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Hardware Accelerated Marking for Mark & Sweep Garbage
Collection

Shinji KAWAMURA†, Nonmember and Tomoaki TSUMURA†a), Member

SUMMARY Many mobile systems need to achieve both high perfor-
mance and low memory usage, and the total performance of such the sys-
tems can be largely affected by the effectiveness of GC. Hence, the recent
popularization of mobile devices makes the GC performance play one of
the important roles on the wide range of platforms. The response perfor-
mance degradation caused by suspending all processes for GC has been a
well-known potential problem. Therefore, GC algorithms have been ac-
tively studied and improved, but they still have not reached any fundamen-
tal solution. In this paper, we focus on the point that the same objects are
redundantly marked during the GC procedure implemented on DalvikVM,
which is one of the famous runtime environments for the mobile devices.
Then we propose a hardware support technique for improving marking rou-
tine of GC. We installed a set of tables to a processor for managing marked
objects, and redundant marking for marked objects can be omitted by re-
ferring these tables. The result of the simulation experiment shows that the
percentage of redundant marking is reduced by more than 50%.
key words: garbage collection, hardware acceleration, mark & sweep,
energy efficient implementation

1. Introduction

In many of mobile systems such as smart phones, virtual
machine environments, or Web APIs are commonly adopted
in terms of effectiveness for developing applications. How-
ever, Garbage Collection (GC) routines occupy a large part
of their running time in these environments. Alongside, it
is well known that GC can degrade the response time of
a system, because any other processes generally have to
halt while GC routines are running. Therefore, the effec-
tiveness of GC now can affect the total performance of the
wide range of platforms. Furthermore, performance degra-
dation has a negative effect on energy consumption, and it
is a serious problem for mobile devices. To address such a
problem, many GC algorithms have been studied from the
view of their software. However, most of the studies are for
reducing the frequency of collections by complicated and
dedicated tuning for the systems and the applications, or for
reducing the response time of the system at the cost of the
throughput. Thus, neither algorithm can be the way for fun-
damental solution.

For this reason, we have focused on the basic rou-
tines that many GC algorithms commonly have, and aim
to achieve high performance in many GC algorithms with

Manuscript received May 18, 2017.
Manuscript revised October 20, 2017.
Manuscript publicized January 15, 2018.
†The authors are with Nagoya Institute of Technology,

Nagoya-shi, 466–8555 Japan.
a) E-mail: tsumura@nitech.ac.jp

DOI: 10.1587/transinf.2017EDP7163

hardware supports. To find which routine can be improved
with hardware supports, we firstly investigated the GC im-
plementation of DalvikVM; it is famous as a runtime envi-
ronment on the mobile devices. As a result, we found that
it takes much time to mark objects one after another with
GC routines tracing references between the objects. Addi-
tionally, we also found that many objects are marked re-
dundantly. In this paper, we propose a hardware support
technique [1] to omit such redundant marking for marked
objects, and evaluate it by estimating the performance and
energy consumption. In our proposal, for managing marked
objects, we install dedicated tables to the processor. By re-
ferring these tables, redundant marking for marked objects
can be omitted. Thereby, the tracing routine that consumes
much time in GC can be improved, and high performance
GC can be achieved.

In this paper, we aim to make the following contribu-
tions:

1. We disclose that GC includes redundant marking, and
some objects are marked several times per collection.

2. We propose a hardware support for common GCs. We
install dedicated tables to a processor, and redundant
marking can be omitted by using the tables.

3. We evaluate the proposed method. The results show
that the execution cycles can be reduced by 22.4% at a
maximum, and 13.8% on average.

2. Background

In this section, we explain GC, the representative GC algo-
rithms, and related work.

