filters and verify spatial con-
ditions efficiently when fetching data objects under a trie
node.

• It is easy to implement and flexible to choose data struc-
tures for spatial access, e.g., R-tree, quadtree, grids, etc.

Note that a brief explanation of choosing text-first index also
appears in [1], which also adopts the text-first method, but
from different perspectives: (1) text-first method is able to
support any ranking function, and (2) text-first method is
optimum in space requirement.

The basic structure of our index is a trie built on the
set of object strings. Each node is uniquely identified by a
string corresponding to the labeled path from the root to the
node, so that search can be easily performed by identifying
the node that matches the query string. Given a node in the
trie, we say a data object is an underlying object of this node
if the path from the root to the node is a prefix of the object
string. If we run a pre-order traversal in the trie, each node
can be assigned a number by the order in which they are
accessed. Consider the objects in Table 1. Figure 5 shows
the trie in which the object strings are indexed. Nodes are

numbered by the pre-order traversal. o1 is an underlying
object of node 2, because na is a prefix of navitime.

Next we introduce how to integrate spatial data struc-
ture into the trie. First, the global space is partitioned into
a set of spatial regions. This step can be done using com-
mon data structures for spatial objects, such as grid, R-tree,
quadtree, etc. The partitions can be either overlapping (e.g.,
by an R-tree) or non-overlapping (by a grid). A region rep-
resents a cell if we use a grid to partition the space, and a
leaf node if we use a tree-based data structure. For ease of
illustration, we describe our method by assuming the space
is partitioned by a grid, although experimental evaluation
shows that partitioning by a quadtree yields better query pro-
cessing performance.

Each object belongs to a region with respect to the spa-
tial partitioning. We equip each node in the trie with a bit
array, each bit representing a region. A bit is set to 1 if the
node has an underlying object in this region; or 0, other-
wise. We call it region bit array. With this bit array, when
searching in the trie, we are able to check whether there is
an underlying object in the region that intersects the query
range.

Example 4: Assume that the space is partitioned as per the
grid in Fig. 2. We show in Fig. 5 the region bit arrays of the
nodes in the first three levels. The n-th bit represents the cell
numbered n in Fig. 2.

We observe that some nodes share the same region bit
arrays as their parents in the trie. In this case, the child
nodes’ bit arrays are redundant and have no pruning power
for query processing, and hence we only keep the bit array
of the parents to save space and search time. We also use a
flag SameAsParent on these child nodes so that when we
need to retrieve their bit arrays, their parents are referred to.
For example, in Fig. 5, all the nodes under 3 have the same
bit array 000010000 as node 3. We only keep the bit array
000010000 at the node 3, and remove those at its descendant
nodes. In Fig. 5, a node is colored grey if it shares the same
bit array as its parent.

Data objects are stored in an array called data ob-
ject array, which is partitioned into spatial regions as well.
Since an object string corresponds to a leaf node in the trie,
within each region in the data object array, we sort objects
in the order of their corresponding leaf nodes in the trie. To
quickly identify underlying objects in the array, each node
in the trie is equipped with a list called region list, whose
entries are in the form of 〈region ID,maximum static score,
starting pointer,ending pointer〉. The maximum static score
of an entry is the maximum static score of the node’s un-
derlying objects in this region, and it is used to efficiently
answer top-k queries. The starting and ending pointers are
used to fetch results in the data object array. They are linked
to the starting and ending positions in the partial array that
contains the underlying objects of the node in this region, re-
spectively. Entries in the list are sorted by descending max-
imum static score order.
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Example 5: Consider node 2 in Fig. 5. Its region list is
[〈5,0.9,4,5〉,〈9,0.4,10,10〉 ]. The maximum static score
of this node is 0.9.

