
616
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

PAPER

A General Low-Cost Fast Hybrid Reconfiguration Architecture for
FPGA-Based Self-Adaptive System

Rui YAO†a), Ping ZHU†, Junjie DU†, Nonmembers, Meiqun WANG†, Student Member,
and Zhaihe ZHOU†, Nonmember

SUMMARY Evolvable hardware (EHW) based on field-programmable
gate arrays (FPGAs) opens up new possibilities towards building efficient
adaptive system. State of the art EHW systems based on virtual recon-
figuration and dynamic partial reconfiguration (DPR) both have their lim-
itations. The former has a huge area overhead and circuit delay, and the
later has slow configuration speed and low flexibility. Therefore a gen-
eral low-cost fast hybrid reconfiguration architecture is proposed in this
paper, which merges the high flexibility of virtual reconfiguration and the
low resource cost of DPR. Moreover, the bitstream relocation technology
is introduced to save the bitstream storage space, and the discrepancy con-
figuration technology is adopted to reduce reconfiguration time. And an
embedded RAM core is adopted to store bitstreams which accelerate the
reconfiguration speed further. The proposed architecture is evaluated by the
online evolution of digital image filter implemented on the Xilinx Virtex-6
FPGA development board ML605. And the experimental results show that
our system has lower resource overhead, higher operating frequency, faster
reconfiguration speed and less bitstream storage space in comparison with
the previous works.
key words: adaptive system, hybrid reconfiguration, evolvable hardware
(EHW), bitstream relocation, discrepancy configuration

1. Introduction

Embedded systems engineering is nowadays facing an enor-
mous challenge derived from the ever increasing demand
for highly versatile electronic devices, high performance, in-
creasing complexity, flexibility, low power, abilities of fault
tolerance and reprogram. Low time to market and long oper-
ational life are also required. These stringent requirements,
which oppose each other, have caused an exponential in-
crease in the underlying complexity of embedded systems,
since, among other concerns, the need for systems able to
adapt to very diverse operating conditions throughout its
lifetime arise. And this adaptation should be possible with-
out human intervention. Besides, to obtain the aforemen-
tioned adaptation capabilities, the challenge is to combine
hardware performance with the flexibility required by adap-
tive systems, while keeping design times as low as possi-
ble. Therefore, an adequate combination of techniques and
technologies is needed to obtain this expected self-adaptive
behavior [1].

The emergence of evolvable hardware (EHW) opens up

Manuscript received July 18, 2017.
Manuscript revised October 26, 2017.
Manuscript publicized December 18, 2017.
†The authors are with the College of Automation Engineer-

ing, Nanjing University of Aeronautics and Astronautics, Nanjing,
Jiangsu 211106, China.

a) E-mail: yaorui@nuaa.edu.cn
DOI: 10.1587/transinf.2017EDP7231

new possibilities towards building efficient adaptive system.
EHW is a method for circuit or device design (within some
media) that uses inspiration from biology to create tech-
niques that enable hardware designs to emerge rather than
be designed. In 1993, EHW was proposed by Higuchi [2] as
the automatic design of hardware using an EA. The goal is
to create system able to adapt to their environment without
human intervention. This line of research brings together
reconfigurable hardware, autonomous systems, artificial in-
telligence, and automatic design [3]. In the mid-1990s, the
online EHW was first implemented on Xilinx multiplexer-
based XC6200 FPGA family. This family support dynamic
partial reconfiguration (DPR) and the bitstream format is
open, so it can implement evolution by direct bitstream ma-
nipulation. Later, this family was discontinued; and manu-
facturers reconfiguration technologies proved not yet mature
enough to provide a seamless tool to be embedded in the fi-
nal SoC. This was mainly due to the fact that unconstrained
evolution in commercial FPGAs by direct bitstream manip-
ulation was considered not possible because random modi-
fications of the bitstream were dangerous for the device in-
tegrity. And its huge bitstream size turned the search space
unmanageable. An alternative trying to overcome these lim-
itations was proposed in the early 2000s, which is usually
referred to as virtual reconfiguration circuit (VRC) [4].

A VRC within an FPGA is a (virtual) reconfigura-
tion layer built on top of the device fabric that reduces the
complexity of the reconfiguration process while increasing
speed, creating a kind of application specific programmable
elements. It consists of an array of processing nodes where
each mode contains all the intended required functions (se-
lected by multiplexers) along with certain inter-node con-
nectivity configuration. The configuration information of
each node is expressed in the chromosome of the candidate
solution. Although the reconfiguration speed is very fast,
because it only involves writing a big register, this approach
suffers from a huge area overhead (all functions are imple-
mented in every node of the graph) and large circuit delay
introduced by multiplexers.

