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Learning Supervised Feature Transformations on Zero Resources
for Improved Acoustic Unit Discovery

Michael HECK†a), Nonmember, Sakriani SAKTI†, and Satoshi NAKAMURA†, Members

SUMMARY In this work we utilize feature transformations that are
common in supervised learning without having prior supervision, with
the goal to improve Dirichlet process Gaussian mixture model (DPGMM)
based acoustic unit discovery. The motivation of using such transfor-
mations is to create feature vectors that are more suitable for clustering.
The need of labels for these methods makes it difficult to use them in a
zero resource setting. To overcome this issue we utilize a first iteration
of DPGMM clustering to generate frame based class labels for the target
data. The labels serve as basis for learning linear discriminant analysis
(LDA), maximum likelihood linear transform (MLLT) and feature-space
maximum likelihood linear regression (fMLLR) based feature transforma-
tions. The novelty of our approach is the way how we use a traditional
acoustic model training pipeline for supervised learning to estimate feature
transformations in a zero resource scenario. We show that the learned trans-
formations greatly support the DPGMM sampler in finding better clusters,
according to the performance of the DPGMM posteriorgrams on the ABX
sound class discriminability task. We also introduce a method for combin-
ing posteriorgram outputs of multiple clusterings and demonstrate that such
combinations can further improve sound class discriminability.
key words: acoustic unit discovery, Bayesian nonparametrics, feature
transformation, unsupervised subword modeling, zero resource

1. Introduction

We speak of a zero resource scenario in the speech process-
ing domain, when large amounts of labeled training data,
parallel data, and expert knowledge about the target lan-
guage are unavailable for techniques of supervised learning.
State-of-the-art machine learning methods that typically rely
on accurate, hand-crafted labels for training can not be ap-
plied easily in such a scenario. Unsupervised methods try
to circumvent the need for precise labels and extensive ex-
pert knowledge, but despite significant advances in this field,
it still remains a challenge to imitate human capacities of
learning models of spoken language.

Phonologists approach a new and unseen language by
defining a set of acoustic units to fully cover the underly-
ing sound repertoire. Machine learning approaches to this
are pattern matching on raw audio data [1], [2] and unsuper-
vised learning of models [3]. These techniques have been
successfully applied to solve tasks such as spoken term de-
tection [4], topic segmentation [5] or document classifica-
tion [6].

Manuscript received May 29, 2017.
Manuscript revised September 13, 2017.
Manuscript publicized October 20, 2017.
†The authors are with the Augmented Human Communication

Laboratory, Graduate School of Information Science, Nara Insti-
tute of Science and Technology, Ikoma-shi, 630–0192 Japan.

a) E-mail: michael-h@is.naist.jp
DOI: 10.1587/transinf.2017EDP7175

Recently, evaluations such as the zero resource speech
challenge [7] specialize in learning a new language from
scratch and without any prior supervision. The challenge
defines the above-mentioned task as unsupervised subword
modeling, where the objective is to construct a representa-
tion of speech sounds that is robust to variation within and
across speakers and that maximizes class discrimination [7].
This task was tackled by a spectrum of contributions: [8] ap-
plies a correspondence auto-encoder to learn efficient repre-
sentations with the help of matched word pairs generated by
an unsupervised term discovery (UTD) system. [9] makes
use of a deep auto-encoder that applies a threshold at the
encoding layer to generate a binary representation of speech
frames. [10] proposes a Siamese DNN training framework
that takes the frames of UTD word pairs as input and min-
imizes the distance between frames of the same class and
maximizes it between frames of different classes.

Model complexity usually is not known a priori when
dealing with new data sets and where estimation is not pos-
sible due to the lack of development data. Bayesian non-
parametric models can be a good choice in such cases, as
they automatically adjust the model complexity given some
data. Bayesian models have already been successfully ap-
plied to other speech processing tasks such as unsupervised
lexical clustering [11]. Chen et al. [12] take a Bayesian non-
parametric approach to unsupervised subword modeling and
cluster MFCCs with their derivatives by inferring a Dirichlet
process Gaussian mixture model (DPGMM). A major draw-
back of clustering MFCC feature vectors is that they are not
implicitly designed to maximize discriminability.