For index construction, one may notice that if siblings
in the trie are arranged in alphabetical order, the objects in
each region in the data object array follow the lexicograph-
ical order. This property facilitates the index construction:
Given the set of data objects O , we divide it with the par-
titioning first, and then sort the objects in each region by
lexicographical order. The trie is initialized as empty. For
each region, the objects are scanned one by one, and their
strings are inserted into the trie. Once a string is inserted,
we update the region bit arrays and the region lists of the
nodes on the path, as well as the maximum static scores of
the nodes. The time complexity of the index construction is
O(OlogO + S), where S is the sum of string lengths of the
objects.

5. Query Processing Algorithms

The query processing algorithms are introduced in this sec-
tion. We first present the algorithms for answering range
queries and top-k queries, respectively, and then show how
to extend them to cope with the error-tolerant case.

5.1 Processing Range Queries

The query processing is divided into two phases: (1) search-
ing phase, in which the query string is looked up in the trie
and the spatial condition is checked; and (2) result fetching
phase, in which the data object array is accessed to fetch and
return results.

We begin with the searching phase. To process a query
〈q.str,q.rng〉, we first compare q.rng with the spatial parti-
tioning and obtain the regions occupied by q.rng. We ini-
tialize a bit array, where a bit is set to 1 if q.rng intersects a
region; or 0, otherwise. The bit array is called region status.
For example, the initial region status for the query in Fig. 3
is 011011000 because the query range intersects regions 2,
3, 5, and 6 in the grid.

Then we start to traverse the trie with the query string.
As the user types in the query, we follow the path that
matches the query string. For each node, the region status
is updated by a bitwise AND operation with the region bit
array of the node. Since the region bit array keeps track of
whether there is an underlying object in a region, if a bit be-
comes 0 after the bitwise AND operation, it means that there
is no underlying object in this region for the query. We say
a node is an active node if its path matches the query string
and the region status is not all zero. The traversal in the
trie is essentially to check if there is an active node for the
next keystroke input by the user. Whenever there is no path
matching the query string or the region status becomes all
zero, we can stop the traversal of the trie and return no re-
sults.

The above process is shown in Algorithm 1. It takes

as input the query and the trie. First, a region status is ini-
tialized (Line 1). Then it traverses the trie to match the next
keystroke (Line 4) and update the region status (Line 5). If
this is no match for the keystroke or the region status be-
comes all zero, it exits the traversal. It returns the active
node and the region status for result fetching, or null to in-
dicate there is no result (Line 14). The time complexity is
O(|q.str|), where || denotes the length of a string.

We also observe that if a bit in the region status be-
comes 0 during the traversal, it will never return 1. Hence
a blocking technique can be devised to save bitwise opera-
tions. We divide region bit arrays and the region status into
equi-width blocks (e.g., 64-bit blocks), and only keep the
blocks with at least a 1 in the region status.

The result fetching phase of range query is as follows.
We obtain the bits equal to 1 in the region status, and scan
the corresponding regions in the region list. With the start-
ing and ending pointers, the objects in the data object ar-
ray are located. Each object between the two pointers is
verified with the query for the spatial constraint; i.e., if the
location of the object is within the query range. The ob-
ject is returned as a result if it passes this verification. The
pseudocode of the result fetching phase is shown in Algo-
rithm 2, which reads in the active node n and the region
status b, and returns the result set R. The time complexity
is O(Σ|L|

i=1ei − si +1), where L denotes the region list, si and
ei denote the starting and ending pointers of the i-th entry in
the list, respectively.
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Example 6: Consider the query range in Fig. 3 and a query
string s. The region status is initialized as 011011000. We
start with the root and traverse the trie. Since there is an
edge s, we follow this edge and reach node 27. Its re-
gion bit array is 110001110. By bitwise AND operation,
the region status becomes 010001000. The node’s region
list is [〈1,0.3,1,1〉,〈2,0.8,2,2〉,〈6,1.0,6,7〉,〈7,0.1,8,8〉,
〈8,0.6,9,9〉]. With the region status, regions 2 and 6 in the
list are accessed. For region 2, the pointers are 2 and 2.
So we scan the 2nd object o9 in the data object array, and
verifies it as a result. For region 6, the pointers are 6 and
7. So we scan the 6th and 7th objects in the array. o7 is
in the query range and becomes a result, while o6 fails the
verification. The final results are o7 and o9.