Aiming at the disadvantages of VRC, the DPR technol-
ogy of modern SRAM-based FPGAs [5] can be utilized to
construct EHW systems. The DPR implemented in FPGA
adopts native reconfigurable array that based on reconfig-
urable module (RM) instead of virtual reconfiguration layer.
The connection between all the RMs is fixed (each RM only
connects to its four neighbors). So the reconfigurable ar-

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

YAO et al.: A GENERAL LOW-COST FAST HYBRID RECONFIGURATION ARCHITECTURE FOR FPGA-BASED SELF-ADAPTIVE SYSTEM
617

ray can implement different circuits by changing the con-
figuration bitstreams of RMs according to the information
expressed in the chromosome of each candidate solution.
At any time, only one functionality is required to imple-
ment in a RM, hence the resource overhead of the DPR
approach is lower than the VRC approach. And the cir-
cuit delay is also reduced since no multiplexer is required.
However, this approach suffers from low flexibility owing
to the fixed connection between RMs. And its reconfigura-
tion speed is slow, because the bitstreams to configure all the
RMs are often stored in external non-volatile memory. E.g.,
a self-reconfigurable adaptive FIR filter system design using
DPR was presented in [6], in which the Compact-Flash (CF)
memory was adopted to store the partial bitstreams. More-
over, usually a large amount of memory is needed, since
total n×p partial bitstreams are intended to be stored, where
n is the number of RMs in the array, and p is the number of
possible functionalities of a RM.

In order to accelerate the configuration speed, a system
architecture combining 2D data processing arrays and an en-
hanced DPR engine is proposed by Otero [7], in which ex-
ternal DDR memory instead of the CF memory was utilized
to store the partial bitstreams and high reconfiguration speed
was achieved by over-clocking and the dedicated data link
from the external DDR2 memory to the RM. This method
achieves relatively faster reconfiguration speed. However,
the fast reconfiguration depends on the customized DPR en-
gine [8], which limits its applications. And the disadvan-
tages of low flexibility and need for large amount of exter-
nal memory still exist. Moreover, since the DDR memory is
volatile, the system cannot work independently.

Thereafter, various pros and cons can be observed in
VRC and DPR, and a detailed comparison between these
two methods was given in [9]. Then, a hybrid configura-
tion method of VRC and DPR was adopted to build a im-
age filter evolution system implemented on the Zynq 7000
platform [10]. The system is based on an hybrid configu-
ration architecture, the native configuration is adopted to
change the function of each RM, and the virtual configu-
ration is adopted to modify the connection between RMs.
So the flexibility of the DPR array has been enhanced, at
the same time, the huge area overhead of the VRC array
has been avoided. However, this method is still at the cost
of a lower reconfigurable speed and a larger external mem-
ory. Therefore, in [11] the authors presented a low-level
architecture for evolvable hardware in the Zynq-7000 plat-
form, in which higher reconfiguration time is limited by the
dense placement of the proposed processing elements (PEs)
and the difference-based reconfiguration approach. How-
ever, it needs direct bitstream manipulation to modify the
configuration bit, which is not documented by the manufac-
turer and may be dangerous for the integrity and correct-
ness of bitstream. So it is always necessary to repeat the
manual design flow to generate the differential bitstreams,
which in turn increases the configuration time. Therefore,
in fact, the reconfiguration time is not shortened by the
difference-based reconfiguration as expected, when consid-

ering the time needed to generate the differential bitstreams
on-line. An alternative is to pre-generated all the possible
differential bitstreams off-line and store them in the external
memory. But thus may introduce two main shortcomings:
(1) there are too many differential bitstreams to be stored;
(2) measures should be taken to determine which one should
be loaded into the reconfiguration region. Moreover, the to-
tal amount of memory is not reduced. And the generality of
this approach is not satisfactory.

Therefore, in this paper, we propose a general low-
cost fast hybrid reconfiguration architecture for stand-alone
embedded self-adaptive systems based on EHW. In our re-
search, together with the hybrid reconfiguration architec-
ture combining the VRC and the module-based DPR, the
bitstream relocation technology is introduced to reduce the
amount of memory required [12]–[14], and the discrepancy
configuration technology is adopted to accelerate reconfigu-
ration process. In addition, an embedded RAM core imple-
mented by BRAM resource of the FPGA is included in the
system except for the external CF memory. During the evo-
lution process, any bitstream needed to reconfigure each RM
is read from the internal RAM core instead of the external
CF memory, thus the reconfiguration time and the evolution
time are reduced significantly as well.