On the other hand, traditional supervisedly trained
speech processing systems typically utilize a whole ar-
ray of feature transformations to optimize the feature vec-
tors towards discriminability. Linear discriminant analysis
(LDA) [13] for instance is a standard technique to min-
imize intra-class discriminability, to maximize inter-class
discriminability and to extract relevant informations from
high-dimensional features spanning larger contexts. Max-
imum likelihood linear transforms (MLLT) [14], [15] is a
common method to de-correlate feature components, and
feature-space maximum likelihood linear regression (fM-
LLR) [16], [17] is widely used for speaker adaptation. Class
discriminating properties are critical for clustering methods
like the one used in [12], and adaptive feature transforma-
tions can help reduce variability. However, methods such as
LDA require class labels for estimating the transformations,
which makes it difficult to use them in zero resource sce-
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narios, where the class identities and even their amount are
unknown.

In this work, we present a new approach to optimizing
the input of a particular Bayesian non-parametric clustering
method, the DPGMM sampler. The novelty of this work
is the way how we use traditional methods of supervised
learning for unsupervised feature transformation estimation
in a zero resource scenario, i.e., without having any prior
labels. We demonstrate that we can learn various feature
transformations on automatically generated labels instead,
and that these transformations produce feature vectors that
considerably improve clustering performance. There has
been work that utilize k-means clustering to automatically
obtain pseudo labels for LDA estimation [18], [19]. How-
ever, unlike in these studies we overcome the limitation of
having to predefine the size of the label set by using the non-
parametric DPGMM sampler itself to generate initial labels
for our untranscribed data. These labels serve as basis for
learning LDA, MLLT and fMLLR transformations in an en-
tirely unsupervised fashion. For that, we efficiently utilize
a classic acoustic model training pipeline, which makes our
approach easy-to-use. The original input is transformed and
clustered again with the DPGMM sampler. Our experiments
show that the feature transformations greatly help improve
cluster quality and that using multiple transformations pro-
duces the best results. We demonstrate the effectiveness of
our method on two very different data sets that vary in size,
language and speaking style. Additionally, we introduce
a method for combining the results of multiple DPGMM
samplings on posteriorgram level and show that such com-
bination can boost sound class discriminability even further.
We believe our transformation based approach to optimizing
feature vectors for clustering is universal and will be useful
for other zero and low resource tasks as well.

2. Dirichlet Process Gaussian Mixture Model

DPGMMs (also known as infinite GMMs) extend finite mix-
ture models by the aspect of automatic model selection:
The model finds its complexity automatically given the data.
Model inference is typically sample based using a Markov
chain Monte Carlo (MCMC) scheme such as Gibbs sam-
pling. The sampler used here combines a restricted Gibbs
sampler with a split/merge sampler. For more in-depth in-
formations, please refer to [12] and [20].

2.1 Generative Process

Let X = {x1, . . . , xn} be a set of observations. The generative
process of X given a DPGMM is as follows:

• Mixing weights π = {π1, . . . , πk} are generated accord-
ing to a stick-breaking process

• GMM parameters θ = {θ1, . . . , θk} are generated ac-
cording to an Normal-inverse-Wishart (NIW) distribu-
tion as NIW(mk, S k, κk, νk) as prior distribution

• A label zi is assigned to every data point xi, according

to the mixing weights π
• A data point xi is generated according to the zi-th

GMM component

θk = {μk,Σk} are Gaussian parameters, and the parameter
set of the prior Normal-inverse-Wishart (NIW) distribution
consists of a prior m0 for μk, a prior S 0 for Σk, the belief-
strength κ0 in m0 and the belief-strength ν0 in S 0.

2.2 Inference

The parallelizable sampler alternates between a non-ergodic
restricted Gibbs sampler and a split/merge sampler to form
an ergodic MCMC sampler.

Restricted Gibbs sampling allows labels zi to be sam-
pled from a finite set of labels Z. By definition of the
DPGMM, the distribution of the mixture weights follows
a Dirichlet distribution.

Split/merge sampling performs operations on the ex-
isting components. To provide good split candidates, each
component is augmented with two sub-clusters with mixing
weights πk,l, πk,r and parameter sets θk,l, θk,r, and each obser-
vation of a component is augmented with a sub-cluster label
zsubi ∈ l, r.

The Split/merge sampler proposes split and merge
moves in a Metropolis-Hastings fashion. A Hastings ratio
H is computed according to the momentary assignment of
observations of a component to its sub-clusters, and a move
is accepted with a probability min(1,H). For the merge step,
merges of randomly picked components are proposed.

3. Multi-Stage Clustering for Acoustic Unit Discovery

Our approach to improving the quality of DPGMM based
speech feature vector clustering is realized by a multi-stage
framework. This framework utilizes multiple feature trans-
formations in conjunction to benefit from additive effects.
We want to make use of speech feature transformations
which are well-established for rich-resource languages to
optimize the input features towards discriminability. A wide
range of transformations can be applied to features for this
purpose, with favorable effects such as dimensional reduc-
tion, feature de-correlation or adaptation to certain condi-
tions in order to minimize variability. Because we are situ-
ated in a zero-resource scenario, we exploit these transfor-
mations in an unsupervised fashion.