5.2 Processing Top-k Queries

5.2.1 Basic Algorithm

The algorithm framework of processing top-k queries is sim-
ilar to processing range queries, except that the region status
is not involved as there is no spatial constraint. The pseu-
docode of the searching phase is given in Algorithm 3. It
matches the input keystrokes and follows the path in the trie
to find the active node.

Algorithm 4 captures the basic result fetching algo-
rithm for top-k queries. It initializes a priority queue of size
k to store temporary results (Line 2). Then it iterates through
the region list of the active node (Line 3), retrieves objects
in the data object array (Line 4), and computes the overall
score by Eq. (1) (Line 5). If the priority queue has less than
k results or the score is greater than the k-th temporary re-
sult, we insert into the queue the object accompanied with
its score. The queue containing the top-k results is returned

eventually as the final results (Line 8). The time complexity
is O(Σ|L|

i=1ei − si +1), where L denotes the region list, si and
ei denote the ending and starting pointers of the i-th entry in
the list, respectively.

The basic result fetching has to scan all the entries in
the active node’s region list and all the objects bounded by
the pointers. If we scan less number of elements in the
two processes, the query processing performance can be im-
proved. Next we present two major optimizations for the
purpose of early termination.

5.2.2 Region Level Pruning

The first optimization is to scan only part of entries in the
region list. Recall that the entries in the list are sorted by
descending order of maximum static score. Given the score
of the k-th temporary result and the maximum static score
of the i-th entry in the list L, a distance threshold can be
computed:

dt =global max dist ·
⎛
⎝1−·

R[k].scr−α · L[i].m
global max scr

1−α

⎞
⎠ .

(2)

R[k].scr and L[i].m represents the score of the k-th tem-
porary result and the maximum static score of the i-th entry
in the list L, respectively. Then, a distance threshold dt can
be computed from Eq. (1). It means that if any unseen ob-
ject is better than the k-th temporary result, its distance to
the query must be smaller than the distance threshold dt .
With the location of the query, we can compute the regions
that are close enough to the query to meet this condition,
and record these regions in a bit array. A bit is set to 1 if
the distance from the region to the query is less than dt ; or
0, otherwise. We may invoke a bitwise AND operation be-
tween this bit array and the active node’s region bit array. If
the result is all zero, all the regions are beyond the distance
threshold, and hence all the entries in the region list can be
pruned.

With the above property, a pruning algorithm is devel-
oped. Its pseudocode is given in Algorithm 5, and we use it
to replace Lines 3 – 7 of Algorithm 4. A bit array b is initial-
ized as the active node’s region bit array (Line 1). When pro-
cessing each region r in the region list, the distance thresh-
old is computed first (Line 6) by Eq. (2). With the thresh-
old, we generate the bounded regions (Line 7) that are close
enough to the query. The regions are represented by a bit
array b′. We take a bitwise AND operation between b and
b′, and write the result to b (Line 8). If b becomes all zero,
it is guaranteed that no regions in the remaining list contain
an object better than the k-th temporary result, and thus we
stop scanning the region list (Line 10). Otherwise, (1) if
the bit that represents r in b is zero, r is skipped; (2) other-
wise, we fetch results in r and update the temporary results
(Lines 13 – 16). Because this pruning technique is applied
on the region level, we name it region level pruning.
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Table 2 Bounded regions with varying distance thresholds.

Distance Threshold Bit Array

t = 0 000000000
0 < t ≤ 0.082 001000000
0.082 < t ≤ 0.164 011000000
0.164 < t ≤ 0.183 011001000
0.183 < t ≤ 0.318 011011000
0.318 < t ≤ 0.358 111011000
0.358 < t ≤ 0.400 111111000
0.400 < t ≤ 0.408 111111001
0.408 < t ≤ 0.511 111111011
t ≥ 0.511 111111111

Example 7: Consider the objects in Table 1. The query
string is na. Its location is shown in Fig. 4. k = 2, and
α = 0.5. Suppose global max dist = 1. The distances from
the query to o2, o3, and region 9 are 0.3, 0.5, and 0.4, re-
spectively.