2.1 Garbage Collection

GC is a routine for automatic memory management. It au-
tomatically frees a part of heap area occupied by unused
objects. Figure 1 shows a state of the heap area and ref-
erences between objects. A pointer to an object located in
the heap area is stored into a global variable or an area such
as call stack or registers, which are directly accessible from
applications. These areas are called the set of roots, and by
tracing pointers from here, all the objects in the heap area
can be referred. The objects that are located in the heap area
may have pointers to some other objects. Those objects that
are referred by another object can be reached from the set
of roots, and are called live objects. On the other hand, the
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Fig. 1 Heap Area and References during program execution.

unused objects that cannot be reached from the set of roots
are called dead objects. Because GC frees a part of the heap
area occupied by dead objects, the memory area where the
objects have been located can be reused.

Mark& Sweep [2] is one of the representative GC algo-
rithms. It consists of two phases. The first phase is defined
as a Mark phase which marks encountered live objects, and
the second phase is defined as a Sweep phase which reclaims
the space of unmarked, or dead objects. These two phases
are executed repeatedly.

Copying [3] and Reference Counting [4] are also the
representatives of GC algorithms. Although many other GC
algorithms have been studied, all of them are just combina-
tions or improvements of those three algorithms [5]. Espe-
cially, Mark & Sweep is widely used as a base of many algo-
rithms because it is comparatively easy to be implemented.

2.2 Related Work

Concurrent GC [6] is a representative algorithm of GC. This
algorithm aims to shorten suspension period of the system
by running in parallel with other applications. While GC
is being executed in parallel with other applications, some
objects cannot be marked properly because some pointers
may be modified by the applications. To prevent this issue,
barrier synchronization is used in Concurrent GC for detect-
ing the modifications on pointers and starting marking again
from the pointers. This allows Concurrent GC to run in par-
allel with other applications. Whereas, the throughput will
be decreased because of the overhead that is caused by syn-
chronization between GC and other applications.

Although most of the previous work focus on the soft-
ware algorithm as mentioned above, a few studies such as
SILENT [7] and Network Attached Processing (NAP) [8]
have proposed hardware support techniques. They let GC
run in parallel with other applications, as well as Concurrent
GC, and achieve high performance with hardware accelera-
tion for barrier synchronization.

3. Bottleneck Analysis of GC

In this paper, we relax the performance bottleneck of the
representative GC algorithms with a hardware support, and
then we aim to achieve significantly high performance GC.

3.1 The Major Routine in GC

We analyzed a representative GC algorithm for investi-
gating the bottleneck of GC. In this analysis, the target
is Mark & Sweep implemented in DalvikVM. First of
all, we estimated the breakdown of the execution time
of GC. We used gem5 simulator system [9], and executed
DalvikVM on this simulator to measure the execution cy-
cles of each routine of GC. We measured the execution cy-
cles of AOBench [10], GCBench [11], and four benchmarks
in SPECjvm2008 suite [12]. As a result, we found that Mark
phase occupies about 80% of the whole GC cycles at a max-
imum, and about 46% of them on average.

Based on this result, we investigate the reason why
Mark phase occupies much execution time of GC, and we
aim to improve many GC algorithms by supporting this
phase with additional hardware.

3.2 Object Tracing in DalvikVM

In order to search for the live objects in the heap area, the
references that belong to marked objects need to be recur-
sively traced. Mark Stack is used in DalvikVM in order to
trace references recursively.

After objects are marked, they are pushed into Mark
Stack in sequence. When an object is popped from this
stack, all objects referred by this object are searched for, and
they are marked and pushed into the stack. By repeating this
routine until Mark Stack becomes empty, all live objects in
the heap area are marked.

Now, pushing every marked object onto Mark Stack
causes a problem if there are circular references among ob-
jects. Therefore, when marking an object, GC routine in-
quires Mark Bitmap; each bit of it represents the corre-
sponding object is already marked or not. If the bit is set,
the object is already marked and should not be pushed onto
Mark Stack. With this mechanism, each object can avoid
being pushed redundantly. However, to know whether an
object is already pushed or not, it is inevitable to calculate
the bit position corresponding to the object. If an object is
marked repeatedly, this redundant calculation for the same
object can largely degrade the GC performance.

We estimated the ratio of such redundant calculation,
or redundant marking in the same environment mentioned
in Sect. 3.1. For the estimation, we measured how many
times each object had been marked every time when GC
that ran in each benchmark program is completed. The ratio
of redundant marking is summarized in Table 1.