The rest of the paper is organized as follows. In the
next section, the proposed adaptive system, together with
the architecture of evolution core as well as some imple-
mentation details of bitstream relocation is described. Sec-
tion 3 features the software design of the system. Finally, in
Sect. 4, the design instance and experiment results are pro-
vided. And conclusions are drawn in Sect. 5.

2. The System Hardware Design

2.1 General Structure of the Adaptive System

A system design trend that seems to be consolidating as a de
facto standard in the last years is the reuse and integration
of IP cores created and validated independently, as a way
to manage complexity. Therefore, as is shown in Fig. 1, the
general structure of the adaptive system presented here is
a system-on-programmable-chip (SOPC) composed of a set
of IP cores, some of which are adaptive, connected through
a common bus interface. An adaptive IP core is a standard IP

Fig. 1 Overview of the self-adaptive system.

618
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

core with the capability of adjusting its internal processing
features as commanded by an adaptation engine (AE). The
AE acts upon the measured component performance to ful-
fill the requirements in a changing operating environment.
In this proposal, the adaptability of the IP core is imple-
mented by the DPR of the FPGA, and the AE is an evolu-
tionary algorithm (EA) running on the on-chip processor.

In Fig. 1, the core function of the system is imple-
mented by a customized adaptive IP core, the reconfigurable
core (RC). An embedded MicroBlaze processor acts as the
AE, and issues reconfiguration commands to configure the
RC to implement the candidate solutions. And a reconfig-
uration engine (RE) is utilized to (re)configure the RC via
the internal ICAP configuration port. The combination of
self-reconfiguration and the EA provide the system with the
required adaptability. The System ACE IP is adopted to
read the ACE file and partial bitstreams from an external
CF memory. The UART module provides a means of com-
munication between the application running in the embed-
ded processor and the user, via a hyper-terminal interface.
The ROM core is used to store data to be processed, and the
RAM core is used to store partial bitstream. Both cores are
connected on Processor Local Bus (PLB) and can be visited
by other equipment.

Once the power is on, the System ACE controller reads
the ACE file from the CF card through JTAG port to initial-
ize the system. Meanwhile, all the partial bitstreams are read
from the CF card and stored in the RAM core. When evolu-
tion starts, the population is initialized and reconfiguration
commands are sent by MicroBlaze to the RE according to
the individual chromosome information. And the RE ob-
tains the related bitstreams from the RAM core to configure
the corresponding RMs in the RC. Then stimulus data are
fed to the input of the RC; and the respond data from the
output of the RC are compared with the expected data to ob-
tain the fitness value of each individual. Thereafter, the next
population is generated. Repeat the operation above, until
the ideal fitness or the max generation is achieved.

2.2 Architecture of the Reconfigurable Core

Targeting at SRAM-based FPGAs with characteristics of
two-dimension reconfiguration, the RC core can be designed
as array of PEs. The size of the PE array is determined ac-
cording to the complexity of the target application. A too
small array may prevent a successful evolution or limit the
quality of solutions. A too large array, where only a small
portion of PEs are used, will have a negative impact on the
evolution time because the search space will become too big.
E.g., for an application of image filter, a 4 × 4 array is pre-
ferred, as is shown in Fig. 2.

Figure 3 shows the interconnection details and func-
tionality configuration of a PE. Each PE can be dynamically
configured to have different functionality and input mapping
by means of hybrid configuration. A PE has two inputs, Ain
and Bin, as well as one output. Each input can be connected
with any previous column output (PCO) or the primary in-

Fig. 2 Architecture of the 2D processing array.

Fig. 3 Interconnection and function configuration of a PE.

Table 1 Functions of a PE and their encodings.