We utilize a standard pipeline for supervised acoustic
model training, where feature transformations are conve-
niently estimated during the course of the training process
to obtain the transformations. The advantage of this is that
well-established pipelines already exist and are ready to use.
The disadvantage is the requirement of labels for training.

To overcome the issue of not having labels in a zero-
resource scenario, we propose using a multi-stage strategy
that alternates between feature vector clustering, label gen-
eration and transformation estimation via model training.
We use the DPGMM sampler to generate initial labels for
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Fig. 1 Scheme of the multi-stage clustering for acoustic unit discovery.
In stage 1, standard features are clustered. From frame based class labels,
utterance based transcriptions are generated. In stage 2, feature transforma-
tions are estimated with the help of an acoustic model training pipeline and
the automatic transcriptions. In stage 3, features are transformed with one
or more transformations before clustering them by sampling a DPGMM.

our untranscribed data by clustering standard feature vec-
tors. These automatic labels serve as basis for feature trans-
formation estimation by unsupervised acoustic model train-
ing. The transformations are then applied to the standard
feature vectors prior to a second run of DPGMM based clus-
tering. We explain the individual stages of our framework in
detail in the following Subsections. A graphical overview is
given in Fig. 1.

3.1 Stage 1: Clustering Standard Feature Vectors

The DPGMM as a Bayesian non-parametric model has the
convenient property to automatically find an optimal num-
ber of classes given a set of data during sampling. We use
this property and run an initial clustering on standard fea-
ture vectors with derivatives (x′′i ) to get a set of class labels
and the hypothesized class membership zi for all n speech
frames. These classes are simply named with the numeric
ID of the Gaussian distribution that most likely produced
the respective feature vector.

3.2 Stage 2: Transformation Estimation

The output of the previous step is frame-wise class labels
for the data. We collapse the labels for each utterance by
compressing all subsequent tokens of the same type to a sin-
gle token, i.e., a sequence of labels 1-1-2-2-2-3-4-4-4 be-
comes 1-2-3-4. This is done to imitate transcriptions based
on phone-like units. We use these transcriptions for trans-
formation estimation by running an out-of-the-box acoustic
model training pipeline. We use a 3-state HMM topology

with a skip from the first state to the next HMM to guar-
antee that an alignment is always found, since we cannot
guarantee that every label in the transcription covers at least
3 frames. The training is initialized with a flat-start, i.e.,
by context-independent monophone training starting with
an equally spaced alignment. Then we subsequently train
context dependent tri-phones, where during training we es-
timate transformations based on LDA, MLLT and fMLLR.

LDA is a well-known linear transformation that we use
to minimize intra-class discriminability and maximize inter-
class discriminability of speech features. Estimating the
LDA transformation requires the feature vectors themselves
and their respective class labels. With our pipeline, we cre-
ate alignments between utterance HMMs and the automatic
textual labels from the previous step and use the HMM states
as classes for the LDA.

We compute the LDA for stacked feature vectors (x̂i),
where we use a context of c, meaning that we stack the c left
and c right feature vectors on top of the current vector, which
is the center vector. Context is an important source of infor-
mation to correctly classify speech features. Feature stack-
ing can cover a much larger context than appending the first
and second derivatives, for instance. Dimensional reduc-
tion of these high-dimensional vectors is done by omitting
lower-ranked coefficients after applying the transformation.
Lower dimensional feature vectors encapsulate relevant in-
formation more efficiently and help keep the clustering fea-
sible.

MLLT is computed for distributions of speech obser-
vations in the HMMs of speech recognizers. The main pur-
pose of MLLT in speech recognition systems is to force
the features into a space where diagonal modeling is suit-
able, which greatly reduces complexity and thus simplifies
computing the model parameters [14]. The state-dependent
transformations are estimated so that the likelihood of the
adaptation data is maximized. Our motivation to use MLLT
is to capture correlations between feature vector compo-
nents.

fMLLR is an algorithm for speaker adaptive training
(SAT). The idea of SAT is to capture inter-speaker variabil-
ity in speaker dependent transformations and to generate
speaker independent state distributions instead. Since the
transformations are applied in the feature space, the result-
ing feature vectors are expected to show lower variability
across speakers. The transformations are estimated based
on alignments with speaker-independent features so that the
likelihoods are maximized. We apply fMLLR in the zero
resource scenario because we expect the transformations to
help eliminate variance caused by multiple speakers, which
should intuitively aid the clustering process.