We follow the path na, the active node is node 2 in the
trie. Its region bit array is 000010001, and its region list
is [〈5,0.9,4,5〉,〈9,0.4,10,10〉 ]. We first process region 5.
After that, the top-k temporary results as well as their scores
are 〈o2,0.8〉 and 〈o3,0.65〉. The bit array b is 000010001.
Next we process region 9. By Eq. (2), the distance threshold
is 0.1. The bounded regions are 2 and 3. So b′ is 011000000.
A bitwise AND operation on b and b′ yields all zero. So we
can prune region 9 and return o2 and o3 as the final results.

There are two minor optimizations on the region level
pruning. First, since the bounded regions only depend on
the query location and the distance threshold, we can pre-
compute all the possible bounded regions once the query
location is received. We do not have to enumerate all the
distance thresholds but only consider the values at which
the bounded regions change. For example, for the query
whose location is shown in Fig. 4, Table 2 lists the bit arrays
for the bounded regions under different distance thresholds.
Second, due to the bitwise AND operation, a bit in b never
returns 1 if it becomes 0. So we may use the blocking tech-

nique to divide b into equi-width blocks, and only keep those
with at least a 1 to save bitwise operations.

5.2.3 Subtree Level Pruning

The second optimization is to reduce the number of objects
to access in the data object array. Recall that in the basic
result fetching algorithm we directly go through the objects
between the two pointers. On the other hand, it can be ob-
served that for a node n and a region r, if we fetch objects of
r from all n’s children, they exactly constitute the underly-
ing objects of n in r. Since the maximum static scores have
been recorded in the region lists of the child nodes, we may
compute a score upper bound from Eq. (1):

scrub = α · m′

global max scr

+(1−α) ·
(

1− dist(r,q.loc)
global max dist

)
, (3)

where m′ denotes the maximum static score of region r in n’s
child node, and dist(r,q.loc) denotes the distance between
region r and the query location. If the upper bound is no
better than the k-th temporary result, we can skip all the ob-
jects between the starting and ending pointers of the child
node in this region; i.e., all the objects specified by the sub-
tree rooted as this child node. We leverage this property and
devise a pruning algorithm (called subtree level pruning) as
follows.

Algorithm 6 provides the pseudocode of the subtree
level pruning. It replaces Lines 13 – 16 in Algorithm 5.
Consider we are fetching objects in region r for node n. In-
stead of directly fetching from node n, we iterate through
all its child nodes (denoted by n′). The entry with region
ID equals to r in the region list of n′ is identified (Line 2).
We retrieve the corresponding maximum static score m′, and
compute a score upper bound (Line 3). If the upper bound
is no greater than the score of the k-th temporary result, we
skip node n′. Otherwise, we access the data object array and
fetch the objects between the corresponding pointers s′ and
e′ to update the temporary results (Lines 5 – 8).

Example 8: Consider the objects in Table 1. The query
string is nagoya. Its location is shown in Fig. 4. Suppose
that k = 1, and α = 0.5. Suppose global max dist = 1. The
distances from the query to o2 and o3 are 0.3, 0.5, respec-
tively.
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We follow the path nagoya, the active node is node 6 in
the trie. There is only region 5 in the node’s region list. By
subtree level pruning, we first process the first child – node
7 and find one temporary result o2, whose score is 0.8. Then
we process the second child – node 11. By Eq. (3), the score
upper bound is 0.65. It is smaller than the k-th temporary
result’s score. So node 11 is pruned, and we return o2 as the
final result.