According to the result, the average ratio is over 60%
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Table 1 The ratio of redundant marking for the same objects.

maximum average
AOBench 82.17 % 60.67 %
GCBench 99.99 % 68.03 %
crypto.aes 73.00 % 61.12 %

crypto.signverify 66.25 % 61.28 %
compress 64.05 % 61.51 %

serial 67.88 % 61.83 %

with all benchmark programs, and the maximum ratio ex-
ceeds even 70% with many programs. This should be one
of the causes of the low performance of marking routine de-
scribed in Sect. 3.1. Thereby, high performance of GC will
be achieved by omitting the redundant marking.

4. Reducing Redundant Marking Calculation with Ad-
ditional Hardware

In this section, we propose a speed-up technique for omit-
ting redundant marking calculation described in Sect. 3, and
then we explain its overview and running model.

4.1 Overview of Proposal

We propose a hardware support technique to omit redundant
calculation for marking. In this section, we introduce the
abstract and execution model of our proposal.

In order to omit the redundant marking while GC is
running, we install a dedicated table in which marked ob-
jects are managed. We also extend the existing marking
phase of GC, and make objects marked after the dedicated
table is checked. Thus, when an object which is being
marked is on the table, in other words, when the object has
been already marked, the marking calculation for the object
can be omitted. On the other hand, if the target object to
be marked is not on the table, the object is registered with
the table for omitting future redundant calculation for the
object.

Here, with Fig. 2, we show how to omit redundant
marking by using the dedicated table. This figure shows
an example where four objects, A to D, in the heap area are
marked in sequence. At first, when A is marked for the first
time (i), it is marked as usual because it is not on the table
yet. At the same time, the address of A is registered with
the table in order to omit the future redundant marking for A
(a). As these actions are repeated for all objects to be traced,
the objects, A to D, are eventually registered with the table.
Therefore, redundant marking for C, for example, can be
omitted because it has been already registered with the table
when the reference from D to C is traced (ii).

4.2 Table Management

As explained in Sect. 4.1, marked objects are managed in
the dedicated table to improve the object tracing which can
incur a significant overhead in existing Mark & Sweep on
DalvikVM. To eliminate all the redundant marking, a dedi-
cated table which can manage all marked objects is required.

Fig. 2 Omitting a marking by using a dedicated table.

However, how many objects need to be managed is different
in each program. Therefore, preparing a well huge table that
can manage all objects in any programs will seriously in-
crease area cost and power consumption, and it will become
a concern.

As one of ways to solve this problem, registered objects
in the dedicated table should be managed in a list structure
with an LRU-based eviction algorithm. Thereby, the objects
that are frequently marked can be managed preferentially
with a little hardware cost.

However, if the list employs a simple LRU such that a
target object to be marked is inserted into the head of the
list in any case, the objects that are frequently marked and
should be managed may not be preferentially preserved in
the list. For example, in case when many objects that are
marked only once are continuously registered with the list
after an object which would be marked redundantly was reg-
istered with the list, the object may be evicted even though
it should be managed.

In our proposal, objects are therefore managed in two
dedicated tables which employ an LRU-based eviction al-
gorithm. The tables are used depending on whether objects
are marked redundantly or not. In this paper, we define each
of these dedicated tables as Primary Table (Pri-Table) and
Secondary Table (Sec-Table). Before an object is marked,
these tables are searched in order of Pri-Table, Sec-Table,
and whether the marking for the object can be omitted or not
is decided. Sec-Table is used for managing newly marked
objects, and Pri-Table is used for managing only objects that
have been marked twice or more. Thereby, objects that are
marked redundantly, or objects for which redundant mark-
ing can cause a big overhead are preferentially managed in
Pri-Table.