3.3 Stage 3: Clustering Transformed Feature Vectors

We extract the transformations learned in the previous step
as transformation matrices, which can be readily applied
to the feature vectors x̂i prior to a second run of DPGMM
based clustering. As illustrated in Fig. 1, we can extract new
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feature vectors yi by using one (LDA) up to three transfor-
mations (LDA+MLLT+fMLLR) in conjunction. After ap-
plying one or more transformations, we perform the frame
based DPGMM clustering. We compare the clustering qual-
ity using the untransformed features with the clustering
quality using each of the transformed features. For that we
first extract m sets of GMM posteriorgrams pm

i for our data
given each of the m DPGMMs and then score each of these
posteriorgram sets (see Sect. 5.2).

4. Posteriorgram Combination

In this Section, we describe the method that we developed
to combine the output of multiple clusterings. System com-
bination on hypothesis level is a popular method in speech
processing to further improve the output quality. Inspired by
the idea, we developed a method to combine the output of
multiple clusterings on posteriorgram level. The method is
formally expressed in Algorithm 1.

The output of each DPGMM m can be represented as
a set of posteriorgrams Pm = {pm

1 , . . . , p
m
n } with one pos-

teriorgram for each of the n speech frames (see Eq. (2)).
Generally, combining multiple sets of posteriorgrams P =
{P1, · · · , Pm} is straightforward. For each frame i, we add
together the m individual posteriorgrams {p1

i , . . . , p
m
i } (Op-

eration 13) and normalize the new vectors (Operation 15):

p̂i =
1
m

m∑

k=1

pk
i (1)

The result is a new set of posteriorgrams P̂ = { p̂1, . . . , p̂n}.
However, for the non-parametric DPGMM, the amount

of found classes and thus the dimensionality of posterior-
gram vectors differs for each clustering run. Therefore, a
mapping between any two sets of posteriorgrams is needed.
Given m sets of posteriorgrams, we randomly pick one of
these sets as target set Ptgt (Operation 1), and consider all
other sets as source sets, each denoted as Psrc (Operation 4).

The mapping from Psrc to the space of Ptgt for any
source/target pair works as follows: We first convert all
frame-wise posteriorgrams in Ptgt into frame-wise labels
ltgt by taking the numeric ID of the class with the high-
est probability as label (Operation 2). Knowing the frame-
wise labels, we can represent each utterance in our data as
sequences of labels. We do the same given all the posteri-
orgrams in Psrc (Operation 5). For each utterance we now
have a pair of label sequences, which we align to count the
label co-occurences tcooc (Operation 6). Given the counts
we identify the single most probable “translation” for each
class ID, which we keep in a mapping table t1best (Op-
eration 7). With the mapping table it is possible to re-
arrange the posteriorgram vector elements for all p ∈ Psrc
to match the posteriorgram vector layout of Ptgt (Opera-
tion 10). Note that there can be many-to-one mappings in
case the posteriorgrams in Psrc have higher dimensionality
than the ones in Ptgt. For an intuitive example of mapping
a single posteriorgram, see Fig. 2.

Algorithm 1 Posteriorgram combination
Require: Set P = {P1, · · · , Pm} of sets of posteriorgrams
Ensure: Combined set of posteriorgrams P̂
1: Ptgt ← random set from P
2: ltgt ← generate labels from posteriorgrams Ptgt
3: P̂← Ptgt
4: for all Psrc ∈ P \ Ptgt do
5: lsrc ← generate labels from posteriorgrams Psrc
6: tcooc ← count label co-occurrences in align(lsrc, ltgt)
7: t1best ← keep 1-best mapping from tcooc
8: P̂src ← {}
9: for all p ∈ Psrc do

10: pmap ← map p to space of Ptgt using t1best
11: add pmap to set P̂src
12: end for
13: P̂← add together pair-wise posteriorgrams in P̂src and P̂
14: end for
15: P̂← normalize P̂

Fig. 2 Example of mapping one posteriorgram p from the source set psrc
to the space of target set Ptgt. The 1-best mappings in the mapping table
t1best are used to re-arrange the posteriorgram vector elements to match the
posteriorgram vector layout of the target set Ptgt. There can be many-to-
one mappings in case the posteriorgrams in Psrc have higher dimensional-
ity than in Ptgt.