Description Function encoding
1 aa ain 000
2 ainver 255-ain 001
3 average (ain+bin)�1 010
4 binver 255-bin 011
5 adder ain+bin 100
6 abs |ain-bin| 101
7 max max(ain,bin) 110
8 min min(ain,bin) 111

puts (PIs) of the circuit under evolution, via multiplexers
(MUX A and MUX B). The interconnection via multiplex-
ers is determined according to the appropriate bit positions
in the chromosome and is modified by virtual reconfigura-
tion, which is faster than native reconfiguration. Therefore,
certain flexibility in the adaptation of the data transmission
flow is allowed. The functionality reconfiguration of each
PE is implemented by dynamical reconfiguration based on
function modules pre-synthesized and stored as independent
bitstreams in the RAM core. E.g., the function modules of
an image filter constitute a library shown in Table 1. If vir-
tual reconfiguration is adopted to perform this configuration,
it will be less effectively in term of area overhead and opera-
tional frequency. The selection of functionality is also based
on the corresponding gene bits in the chromosome.

The output of the array is obtained from one of the last
column PEs or the PIs, by using a multiplexer controlled
by evolution. The smallest candidate solution can be con-
structed from only one PE, while the largest one may con-
tain almost all the PEs. The PE array is the sandbox of the

YAO et al.: A GENERAL LOW-COST FAST HYBRID RECONFIGURATION ARCHITECTURE FOR FPGA-BASED SELF-ADAPTIVE SYSTEM
619

EA where the EA can find the solution best suited for the
given specification. The search space is determined by the
possible inter-connections and operations of PEs offered by
the PE array.

In the hybrid architecture in [11], a reconfiguration re-
gion (RR) contains multiple PEs, which can reduce the over-
all area overhead; the RR is divided by the clock region col-
umn and multiple PEs can be configured at one time, which
limits the reconfiguration times; but it also has some draw-
backs. Firstly, a RR contains several PEs which would gen-
erate multiple combinations of configuration function. It
is necessary to generate one bitstream for each combina-
tion. As a result, a RR produces a large number of bit-
streams. E.g., assume that a RR contains 4 PEs, and each
PE can be configured as 4 functions. Then there will be
4× 4× 4× 4 = 256 configuration modes and 256 bitstreams
need to be generated and stored. This will take up an amount
of storage space and also add complexity to the coding of
chromosomes..

Therefore, in our architecture, a RR only contains one
PE module, which allows designing each PE independently,
using the Xilinx modular design flow. The use of a standard
commercial flow reduces the dependency with the specific
details of the device. This also facilitates the use of bit-
stream relocation and discrepancy configuration technology.
In addition, reconfiguration time is kept low because dis-
crepancy configuration technology is adopted to reduce the
number of configuration bitstream and a embedded RAM
core is adopted to accelerate the reading speed of the bit-
stream; The bitstream storage space is also kept low because
the bitstream relocation technology reduces the number of
bitstreams to be stored.

The proposed architecture is a generic evolvable pro-
cessing framework, and its suitability for different process-
ing tasks depends on the utilized functionality library. Adap-
tation is achieved by directly configuring the required func-
tion in each PE, taking it from the library of pre-synthesized
functionality. This process can be seen as placing pieces in
a puzzle. For each piece (PE to reconfigure), the RR places
the required element as commanded by the processor in the
correct position of the array.

2.3 Design of RAM Core for Bitstream Storage

A customized RAM core is utilized in the proposed frame-
work that enables fast reconfiguration to make online adap-
tation feasible. There are three reasons adopting the em-
bedded RAM core to store bitstreams: (1) the data trans-
mission speed of embedded memory is much faster than the
external memory; (2) the FPGA contains BRAM resource
to construct the RAM core; (3) the Xilinx officials provide
the tools to generate the embedded RAM core.

Thanks to the bitstream relocation technology adopted,
only those bitstreams with different functions are to be
stored. In order to reduce the memory size further, the
header of the bitstream in the RAM core is excluded. Hence,
there is no need to parse the header during the reconfigura-

tion process, which can reduce evolution time in turn. Here
a single-port RAM core is customized which can work in-
dependently under two operation states: read state and write
state. Compared to the approaches that read bitstream from
external memory (such as CF or DDR), this approach pos-
sess faster data transmission speed, and it also ensures that
the system is more independent, facilitate overall system mi-
gration.