The example in Fig. 3 shows how to manage objects, A
to D, which are being traced in sequence. The number of en-
tries in each table is assumed three in this example. At first,
when A is marked for the first time, its address is registered
with Sec-Table. Repeating this action for B and C, three ob-
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Fig. 3 Managing entries by using two tables.

jects, A to C, will be registered in course of time as shown
in (ii). If B that has been registered with Sec-Table is traced
again (iii), it is removed from Sec-Table and is registered
with Pri-Table (a). As a result, only redundantly marked
objects are managed in Pri-Table due to such actions. If
D is marked in this situation (iv), it is registered with Sec-
Table, and each entry of Sec-Table comes to have an object.
If another object becomes a new target to be marked in this
situation, the oldest object A is evicted from Sec-Table.

5. Implementation and Behavior Model

In this section, we describe the implementation of the
method to omit redundant marking explained in Sect. 4.

5.1 Composition of the Dedicated Tables

In this section, we introduce the concrete structure of each
dedicated table that is for managing marked objects.

5.1.1 Pri-Table

In our proposal, objects are managed with two tables that
employ the LRU-based algorithm mentioned in Sect. 4.2.
Thereby, before an entry spills from the table, the oldest ob-
ject is evicted from the tables. Frequently marked objects
are managed in Pri-Table, and the redundant marking for
them should be omitted. In order to achieve this, it needs to
be confirmed whether the target object is marked or not with
as small latency as possible. Therefore, Pri-Table is imple-
mented with a CAM (Content Addressable Memory) which
is capable of fast associative search.

Each entry of Pri-Table consists of three fields. One is
defined as ‘Address,’ and holds an address in the heap area
which is assigned to a marked object. Another is defined
as ‘prev,’ and keeps the index of the previous object in the
LRU list. The other is defined as ‘next,’ and keeps the in-
dex of the next object. Each of prev and next holds the entry
index corresponding to an object in Pri-Table. In order to

insert an entry to the head of the LRU list and in order to
evict an entry from the tail of the list, two types of regis-
ters are also installed. These two are defined as ‘Head’ and
‘Tail,’ and respectively hold the indices of the head and the
tail of the list which are managed in Pri-Table. In order to
manage the number of the registered objects, one register is
also installed, and this is defined as ‘#Addr.’

5.1.2 Sec-Table

After Pri-Table is searched for a target object to be marked,
Sec-Table is referred if the object proves not to be on Pri-
Table. If the object is on Sec-Table, it is moved to Pri-Table
for omitting future redundant calculation for it. The latency
for accessing Sec-Table barely affects the total performance
of GC and can be concealed, because it can be parallelized
with marking routine for the object. Therefore, Sec-Table
is implemented with a RAM because it causes lower area
overhead and lower power consumption than a CAM while
it is not capable of fast associative search. However, if Sec-
Table is naively implemented with a RAM, all entries in the
table need to be accessed sequentially, and the search cost
for the table may become significantly large. In our pro-
posal, we therefore employ a set-associative strategy as the
structure of Sec-Table, and search cost can be decreased by
using hash.

Before an object is registered with Sec-Table, hash is
calculated from the address of the object in order to decide a
set where the object should be registered. When the number
of registered objects in a set becomes larger than the number
of ways along with registration of a new object, any one of
entries is overwritten by a new entry. Owing to this, a field
‘Victim Index’ for managing which entry should be overwrit-
ten next is provided in every set. This field is implemented
with a ring counter which can count to the maximum value
of the way number. When an object is registered, the entry
that the value of Victim Index indicates is overwritten.

When Sec-Table is searched by using the address of the
object as a key, hash is calculated from the address in order
to identify a set. To confirm whether the target object to be
searched for is on Sec-Table or not, the address of the object
is compared with all addresses stored in the entries of the
set. The number of comparison is the same as the number
of ways at most, and so the comparison overhead can be
significantly smaller than the overhead in case when all the
entries are accessed sequentially.

5.2 Operations for the Dedicated Tables

In this section, we explain the operations for the dedicated
tables that are mentioned above. Firstly, we explain the
required operations in the case when a target object to be
marked is found in Pri-Table. Secondly, we explain the re-
quired operations in the case when the object is not found in
Pri-Table.
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Fig. 4 Operations in case when the object has been registered with Pri-
Table.