To apply subtree level pruning, one subtlety is to find
the entry with region ID equals to r from the region list of n′.
We first test the corresponding bit in the region bit array of
n′. If the bit is 0, n′ is skipped, meaning there is no region r
in the region list. Otherwise, we scan its region list until the
region ID r appears. The following optimization is applied
while we scan the region list. Since the list has been sorted
by descending order of maximum static score, for each m′
we see in the list, no matter which region it corresponds
to, we may compute a score upper bound by Eq. (3) as if
m′ was the maximum static score of region r. If the upper
bound is no greater than the k-th temporary result’s score,
we can stop the scan and skip node n′ even if we have not
seen region r yet.

One may notice that subtree level pruning can be car-
ried out recursively; i.e., to go deeper in the trie and prune
more objects using the region lists of node n’s grand descen-
dants. We choose not to do so because probing the region
lists poses overhead, and our experiments show that con-
ducting subtree level pruning only on n’s children achieves
a balance between pruning objects and list entry access.

5.3 Supporting Error-Tolerant Features

Our method can be easily integrated into the existing so-
lutions to error-tolerant query autocompletion; such as [5],
[6], [8], [9]. We choose the trie-based method proposed in
[6] for ease of illustration.

The basic idea of the method in [6] is to process the
keystrokes in the query and compute a set of active nodes
in the trie. The trie is exactly the same as ours except that
we store spatial information on it. The path from the root to
an active node is a string whose edit distance to the query is
within the threshold τ . For example, suppose τ = 1. Given
a query string “ni” and the trie in Fig. 5, nodes 1, 2, and 21
are active nodes, because n, na, and nu are the strings whose
edit distances to ni are 1. Therefore, we need to extend our
method from single active node to the multiple active node
case.

For range queries, we replace Line 4 in Algorithm 1
with the active node propagating method in [6]. In Algo-
rithm 4, we change its input by replacing n with a set of
active nodes, and fetch result for every active node inside
the algorithm.

For top-k queries, we do the same replacement in Al-
gorithms 3 and 4. In addition, an optimization technique is
applied for faster result fetching. Since the region list of a
node is sorted by descending maximum static score order,

the first entry gives the maximum static score among all the
underlying objects of the node. We choose to sort the nodes
by the descending order of this value, and then process them
one by one using Algorithm 4. For an active node n, we
can compute an upper bound of its underlying objects from
Eq. (1):

scrub = α · max scr(n)
global max scr

+1−α, (4)

where max scr(n) denotes the maximum static score among
the underlying objects of n. The upper bound is compared
with the k-th temporary result. If it is no greater than the k-th
temporary result’s score, we can terminate the result fetch-
ing phase and output final results, because the remaining ac-
tive nodes cannot produce any underlying object better than
the current top-k objects. We call this optimization active
node level pruning.

Before reporting experiment results, we briefly discuss
the differences between our method and the MT method [1]:
• Although both methods use trie-based text-first indexes,

we use region bit array for pruning to speed up query pro-
cessing, while there is no such data structure or pruning
technique in MT.

• In the indexing step, MT enumerates the query location
across all the regions and stores the corresponding score
upper bounds in the trie nodes. This drastically increases
memory consumption, and thus MT has to materialize the
score upper bounds for regions with coarser granularity
and only a subset of trie nodes. Although this technique
makes MT meet the space requirement, it compromises
query processing performance. In contrast, our method
materializes region lists without any compromise because
the regions under most trie nodes are sparse (see Exam-
ple 5).

• For query processing, we use pointers to locate the ob-
jects in the data object array to fetch results, while MT
traverses the subtree rooted at the active node.

6. Experiments

We report the experiment results in this section.

6.1 Experiment Setup

The following algorithms are compared in the experiment.
• Tregion is our proposed method. It is based on a trie

integrated with region information. Space is partitioned
by a quadtree, and each leaf node is regarded as a region.

• MT is a trie-based text-first method for top-k queries [1].
• PR-Tree is a tightly-combined method that merges trie

and quadtree into a single index [4]. It was designed for
processing knn queries.

• INSPIRE is a quadtree-based space-first method [3].
It was proposed for the spatial-textual query relaxation
problem. It answers range queries in an error-tolerant
manner.
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Fig. 6 Performance on range queries.

Table 3 Dataset statistics.