2.4 Bitstream Relocation Design

2.4.1 Reconfiguration Region Design

The partial bitstream generated by traditional DPR technol-
ogy can only be configured to a fix RR of the FPGA. As is
shown in Fig. 4, the partial bitstream A1 can only be con-
figured to the RR1, and cannot be configured to the RR2 or
RR3. In order to relocate the partial bitstream A1, each RR
design has to be uniform. The design points of uniforming
are the followings:
−Amount of reconfigurable resources
−Relative layout of reconfigurable resource
−Relative placement of proxy logic
−Relative routing path between proxy logic and static

region
−Rejection of the wire from RRs, which does not

through proxy logic
Take the design of an image filter as a case study. There

are 16 RRs in the evolution core. In order to meet the
requirements of bitstream relocation, each RR is assigned
a uniformed region. Consider the following two points:
Firstly, a frame is the minimum unit of configuration mem-
ory addressing in Xilinx FPGA. Secondly, all the configu-
ration functions of a RR only use a small amount of slice
resources. So, each RR is assigned to a minimal reconfig-
urable region.

In order to reduce the possibility that the signals of
static region go through the reconfigurable area, the static re-
source are assigned to fixed region to implement constraints.
The specific resource module distribution of the system is
shown in Fig. 5, where each reconfigurable area includes 4
RRs. The interface between reconfigurable area and static
region is implemented by proxy logic. Using PIN constraint
to modify the position of proxy logic manually, the relative
position of all the proxy logic must be consistent in the re-
configurable regions. Using LOC and BEL constraints to

Fig. 4 Traditional partial bitstream configuration.

620
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 5 Resource distribution of the system.

Fig. 6 Three kinds of constraint commands.

add D-FF in the static region, the interconnection between
proxy logic and static module can be constrained. Finally af-
ter finishing global routing, check the path information and
adjust irregular routing using NET and ROUTE constraints.
Figure 6 shows an example of the different constraint state-
ments. In constraint (a), the proxy logic of ain1[0] port in
user logic module Lh1 is fixed to the position of slice re-
source in the 68th row and 59th column. In constraint (b),
the DFF of the slice resource (Row 18, Column 46) is used
to lock the external signal ain1 0 of user logic module. In
constrain (c), the numbers between S and L are relative ad-
dress of signals, the numbers between -1 and S are abso-
lute address, the rest are the information of the development
board; and the signal layout can be changed by modifying
the relative address.

2.4.2 Configurable Bitstream Modify

After the uniform design of RRs, the partial bitstreams gen-
erated can be relocated among them. However, the config-
uration commands of partial bitstream have to be modified
before relocation, including the old frame address register
(FAR) and the cyclical redundancy check (CRC) values.

The FAR is placed in the configuration bitstream de-
scribed after (30,002,001)16 command. It indicates the start
address of the partial RR. The bitstream of Xilinx Virtex-6
FPGA has three FARs which store the start addresses of dif-
ferent resource configuration block in the RR respectively.
Among them, the second FAR store the starting address of
CLB module. The design in this paper only assigns the CLB
module for RRs, so just to modify the second FAR.

The CRC parameter is placed in the footer represented

Fig. 7 A segment of chromosome encoding.

as (30,000,001)16, and is utilized to check the validity of
the bitstream. When creating relocation bitstream, we have
to replace the frame address of the original RR by that of
the target RR at first. Then we must recalculate the CRC
syndrome according to Eq. (1). Finally, we have to modify
the access command to the CRC register to invalidate the
CRC.

X32 + X28 + X27 + X26 + X25 + X23 + X22

+ X20 + X19 + X18 + X14 + X13 + X11

+ X10 + X9 + X8 + X6 + 1 (1)

This way, one partial bitstream can be written to any
RRs which significantly reduces the number of bitstream
stored, thus the overall bitstream storage space get de-
creased.

3. The System Software Design

The main task of the system software design is to run the
EA on the MicroBlaze to effectuate the control of the adap-
tive system. In this paper, the genetic algorithm (GA) is
selected as the self-adaption algorithm for the reason that it
have proved to be suitable for solving problems with a huge
number of parameters and with an objective function char-
acterized by several local minima (or maxima) [15]. The
basic steps include the chromosome encoding, population
initialization, individual chromosome configuration, fitness
evaluation, genetic operator, etc. Here we still take the im-
age filter as a case study.

3.1 Chromosome Encoding and Configuration

The candidate solution is described by the chromosome.
The system calls population initialization function to gen-
erate the chromosomes of the initial population. The cus-
tomized evolution core is attached to the bus, so the con-
figuration of chromosome is implemented through the bus
piecewise, as is shown in Fig. 3.