5.2.1 When found in Pri-Table

When a target object to be marked has been registered with
Pri-Table, marking this object is omitted. Then, the entry
corresponding to the object is inserted into the head of the
list in accordance with LRU.

Now, we concretely explain operations for Pri-Table
by using Fig. 4. This figure shows operations in case when
object B on Pri-Table is attempting to be marked again. In
this case, objects A and C, which are located just before and
after B in the list respectively, are identified in order to move
B to the head of the list after the marking routine for B has
been omitted (a). After A and C are identified, B is moved
to the head of the list (b). Along with this, prev and next of
objects which are located just before and after B in the list,
and registers are updated (c). In this example, because B is
moved to the head of the list, the contents of Pri-Table are
updated to make A and C adjoining. In addition, the value of
register Head which represents the head of the list, the value
of prev and next which B has are updated.

5.2.2 When not found in Pri-Table

When a target object to be marked has not been registered
with Pri-Table, it is marked as usual. At the same time,
hash is calculated from the address of the object, and Sec-
Table is searched by using this hash. In case when the object
has been registered with Sec-Table, it is registered with Pri-
Table in order to omit the future redundant marking for the
object. The operations for each dedicated table in this case
are illustrated in Fig. 5. This figure shows the case when D
which has been registered with Sec-Table is marked again.
Firstly, hash is calculated from the address of D, and the
set that can contain the address is determined. By compar-
ing the address with ones in the set, the entry that has D is
identified (a). Secondly, in order to move D to Pri-Table,
D is removed from Sec-Table. Along with the deletion of
D, the entry in which D was stored becomes empty, and so

Fig. 5 Operations in case when the object has registered with Sec-Table.

Victim Index of the set corresponding to the entry is updated
to indicate the way number of the entry (b). After that, D
is registered with Pri-Table (c). Along with the registration,
the prev and next of D and the prev of A, which was the
head of the list, are updated. In addition, each value of the
registers is also updated.

When an object is moved to Pri-Table and Pri-Table
overflows, one entry will be reserved by evicting the tail ob-
ject of the list. The object evicted from Pri-Table is moved
to Sec-Table, and if the object is marked again, it can revert
to Pri-Table immediately.

On the other hand, in case when the target object to
be marked is on neither Pri-Table nor Sec-Table, the object
should be registered with Sec-Table. In order to do this, the
set corresponding to the address of the object is identified.
Then, the object is registered with the way that is indicated
by Victim Index of the set, and the value of Victim Index is
increased.

5.3 Software Interface

For using the dedicated tables from software GC routines,
we install two dedicated instructions shown below. Now, we
assume ARM instruction set architecture [13], which uses
condition flags for branch instructions.

GC SRCH Rn searches Pri-Table for the object address
stored in the operand register Rn. This instruction
is followed by a conditional branch instruction whose
branch target is the end of the marking routine. If the
object address is found on Pri-Table, a condition flag is
set for the subsequent branch instruction being taken.
Which condition flag is adopted is implementation-
dependent, but in this paper we assume to utilize
N(negative)-flag, and use BMI (branch if minus or neg-
ative) as the branch instruction. If not found, the object
address is managed on the dedicated table.

GC CLR flushes all entries in the dedicated tables, at the
end of the GC routine, to prepare for next GC.

When a GC SRCH instruction is executed, Pri-Table is
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firstly searched as explained in Sect. 5.2.1. If the target ad-
dress is found, N-flag is set, and the subsequent BMI will be
taken for omitting the following redundant marking routine.
On the other hand, if the target address is not found on Pri-
Table, Sec-Table is searched, and the operations explained
in Sect. 5.2.2 are performed.

The dedicated tables are installed on the backend of the
instruction pipeline. Therefore, some wrong-path instruc-
tions may be in-flight in the pipeline when the search result
by a GC SRCH is ascertained. Such a case appears as that
the branch prediction for the BMI just after the GC SRCH
misses, and the pipeline will be flushed.