Dataset |O| size avg. string length

FSQ 1,021,447 31 MB 9.4
GNIS 2,193,355 67 MB 10.9
SGP 12,705,409 394 MB 11.5

For our method, we adjust the capacity in the quadtree node,
and the number of resulting regions is no more than 64,
which gives best query processing performance. We use the
method proposed in [6] to process error-tolerant queries. For
the other competitors, we make minor modifications so they
can answer both range queries and top-k queries as well as
error-tolerant queries. For MT, we use the same region set-
ting as for Tregion, and materialize score upper bounds for
all trie nodes. We do not compare with the FEH method [2]
as it has been shown to be significantly outperformed by
PR-Tree and INSPIRE [3], [4].

We select three publicly available datasets:
• FSQ is a dataset collected from Foursquare, which con-

tains 1M worldwide points of interest.
• GNIS is a dataset of 2M geographic names collected

from the U.S. Government Geographic Names Informa-
tion System.

• SGP is a dataset of 13M records obtained from Simple-
Geo’s Places.

Table 3 shows statistics about the datasets.
For each type of query, we generate 1,000 random

queries by choosing strings that appear in the dataset. Lon-
gitude and latitude are normalized to [0, 1]. The default
query range is a 0.08× 0.08 square. The default value of k
is 10.

We measure (1) average query response time, includ-
ing both searching time and result fetching time, (2) index
construction time, and (3) index size.

The experiments were carried out on a PC with an In-
tel i5 2.6GHz Processor and 32GB RAM, running Ubuntu
14.04.3. The algorithms were implemented in C++ and in a
main memory fashion.

6.2 Range Queries

The performance of processing range queries is evaluated
first. Figure 6 (a) – 6 (c) show the query processing times
of the four algorithms on the three datasets, varying query
string length. Because the number of results decreases when
the query becomes longer, the general trend is that the query

processing times decrease with the query string length,
though PR-Tree and INSPIRE show some rebounds due to
more traversal cost when the query is longer than 5 charac-
ters. Thanks to the region bit array, Tregion is always faster
than the other competitors. The speedup can be up to one to
two orders of magnitude. PR-Tree is the second fasters, and
the INSPIRE is the third. We observe that the number of
node access of PR-Tree is significantly higher than Tregion.
E.g., on FSQ dataset, when the query string length is 4, the
average numbers of node access of PR-Tree and Tregion
are 154.3 and 3.3, respectively. The reason why INSPIRE is
slow is that most query processing time is spent (e.g., 87.9%
on the SGP dataset when the query string length is 2) on the
text filter based on q-grams, whose frequencies are high for
short strings (e.g., “an”) and thus not selective. These re-
sults show the drawbacks of the tightly-combined method
and the space-first method, hence justifying our analysis on
the three types of methods in the beginning of Sect. 4. MT
is the slowest in most cases, because it does not have any
spatial filter in the searching phase and the spatial condition
is checked when we fetch results.

6.3 Top-k Queries

For top-k queries, we first evaluate the effects of the prun-
ing techniques. Figure 7 (a) – 7 (c) show the result fetching
times on the three datasets for the four algorithms: Tregion,
Tregion with region level pruning only, Tregion with sub-
tree level pruning only, and Tregion without the two pruning
techniques. It can be observed that both pruning techniques
effectively decrease the query processing time of Tregion by
2 to 28 times, and they are more effective for short queries.
The comparison with the other methods on the three datasets
are shown in Fig. 7 (d) – 7 (f). Due to the algorithm design
for top-k queries and the effects of two pruning techniques,
Tregion is the fastest of the four algorithms, and it is up to 4
times faster than the runner-up MT. PR-Tree is the third and
INSPIRE is the slowest method. Both are slower than Tre-
gion by one to two orders of magnitude. The drawbacks of
the tightly-combined method and the space-first method are
also seen on top-k queries. E.g., on FSQ dataset, when the
query string length is 4, PR-Tree accesses 289.3 nodes on
average while Tregion accesses 14.2 nodes. For INSPIRE,
when query string length is 2 on the SGP dataset, 90.5%
query processing time is spent on the text filter, and thus the
query processing speed becomes slow.
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Fig. 7 Performance on top-k queries.