The reconfigurable core of the image filter consists of
an array of 16 PEs, each PE has eight possible functions
and multiple connection modes. Segmented binary coding
scheme is applied to encode the PE array, including configu-
ration functionality and interconnection within the reconfig-
urable core. For each PE, 3 binary bits is required to select
the functionality and 4×2 binary bits are necessary to select
the connection, as is shown in Fig. 7. A total of 11 binary
bits are needed for each PE, and extra 4 binary bits are re-
quired to select the final output for the system via a 13-to-1
multiplexer, so the chromosome length is 11× 16+ 4 = 180
bits. Chromosome length can be defined by macro defini-
tion. Table 1 shows the relationship between functionality

YAO et al.: A GENERAL LOW-COST FAST HYBRID RECONFIGURATION ARCHITECTURE FOR FPGA-BASED SELF-ADAPTIVE SYSTEM
621

of a PE and the corresponding encoding.

3.2 Fitness Evaluation

Generally, Mean Difference per Pixel (Mdpp) is used to
evaluate the filtering result of an image filter. Mdpp de-
scribes the difference between the filtered image and the
noise-free image, which represents the quality of the solu-
tion. The Mdpp is calculated by the following equation:

Mdpp =

∑c
i=1
∑r

j=1 |ideal(i, j) − filtered(i, j)|
c × r

(2)

Where c is the number of image columns, r is the num-
ber of image rows, filtered(i, j) is the filtered pixel, and
ideal(i, j) is the noise-free pixel. As is expected, the Mdpp
measures the absolute difference between the filtered and
noise-free images. The smaller the Mdpp is, the better the
filtering result is. And the Mdpp value of an ideal filter able
to suppress all the noise in the image would is close to 0.

3.3 Evolution Process

The flow of evolution operation is shown in Fig. 8. The ge-
netic operators are used to create the new generation of pop-
ulation which includes selection and mutation. In addition,
there are two termination evolution conditions, one is to find
the expected individual (E.g., the filter whose Mdpp is zero),
namely to find the optimal solution, the other is to arrive at
the maximum generation preset.

3.4 Design of Discrepancy Configuration

When evaluating a candidate solution, it is necessary to de-
code the chromosome to determine the functionality of each
RR in the array, and configure it with the corresponding bit-
stream. In the previous DPR-based EHW systems, all the
RRs are intended to be configured during the configuration
process, without consideration for the similarity of the new
and the old chromosome (namely complete configuration).

Fig. 8 The flow of adaptive evolution.

Assume that it takes time t to configure a RR and the evolu-
tion core is made up of an array of m × n RRs, it will need
t × m × n to configure a candidate, when complete configu-
ration is adopted.

In fact, the new chromosome is usually not totally dif-
ferent with the old one. And the difference between them
may become slighter and slighter during the evolution pro-
cess. So a great deal of time can be saved if we only recon-
figure the RRs whose functionalities are different. There-
fore, the discrepancy configuration technology is adopted in
this paper, so as to reduce the configuration time and accel-
erate the evolution speed.

To do this we define three configuration matrices, i.e.,
new matrix A, old matrix B and differential matrix C. If the
evolution core is an array of m × n PEs, the new matrix A is
established according to the new chromosome.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Similarly, the old matrix B is established according to
the old chromosome.

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

In Eqs. (3) and (4), ai j and bi j (i = 1, 2, . . . ,m, j =
1, 2, . . . , n) are the functionality encoding of the correspond-
ing PEs. Then the differential matrix C can be obtained by
comparing the corresponding elements of matrix A and B.

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1n

c21 c22 . . . c2n
...
...
. . .

...
cm1 cm2 . . . cmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Where ci j (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) is the com-
parison value of ai j and bi j; if they are not equal, bi j = ai j;
otherwise, ci j is set as a fixed value different to all the pos-
sible values of the functionality encoding of each RR.

Then the configuration process of a candidate is as fol-
lows. Firstly, determine matrix A and B according to the
new and old chromosome, respectively. Secondly, compare
corresponding elements between the two matrices and get
matrix C. Finally, configure the RRs according to matrix
C. If ci j is the pre-defined fixed value, the corresponding
RR keeps unchanged; otherwise, it needs to be reconfig-
ured again. Thus discrepancy configuration is implemented.
Since there is no need to configure all the RRs one by one
when evaluating each chromosome, the whole configuration
time get reduced, and the evolution speeded up.