By using these dedicated instructions in the GC rou-
tine, the hardware accelerated marking can be utilized. In
the marking routine, a pair of a GC SRCH and a BMI should
be located just after the instructions that are for determin-
ing the address of an object being marked, and the register
where the address is stored should be used as the operand of
the GC SRCH. Alongside, a GC CLR should be located at
the end of the GC routine.

For the performance evaluation shown in Sect. 6, we
modified the GC routine of DalvikVM as it uses these ded-
icated instructions. The instructions are not specialized for
DalvikVM, and they can be used even for other GC rou-
tines other than of DalvikVM. We suppose that a GC library
is provided, with which users can easily utilize the instruc-
tions, and the hardware supported GC will be available in
many environments.

6. Performance Evaluation

We have evaluated the performance of the hardware support
mechanism for GC, with a simulator. We also have evalu-
ated the energy consumption because it is significantly im-
portant for mobile devices. In this section, we discuss its
effectiveness, and show the estimation of the hardware cost
for implementing the mechanism.

6.1 Simulation Environment

In this evaluation, we used gem5 simulator system [9]. The
simulated platform system is shown in Table 2. Workloads
are AOBench [10], GCBench [11], and four benchmarks in
SPECjvm2008 suite [12]. Gem5 simulator is a full system
simulator, and some other programs run in parallel with the
benchmark program. In addition, the behavior of those pro-
grams varies every time, and the amount of available re-
sources for the benchmark also varies every time. Thereby,
for considering the performance variation, we executed each
workload several times, and adopted the best result among
them in each benchmark program as the result with least
disturbance by the other running programs.

6.2 Evaluation Results

In order to discuss the size of dedicated tables, we firstly

Table 2 Simulated platform.

Platform ARM-RealView PBX
Processor ARMv7

Clock 2.0 GHz
L1I Cache 32 KB

ways 4 ways
L1D Cache 32 KB

ways 4 ways
L2 Cache 1 MB

ways 8 ways
Memory 256 MB

OS Linux 2.6.38.8-gem5
Execution non-pipelined / in-order

Fig. 6 Percentage of redundant marking.

measured the percentage of redundant marking in the total
number of marking, without and with the hardware support
mechanism. Then we measured the execution cycles of GC.
To evaluate how much GC affects the total performance of
the system, we also measured the average suspension time.
At last, we evaluate the energy consumption by using Mc-
PAT [14].

6.2.1 Percentage of Redundant Marking

The precentage of redundant marking on the all objects that
are used in each benchmark program is illustrated in Fig. 6.
In this figure, horizontal axis represents the size of dedicated
tables. The label n on horizontal axis means Pri-Table has n-
entries and Sec-Table has 2n-entries, and we have evaluated
with n = 0, 4, 8, 16, 32, 64, and 128. Here, n = 0 indicates
the existing Mark & Sweep, and the plotted values of n = 0
correspond to the average values shown in Table 1.

As we can see in Fig. 6, with all benchmark programs,
the ratio of redundant marking decreases as n increases,
though the decrements are very small in 16 ≤ n. Especially,
with GCBench, our GC reduces more than 90% of redun-
dant marking even with n = 4. In this program, many class
objects and array objects are allocated all at once, and af-
ter a while, they simultaneously become dead objects. We
found that such objects are commonly traced several times
in a short time while they are alive. Those objects are man-
aged with Pri-Table while they are marked frequently, and
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redundant marking for them was omitted.
We measured how much cycles are consumed for ex-

ecuting marking routine once, in other words, how much
cycles can be reduced by omitting one redundant marking.
On DalvikVM, we found that it is around 71-cycle on av-
erage, and 54-cycle even at a minimum. It is pretty large
and many redundant marking can severely decrease the to-
tal performance of the systems.