5. Experimental Setup

5.1 Data

The database for all our experiments are the two official
data sets of the Interspeech zero resource speech chal-
lenge 2015 [7], which greatly vary in size, language and
speaking style. One set contains spontaneous, conversa-
tional interview-style American English (4h 59min), ex-
tracted from the Buckeye corpus [21]. The other set con-
tains carefully uttered, read speech in Xitsonga (2h 29min),
a southern African Bantu language. The latter is an excerpt
of the NCHLT corpus [22]. All speech segments contain
non-overlapping speech of exactly one speaker and are free
of non-human noises and pauses. We extract about 1.7M
frames for English and 0.8M frames for Xitsonga to cluster.

5.2 Evaluation Method

The evaluation metric we use to measure the cluster qual-
ity is based on the minimal pair ABX phone discriminabil-
ity between phonemic minimal pairs [23]. We score GMM
posteriorgrams that are computed for each speech frame af-
ter clustering, where the posterior probability of the cluster
ck, given an observation xi is computed as

p(ck |xi) =
πkN(x|θk)

∑K
j=1 π jN(x|θ j)

(2)

where K is the total number of components in the DPGMM
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and pi = (p(c1|xi), . . . , p(cK |xi)) forms the posteriorgram for
observation xi. θ are the Gaussian parameters, and π are the
mixing weights (see Sect. 2).

Let A and B be speech representations of sound cate-
gories a and b, and X be of either a or b. The ABX phone
discrimination error is

c(a, b) = 1 − 1
|a| · |b| · (|a| − 1)

∑

A∈a

∑

B∈b

∑

X∈a\{A}

(δd(A,X)<d(B,X) +
1
2
δd(A,X)=d(B,X)) (3)

where δ(·) is an indicator function that equals to 1 if the con-
dition (·) holds true and is 0 otherwise, and d(·, ·) is the dy-
namic time warping (DTW) distance defined over sequences
of frame based feature vectors (in this case posteriorgrams).
As in Schatz et al. [23], we use the Kullback-Leibler diver-
gence to compute the DTW distances.

The idea of the ABX test is as follows. Given a phone
based reference transcription of the test data, and the posteri-
orgrams coming from the DPGMM sampler, we can identify
sequences of posteriorgrams that represent the same phone-
triplets, between which we can compute distances. For ex-
ample, if A and X are two different sequences of posteri-
orgrams that represent the triplet “b-a-g”, and B is another
sequence that represents “b-e-g”, then the distance between
A and X should be smaller than between B and X. If this is
not the case, then this counts as a discrimination error. We
collect the errors for all possible pairings of central phones.
The errors are averaged over all contexts for a given pair
of central phones and then over all pairs of central phones.
Moreover, we compute the errors within speakers (i.e., the
average phone discriminability error for each speaker spe-
cific portion of the test data) and across speakers.

The references for English and Xitsonga contain 165k
and 72k phone-triplet annotations for 39 and 53 unique cen-
ter phones, respectively. On average, there are 4.2k and 1.3k
samples for each English and Xitsonga phone, respectively.
This allows reliable discriminability error analyses.

5.3 Tools

We use the Kaldi speech recognition toolkit [24] to extract
speech feature vectors for a frame length of 25 milliseconds
and frame shift of 10 milliseconds. We apply mean vari-
ance normalization (MVN) and vocal tract length normal-
ization (VTLN). The VTLN is done by learning a universal
background model on the full data set for each language and
subsequent training of a model for the extraction of warp
factors. That gives us warp factors for the target data al-
ready, but the resulting models could be used for future un-
seen data to extract warp factors without the overhead of any
re-training. All AMs used in our framework are likewise
trained with Kaldi, following a standard scheme for speaker
adaptive training (Kaldi recipe s5). Since we work in a zero
resource scenario, all parameters that can be tuned are set
to default values. We use the same parameters as Chen et
al. [12] during the DPGMM sampling to ensure comparabil-

ity. The sampling is done for 1500 iterations, and the priors
are set so that m0 is the global mean, S 0 is the global covari-
ance, κ0 = 1, and α = 1. The value of ν0 slightly varies and
is set to the toolkit’s default of ν0 = D + 3, where D is the
dimension of the input feature vectors.

6. Evaluation

6.1 Baselines

The baseline discriminability error rates were produced
by clustering 39 dimensional MFCC or PLP vectors with
first and second order derivatives (MFCC+Δ+ΔΔ) with the
DPGMM sampler and extracting the GMM posteriorgrams,
which is the method of Chen et al. [12]†.