622
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

4. Experiment Result and Discussion

4.1 Design Instance and Hardware Platform

The proposed self-adaptive system with hybrid fast recon-
figuration architecture is a general system architecture, and
it can implement any adaptive data-processing or decision-
making applications (e.g., data-parallel image processing,
machine vision, robot path planning and target recognition),
on any FPGA that supports DPR and has enough resources
to host a soft microprocessor. Here an adaptive system
for switching image filter evolution was implemented on a
virtex-6 FPGA platform ML605 using the proposed hybrid
reconfiguration architecture. In the evolution process, there
are a mass of data, including the image to be processed, the
ideal image and the filtered image, and all of which should
participate in the fitness calculations. In order to ease the
tasks of data storage and reading, the ideal data and the data
to be processed is stored in customized ROM cores on the
FPGA. As input of the evolvable core, the data to be pro-
cessed is read under the control of the software in the evolu-
tion process. Attached to the architecture is a kernel of 3×3
pixels, which implies nine inputs for the filter: the current
pixel and its eight neighbors. The pixel of filtered image is
defined as a variable for which a temporary memory space
is assigned. And the processed data is compared with ideal
data to get fitness according to Eq. (5).

4.2 Resource and Timing Analysis

The overall resource utilization of the adaptive system for
switching image filter evolution is shown in Table 2. As
can be seen in Table 2, the utilization of various resources
(except the ICAP and BSCAN resources) is comparatively
small, i.e., less than 10%. Therefore, more complex appli-
cations can be implemented using the proposed system ar-
chitecture. In fact, for different applications, the ICAP and
BSCAN resources are the same, and the main difference in
hardware lies in the reconfigurable core that composed of
PE array. And the size of the PE array to be evolved in
the proposed system depends on the amount of hardware re-
source of the FPGA utilized and the size of each PE as well.
If the hardware resource allows, any size of PE array can be
evolved theoretically.

As is shown in Table 3, it is the resource utilization
comparison in the design of user IP core between our ap-
proach and VRC approach. As it can be observed, the pro-
posed method has lower resource overhead in comparison
with the VRC approach. This is mainly because that in our
hybrid reconfiguration architecture, there is no resource re-
dundancy in each PE; i.e., the amount of resource assigned
to each PE is not intend to implement all the possible func-
tionalities as VRC does, but is just to implement the most
complex functionality among them. In addition, the signal
interfaces between static and reconfigurable regions are per-
formed through Proxy logic, not Bus macros, which does

Table 2 System resource utilization.

Resource Estimation Available Utilization
Register 5,745 301,440 1%

LUT 7,920 150,720 5%
Slice 2,695 37,680 7%
IO 24 600 4%

RAMB36E1 44 832 5%
RAMB18E1 58 832 6%
ILOGICE1 9 720 1%
OLOGICE1 19 720 2%

BSCAN 1 4 25%
DSP48E1 3 768 1%

ICAP 1 2 50%
MMCM ADV 1 12 8%

Global clock buffer 3 32 9%

Table 3 Device resources utilization comparison.

Available VRC Proposed array
Slice Registers 301,440 757 396

Slice LUTs 150,720 2,796 828
Logic LUTs 150,720 2,668 700

Memory LUTs 58,400 128 128

The design platform is based on Virtex-6 ML605.

not need to reserve resources and the flexibility of the sys-
tem design gets enhanced.

The timing reports comparison between the designs of
our approach and VRC approach is shown in Table 4. As
can been seen in Table 4, the maximum frequency of our PE
array is higher than that of the VRC array. The reason lies in
that no large numbers of multiplexers are used in our array.
In addition, the maximum frequency of each PE, reported
in the synthesis process, using ISE 12.4 tool, is over 1,200
MHz. However, the maximum frequency of the full array
is 504 MHz after the mapping and implementation phases.
This increase in the delay is due to the inter-connection of
the different PEs through the Proxy logic and the interface
to the static design area.

4.3 Bitstreams Storage Analyses

Table 5 shows the comparison of the number of bitstreams
and the size of the memory storage using bitstream re-
location technique (our method) and the non-bitstream-
relocation technique (traditional method), respectively. For
the evolution of the image filter, each RR can be configured
to implement 8 possible functionalities, so it only need to
store 8 bitstream files when adopting our method, which is
much less than the 120 bitstream files when adopting the
traditional method. And the size of storage space is re-
duced significantly, total 1,510Kb, i.e., about 93.5% of stor-
age space is reduced.

In fact, the sizes of storage space that can be saved de-
pend on the number of RRs. There are 16 RRs in the recon-
figurable core of the image filter; it only needs to generate
8 kinds of bitstream files for one RR when our bitstream re-
location technology is adopted. Rather than the traditional
methods, it needs to generate 8 bitstream files for each RR.