Here, we would like to discuss the ideal size of dedi-
cated tables. Larger sized Pri-Table can achieve higher per-
formance, because the marking routine for only the objects
that are on Pri-Table can be omitted. However, the energy
consumption of CAM that Pri-Table is implemented with is
comparatively large, so its size should be as small as possi-
ble. We assumed the ideal number of entries of Pri-Table as
16 for the following evaluations, taking the result shown in
Fig. 6 and considering that a general TLB which is imple-
mented with a CAM as well has generally from a dozen to
several dozen entries. It is also desirable that the frequently
marked objects are not evicted from the dedicated tables as
much as possible. Therefore, the size of Sec-Table was as-
sumed to be double the size of Pri-Table, that is, 32 entries
with four ways and eight sets configuration.

In the following, we use the set of 16-entry Pri-Table
and 32-entry Sec-Table as the ideal configuration, and two
reference configurations. The one is the set of 16-entry Pri-
Table and 64-entry Sec-Table, and the other is the set of 32-
entry Pri-Table and 64-entry Sec-Table. To sum up, we have
evaluated following one existing GC and three configura-
tions of hardware supported GC;

(MS) Existing Mark & Sweep (baseline)
(P1) Hardware supported GC (16CAM-32RAM)
(P2) Hardware supported GC (16CAM-64RAM)
(P3) Hardware supported GC (32CAM-64RAM)

where ‘16CAM-32RAM’ means that the dedicated table set
consists of 16-entry Pri-Table and 32-entry Sec-Table, and
so forth.

6.2.2 Execution Cycles of GC

The total execution cycles of GC is illustrated in Fig. 7. Each
bar is normalized to the execution cycles of (MS) the base-
line. The legend in Fig. 7 shows the breakdown items of
total cycles. They represent;

MarkRoot the cycles for marking objects directly referred
from roots.

ScanMarked the cycles for marking child objects
Sweep the cycles for freeing a part of the heap area where

dead objects occupy.

According to the result, with all benchmark programs, the
performance of (P1) is higher than (MS). This is because
ScanMarked was reduced with the hardware support. Es-
pecially, with crypto.signverify, ScanMarked accounts for
large ratio in the total cycles of (MS). For this reason, (P1)
can provide a good performance, and the total GC cycles are

Fig. 7 Ratio of execution cycles of GC.

reduced by 22.4%. With all benchmark programs, the total
GC cycles are reduced by 13.8% on average. The Sweep
cycles are slightly different between the configurations. The
variance should be a deviation caused by the disturbance
from other running processes as mentioned in Sect. 6.1.

Now, the access latency for the dedicated tables should
be considered while the execution cycles of GC are reduced.
In this evaluation, we assumed that the access latency for
Pri-Table is two cycles and for Sec-Table is one cycle, and
calculated the overhead of the hardware supported GC by
multiplying the access counts for those two tables by the ac-
cess latency of each table. As a result, we confirmed that the
ratio of the overhead to the cycles for GC with our proposal
is about 1.8%, and this is sufficiently small. In addition,
Sec-Table access can be overlapped with marking routine as
described in Sect. 5.1.2. Therefore, the substantial overhead
will be smaller than 1.8%.

The results do not much differ between (P1), (P2) and
(P3). This indicates that most of frequently marked objects
can be well managed even with the set of 16-entry CAM
and 32-entry RAM of (P1), and is consistent with the dis-
cussion in Sect. 6.2.1. With some benchmark programs, the
results of (P1) are slightly better than the others. This is
because that the larger Sec-Table can manage many entries
including the entries that do not contribute much to omit
redundant marking, and even beneficial Pri-Table entries
can be evicted to Sec-Table more frequently by such entries.
The redundant marking on the objects corresponding to the
evicted entries can be omitted again only after the entries
return to Pri-Table. Therefore, we will show the results of
existing models and only (P1) in the following evaluations.

6.2.3 Average Suspension Time caused by GC

Next, we show the average suspension time caused by GC in
Fig. 8. We calculated the average of suspension time per GC
execution by dividing the total length of suspended time by
the frequency of suspension shown in Table 3. The results
with following three GCs are shown in Fig. 8.
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Fig. 8 Average suspension time caused by GC.

Table 3 Frequency of suspension in each program.