For comparison, we computed another set of baseline
discriminability error rates by using principal component
analysis (PCA) [25], [26] to transform the feature vectors
prior to the DPGMM sampling. PCA is an entirely unsuper-
vised method to de-correlate variables with an orthogonal
linear transformation and is closely related to LDA, which
makes it a fair basis of comparison for the effect of the su-
pervised transformations that we learn without prior super-
vision. The baseline numbers are found in Table 1.

6.2 PCA vs. LDA

Figure 3 plots discriminability errors of GMM posterior-
grams that were extracted after clustering PCA or LDA
transformed feature vectors. The graphs show the perfor-
mance with regards to the output dimensionality of the trans-
formations, i.e., how many coefficients are used after trans-
forming the features vectors.

Table 1 Summary of the experimental results. The table contrasts Chen
et al.’s best performance (row 1), our baseline performance (row 2) (for
details about the differences see Sect. 6.1), results using various feature
transformations, and the best posteriorgram-level combination (Comb. V,
see Table 2) (row 12).

English Xitsonga
Features within across within across

MFCC+Δ+ΔΔ ([12]) 10.8 16.3 9.6 17.2
MFCC+Δ+ΔΔ 12.2 19.5 8.9 14.2
MFCC+PCA 11.7 19.2 9.8 16.4
MFCC+LDA 11.0 16.6 8.7 13.2
MFCC+LDA+MLLT 11.0 16.5 8.7 13.1
MFCC+LDA+MLLT+fMLLR 11.0 16.0 8.6 12.7
PLP+Δ+ΔΔ 11.8 19.6 8.5 13.9
PLP+PCA 11.7 18.4 8.7 14.6
PLP+LDA 10.5 16.1 8.3 12.8
PLP+LDA+MLLT 10.5 16.2 8.4 12.9
PLP+LDA+MLLT+fMLLR 10.5 15.6 8.4 12.2
Posteriorgram combination V 10.0 14.9 8.1 11.7

†Despite using the same setup and input feature types, there is
a mismatch between the results of Chen et al. [12] and our baseline.
We believe this is caused by the fact that Chen et al. reportedly use
a custom segmentation of the data, where we use the official seg-
mentation of the zero resource challenge 2015. Different segmen-
tations can considerably affect the amount of data actually being
used for training.
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Fig. 3 Discriminability error rates within and across speakers for
DPGMM posteriorgrams after clustering PCA or LDA transformed MFCC
or PLP feature vectors. The stacking context size is fixed to c = 4. The
results are plotted as a function of the output dimensionality d of the trans-
formations. Left: Error rates for English. Right: Error rates for Xitsonga.

Surprisingly, the use of PCA did not show the desired
effect of decreasing the discriminability error after DPGMM
clustering. In fact, the discriminability error of the GMM
posteriorgrams increased on the Xitsonga data. On the En-
glish data only little improvement was achieved. The trend
is the same whether MFCC or PLP features were trans-
formed.

On the other hand, the LDA transformation produced
feature vectors that considerably helped the DPGMM clus-
tering process in finding better clusters, as the discriminabil-
ity error rates for both data sets decreased greatly, and espe-
cially across speakers a strong performance boost is observ-
able. Interestingly, using PLP features for the transforma-
tions led to better results than using MFCC features. This is
true for both, PCA and LDA transformations.

By using LDA transformed features we already outper-
form our own baseline and we also beat the numbers of Chen
et al. [12]. We take this as proof that the unsupervisedly
estimated LDA transformation is the better choice to im-
prove the input to a DPGMM sampler, even when the labels
that are used for the estimation are imperfect. The class-
discriminating properties of LDA are much more valuable
than the simple orthogonalizing that the class-unaware PCA
can provide.

6.3 Input and Output Dimensions for LDA

The experiments explained above already show that the
choice of the output dimensionality d of transformations in-
fluences the clustering performance. We exemplarily con-
ducted a grid search on the parameters c and d LDA trans-
formation of PLP features to find out if this is also true for
the input dimensionality. The results of these experiments
are visualized in Fig. 4.

The graphs suggest that the impact of the LDA trans-
formation does not depend on the stacking context size c. In

Fig. 4 Discriminability error rates within and across speakers for
DPGMM posteriorgrams after clustering LDA transformed PLP feature
vectors with varying stacking context size c. The results are plotted as a
function of the output dimensionality d of the transformation. Left: Error
rates for English. Right: Error rates for Xitsonga.

Fig. 5 Discriminability error rates for the contrastive English data set for
DPGMM posteriorgrams clustering LDA transformed PLP feature vectors,
plotted as a function of the output dimensionality d of the transformations.

our experiments, any context c > 2 was suitable. It seems
the largest benefit of the dimensional reduction by LDA
transformation lies in the compression of the de-correlated
features and not so much in the coverage of a larger context.