Fig. 8 Performance with error-tolerant feature.

6.4 Error-Tolerant Queries

We enable the error-tolerant feature and show the query pro-
cessing times of range queries in Figs. 8 (a) – 8 (c). The edit
distance threshold is 3. The query processing time of Tre-
gion increases when more characters are input. The reason
is that we have more traversal in the trie to tolerate errors,

and it increases the overall cost when the query becomes
longer. Nonetheless, Tregion is the fastest among the four
algorithms, and the speedup can be up to two orders of mag-
nitude.

For error-tolerant top-k queries, we first evaluate the
effect of active node level pruning and show the results in
Figs. 8 (d) – 8 (f). The active node level pruning is more ef-
fective for short queries, because there are more active nodes
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Fig. 9 Performance when varying dataset size.

Fig. 10 Performance when varying range or k.

for the first few characters and hence more chance to prune.
The comparison with the competitors on error-tolerant top-k
queries is shown in Figs. 8 (g) – 8 (i). Tregion is the fastest
algorithm, and the runner-up is MT. Both are faster than PR-
Tree and INSPIRE by a remarkable margin (up to 9 times).

6.5 Scalability

We evaluate the scalability of the algorithms with varying
dataset size. Figures 9 (a) and 9 (b) show the range query
and top-k query performances on the SGP dataset, respec-
tively. The query processing times increase with the dataset
size for the four algorithms. Tregion is always the fastest,
and it has slower growth rate than the other three competi-
tors.

We also test the performances of the four algorithms
when varying range for range queries or k for top-k queries.
Figure 10 (a) shows the query processing times for the fol-
lowing range queries: 0.005× 0.005, 0.01× 0.01, 0.02×
0.02, 0.04× 0.04, and 0.08× 0.08. MT’s query processing
time is regardless of the query range because it does not
have any spatial filter for range queries. The other three al-
gorithms exhibit increasing query processing time when the
query range expands. This is expected as there are more tree
nodes satisfying the spatial condition and the number of re-
sults also increases. Figure 10 (b) shows the query process-
ing times for the following k values: 10, 20, 30, 40, and 50.

Table 4 Index size (GB).

Dataset Tregion MT PR-Tree INSPIRE

FSQ 1.4 8.6 0.5 0.5
GNIS 1.6 8.9 1.0 0.9
SGP 13.4 32.0 5.3 6.3

Table 5 Index construction time (seconds).

Dataset Tregion MT PR-Tree INSPIRE

FSQ 11.3 81.4 4.7 12.7
GNIS 17.5 141.1 9.0 23.2
SGP 178.5 958.1 54.4 190.6

INSPIRE has almost constant query processing time when
k varies because it was designed for range queries, lacking
specific filters for top-k queries. For the other three algo-
rithms, the running times slightly increase when k moves
towards larger values. Tregion is always the fastest among
the four competitors.

6.6 Index Construction

Table 4 shows the index sizes of the four algorithms on the
three datasets. Table 5 shows the corresponding index con-
struction times. MT has the largest index size due to its enu-
meration of query locations. Tregion’s index size is the sec-
ond among the four, but is much smaller than MT. PR-Tree
and INSPIRE have similar index sizes. All of the four algo-
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rithms are able to build index in reasonable amount of time.
MT is the slowest of the four. Tregion spends less time than
INSPIRE but more time than PR-Tree.

7. Conclusion

In this paper, we proposed a novel method for location-
aware query autocompletion. We aimed at answering range
and top-k queries on a large scale. We proposed a method
by which data objects are indexed in a trie integrated spa-
tial information. Several pruning techniques were proposed
to further improve the query processing performance. We
also discussed how to extend our method to support the er-
ror tolerant feature. The experiment results demonstrate the
efficiency of the proposed method and its superiority over
existing methods.
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