(MS) (CO) (P1)
AOBench 3,363 8,937 3,364
GCBench 235 467 235
crypto.aes 198 279 198

crypto.signverify 40 42 20
compress 20 29 20

serial 357 693 356

(MS) Existing Mark & Sweep (baseline)
(CO) Existing Concurrent GC
(P1) Hardware supported GC (16CAM-32RAM)

Each bar in Fig. 8 is normalized to (MS). The results show
that, with many benchmark programs, the suspension time
of (P1) is smaller than (MS). This is because the cycles per
GC execution are reduced by hardware support. Although
Concurrent GC (CO) aims to shorten the suspension time
at the cost of the throughput as mentioned in Sect. 2.2, its
suspension time severely increases with AOBench and com-
press. This is because GC consumes relatively small cycles
with these programs and synchronization overhead for Con-
current GC appears large. Even with these programs, the
suspension time of (P1) is restrained. With all the bench-
mark programs, we confirmed that the average suspension
time is reduced by about 21.8% at a maximum, and about
13.1% on average.

6.2.4 Estimation of the Hardware Cost

Here, we discuss the additional hardware cost for the hard-
ware supported GC before introducing the evaluation result
of energy consumption. As mentioned in Sect. 6.1, Pri-
Table with 16 entries and Sec-Table with four ways eight
sets configuration are used. Each entry in Pri-Table re-
quires 32-bit width for Address field, and (2 × 4)-bit width
for priv/next fields. In addition, three 4-bit width registers
Head, Tail, and #Addr are required. Hence, Pri-Table can
be configured in an 80-Byte CAM and three 4-bit registers.

Sec-Table has Victim Index and a field set for holding
object addresses. The number of addresses which can be
held in a set of Sec-Table is the same as the number of ways.

Fig. 9 Energy Consumption.

In this evaluation, the number of ways is defined as four,
and Victim Index can be implemented with a 2-bit counter.
Therefore, each set of Sec-Table requires two bits for the
counter and 32 × 4 = 128-bits for managing the addresses
of the objects. Hence, Sec-Table can be configured in a 130-
Byte RAM.

Thus, the total hardware cost is only 210 Bytes, and
we confirmed that the hardware cost of proposed method is
quite small.

6.2.5 Energy Consumption

At last, the evaluation result of energy consumption in con-
sideration of the additional hardware is shown in Fig. 9.
Here, we note that the processor model we used in this eval-
uation includes only minimal units for executing instruc-
tions in non-pipelined in-order manner. Therefore, the ra-
tio of the power consumption by additional hardware can
be overestimated, because the base architecture of proces-
sor model is simpler than general commodity processors.

The result indicates that the proposed GC can reduce
the energy consumption with all benchmark programs. Even
though the required additional hardware for our proposal
raises power consumption, the amount is quite small, and
the total energy consumption results in being even smaller
than (MS) by execution cycles being largely reduced.

7. Conclusion

In this paper, we proposed a hardware supported technique
to improve the object tracing routine that is required in many
GC algorithms. In this technique, we installed dedicated ta-
bles to a processor for managing marked objects. Thereby,
the overhead caused by conventional redundant marking
was reduced by referring these tables while GC is running,
and we achieved high performance GC.

To validate the effectiveness of the hardware supported
GC, we evaluated the performance with a simulator. As a
result, we confirmed that the percentage of redundant mark-
ing was reduced by more than 50% compared with previ-
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ous Mark & Sweep, and the total GC cycles were reduced
by 22.4% at a maximum. Additionally, while the through-
put decreases and the suspension time increases with some
benchmark programs with Concurrent GC, we confirmed
that the hardware supported GC can suppress such perfor-
mance degradation.

One of our future works is to study a new GC algo-
rithm which is not ridden by conventional algorithms, that
is, which can highly cooperate with some assistant hard-
ware. In this paper, we proposed a hardware supported GC,
but only object tracing routine of whole GC execution is
improved. Therefore, in case when the marking routine oc-
cupies little part of GC in a program, this technique cannot
improve the performance effectively. Hence, we will study
a new GC algorithm that is optimized for using additional
hardware, and would like to find the way that leads to the
dramatic improvement of GC performance.
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