We see that d ≤ 20 works well for the English data,
and best results for Xitsonga are achieved with d ≥ 20.
We believe this might be due to the data sets’ differing
speech quality. The English data set consists of conversa-
tional speech, and mapping into a lower dimensional space
might lead to more stable features for the clustering. The
Xitsonga data is read speech, thus the higher dimensions of
the transformed feature vectors might still contain distinc-
tive informations.

We conducted additional experiments with a con-
trastive English data set [27] where we used 38 hours of very
clean English read speech to estimate the LDA transforma-
tion. Figure 5 shows the error rates on this data set as a func-
tion of d. The error curve flattens out in a similar range of
values than observed for the Xitsonga data set, which shows
comparable speech quality. These results might indicate that
d is mainly affected by the quality of the speech.

In a real zero resource scenario we don’t have the op-
tion to tune c and d. One could therefore try and make an in-
formed guess, or more reasonably use values that have been
shown to work well for known languages. We take the lat-
ter approach and fix the context to c = 4 (i.e., we stack 9
feature vectors) for the input to the LDA, and set the output
dimensionality to d = 20 (i.e., we keep the first 20 coeffi-
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cients), according to the best overall performance on our En-
glish data set. By using the parameters we tuned on English,
we achieve a performance on Xitsonga that is only slightly
lower than the performance that could be achieved with an
optimal parameter set, as can be seen in Figs. 3 and 4.

6.4 MLLT

Applying MLLT to LDA transformed features had little to
no effect. When we estimate MLLT with our pipeline,
the likelihood of the training data is maximized, given the
acoustic model that we train along. With the DPGMM, a
different generative model for the same data is assumed. In-
tuitively, it is not guaranteed that MLLT works well in such
a cross-model scheme, which our results also show (see Ta-
ble 1).

6.5 fMLLR

When we applied fMLLR transformations to the feature
vector input for the DPGMM sampler, we observed a con-
siderable across speaker discriminability error reduction of
the GMM posteriorgrams extracted after the clustering, as
seen in Table 1. The relative across speaker error reductions
range from 3% to 6%, depending on the data set and the type
of the transformed features (MFCC or PLP), but the crucial
point is that in our experiments the improvements are inde-
pendent of data amount, language, and feature types.

Besides doing performance tests, we also analyzed the
actual effect of the fMLLR in the feature space. With the
frame based class labels from the clustering, we computed
the means of the feature vectors for each class and cal-
culated their average distance from each other. We com-
pared the distances of the speaker-dependent means for each
class before and after applying fMLLR transformations and
found an average distance reduction of 19% and 17% rel-
ative for English and Xitsonga. This shows that the fM-
LLR causes the speaker-dependent means to move closer
together, a direct result of removing speaker variance from
the features. Interestingly, the speaker-independent means
of all the classes moved further away from each other by
about 0.7% to 2% relative for English and Xitsonga, and the
variance of the features was reduced on average by about
1% relative for both data sets. This means that the fMLLR
also helps to increase discriminability between classes. Fig-
ure 6 shows the effect of fMLLR in the feature space with
an example.

6.6 Posteriorgram Combination

We were using the DPGMM clustering with various kinds
of input features and combined the different results with the
method from Sect. 4. The expectation was that GMM pos-
teriorgrams from different DPGMM clusterings contain dif-
ferent kinds of latent information about the data and could
complement each other in combination.

To produce candidate outputs for combination, we

Fig. 6 The figures exemplarily show the 1st and 2nd dimensions of the
feature vectors belonging to an arbitrary English acoustic unit as detected
by the DPGMM sampler. Left is the feature space before, right after ap-
plying fMLLR transformations. The speaker dependent means (black dots)
now cluster in a much smaller area.

Table 2 DPGMMs used for each posteriorgram combination (Comb.).
The number in brackets behind LDA denotes the used output dimension d.
For combination V, eight models were combined, one for each context size
c between 1 and 8. The context size governs the stacked PLP feature vector
size prior to the LDA transformation.

Comb. #DPGMMs Clustered features

I 5 PLP+LDA+MLLT+FMLLR

II
PLP+LDA

3 PLP+LDA+MLLT
PLP+LDA+MLLT+FMLLR

III 2
PLP+LDA+MLLT+FMLLR
MFCC+LDA+MLLT+FMLLR

IV 4

PLP+LDA(d = 16)+MLLT+FMLLR
PLP+LDA(d = 20)+MLLT+FMLLR
PLP+LDA(d = 23)+MLLT+FMLLR
PLP+LDA(d = 26)+MLLT+FMLLR

V 8 PLP(1 ≤ c ≤ 8)+LDA+MLLT+FMLLR

Fig. 7 Discriminability error rates of various posteriorgram combina-
tions. The dotted line marks the best performance on each data set before
combining multiple clustering results.

sampled DPGMMs

I multiple times with the same input features,
II for various transformed feature types,
III for transformed MFCC and PLP features,
IV for various LDA output dimensionalities,
V for various LDA input dimensionalities.

Table 2 lists the amount of DPGMMs used in each
combination, along with their input features. The discrim-
inability errors of the combined posteriorgrams are plotted
in Fig. 7. For the combination experiments we focused on
the transformed PLP features, since they generally showed
better performance than transformed MFCC features.

Combining the posteriorgrams of 5 DPGMMs that
were sampled on the same input features (I) only had a
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small positive effect on the English data set where the dis-
criminability errors were reduced slightly, compared to the
best single DPGMM output. We take this as a sign that
the DPGMM sampler generally leads to consistent output,
which is why combining results of multiple runs on identical
data is particularly helpful. Combination II showed similar
results.

For combinations III, IV and V we combine the posteri-
orgrams of DPGMMs that were sampled given more diverse
features. The results show that sufficient diversity is critical
for the combination to produce better posteriorgrams. In all
cases, the combined outputs show lower discriminability er-
rors on the English data set, and can at least match the best
single DPGMM output for the Xitsonga data set.

We achieved best results with combination V, where
we combine posteriorgrams from DPGMMs that were sam-
pled on transformed PLP features with varying context size
c. The context size governs the stacked PLP feature vec-
tor size prior to the LDA transformation. While it seems
that an increased context size does not necessarily help the
individual DPGMM sampling in particular (as can be seen
in Fig. 4), we observed considerable improvements by com-
bining the posteriorgrams produced by these models (see
Fig. 7). To ensure that the performance gain is not governed
by the choice of the target for the posteriorgram mapping
(see Sect. 4), we ran combination V multiple times – once
for each set of posteriorgrams as target – and averaged the
discriminability errors. We found that the average standard
deviation across the data is low with 0.05, confirming that
the improvements are independent from the choice of the
mapping target. The numbers of this best performing com-
bination are found in Table 1, which summarizes our exper-
imental results.

6.7 Analysis

The improvements we have seen after each step in the
pipeline are mostly consistent across the two data sets, with
the exception of the improvements by LDA (see Table 1).
The reductions by fMLLR (0% within and 3.1% to 4.6%
across speakers) and by posteriorgram combination (3.5%
to 4.7% within and 4% to 4.4% across speakers) are com-
parable across languages. The improvements by LDA how-
ever range from 2.3% to 11% within and 7.8% to 17.8%
across speakers, where the larger improvements were ob-
served on English. We believe this is again attributable to
the conversational nature of the English data, which pro-
vides more room for improvements by LDA. In prelimi-
nary experiments on the very clean contrastive English data
set mentioned in Sect. 6.3 we observed lower ranges of im-
provement by LDA (1.5% within and 3% across speakers),
which supports our assumption that LDA has more impact
on difficult data.

7. Conclusion

We presented a novel approach to optimizing the input

of a DPGMM sampler to improve acoustic unit discov-
ery. We evaluated the quality of acoustic unit discovery
by computing ABX discriminability errors for posterior-
grams that were extracted from DPGMMs. To substantiate
the strengths of our method, we demonstrated its effective-
ness on two very different data sets that vary in size, lan-
guage and speech quality. We demonstrated that it is pos-
sible to estimate supervised feature transformations with-
out prior supervision, and that these transformations con-
siderably improve clustering performance. Posteriorgrams
of DPGMMs that were sampled given transformed features
showed drastically reduced discriminability errors. The use
of multiple transformations at once produced better results.
A method we introduced for combining the results of multi-
ple DPGMM samplings boosts sound class discriminability
even further.

The lowest discriminability errors we achieved are
10% within and 14.9% across speakers for English, and
8.1% within and 11.7% across speakers for Xitsonga. Our
proposed framework clearly outperforms our own baseline,
as well as the previous state-of-the-art [12]. We believe our
approach to optimizing feature vectors for clustering is uni-
versal and will be helpful for other zero and low resource
tasks as well. In future work we will explore the applicabil-
ity of our method to other tasks beyond improving automatic
unit discovery.
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