YAO et al.: A GENERAL LOW-COST FAST HYBRID RECONFIGURATION ARCHITECTURE FOR FPGA-BASED SELF-ADAPTIVE SYSTEM
623

Table 4 Timing comparison.

Propose array Array in VRC Proposed PE PE in VRC
Minimum period (ns): 1.908 5.471 0.785 1.523

Maximum Frequency (MHz): 504.032 182.782 1,273.885 656.599
Minimum input arrival time before clock (ns): 3.917 3.845 0.434 4.872

Maximum output required time after clock (ns): 2.729 2.729 0.375 0.375
Maximum combinational path delay (ns): 1.895 1.985 —— ——

Table 5 Comparison of two configuration techniques.

FUNC

Number of Size of
bitstream file storage space

Relocation No Relocation No
relocation relocation

aa 1 16 13Kb 208Kb
ainver 1 16 13Kb 208Kb

average 1 16 13Kb 208Kb
binver 1 16 13Kb 208Kb
adder 1 16 13Kb 208Kb
abs 1 16 13Kb 208Kb
max 1 16 13Kb 208Kb
min 1 16 13Kb 208Kb
Total 8 128 104Kb 1,664Kb

Fig. 9 The array architecture of literature [11] with 4 RRs.

If the difference-based reconfiguration method in pa-
per [11] is adopted, the array architecture of the 16 PEs is
shown in Fig. 9. The array includes 4 RRs, each RR con-
sists of 4 PEs, and each PE can be configured to implement
8 kinds of functionalities. In order to perform difference-
based reconfiguration, first of all, 4 complete partial bit-
streams need to be created for each RR. Secondly, based on
these partial bitstreams, 84 − 1 = 4,095 kinds of differential
bitstreams need to be generated. Although these differential
bitstreams only modify some LUTs and the size is small,
its quantity is huge, which brings inconvenience for storage.
There are at least 4 partial bitstreams and 4,095 differential
bitstreams that need to be stored. In addition, the design
of difference-based reconfiguration requires an understand-
ing of how to make logic changes using the FPGA Editor
tool and to produce a bitstream using the BitGen tool, which
makes the design more dependent on the external develop-
ment environment. Therefore, in terms of bitstream storage,
the bitstream relocation based on hybrid reconfiguration is
superior to the difference-based one in [11] for the require-
ments of EHW.

In addition, the size of storage space also lies on the
FPGA family utilized. And the configuration bitstream files
for each FPGA family are different. If the FPGA family
utilized changes, the bitstream files have to be regenerated.

Table 6 Comparison of configuration time.

Memory Configuration Time
CF card 23.911ms

RAM core 2.076ms
DDR3 SODIMM 2.296ms

4.4 Evolution Time Analysis

The evolution time of the system depends on the time
needed to evaluate an individual and the total number of
individuals to be evaluated. The time required to evaluate
a candidates mainly lies on two factors, configuration time
and fitness calculation time. The latter depends on the se-
lected application. And the former depends on the area size
of a RR, the number of RRs to be reconfigured (the number
of changed PEs) and the frequency at which configuration
data is sent to the ICAP. In our system, the birstreams are
stored in the embedded RAM, so that the data transfer fre-
quency is consistent with the bus frequency; and the mutate
rate is small, hence the number of changed PEs is less. In
addition, to reconfigure a RR made up of a CLB column re-
quires the change of 40 frames in the configuration memory;
and the partial bitstream is composed of 3,142 configuration
words with the header omitted. In the case of Xilinx HW-
ICAP, these configuration words have to be transmitted via
the PLB bus.

Here some contrast experiments are conducted based
on the same hardware platform and software system as well
as the same parameters setting. Some parameters are set as
follows: population size PS = 64, tournament size TS = 10,
mutation rate PM = 3/256, terminated generation = 10,000
and the soft core working frequency is 100MHz.

Firstly, experiments are conducted by reading configu-
ration data from the external CF card, the embedded RAM
core and the external DDR3 SODIMM, respectively. And
the time statistics for configuring 3142 words is shown in
Table 6. Obviously, the configuration time of reading con-
figuration data from embedded RAM is much shorter than
the time reading data from the external CF card (about 90%
of configuration time is reduced); and it is also a little shorter
than reading data from DDR3 SODIMM (about 10% con-
figuration time can get reduced). Figure 10 illustrates the
join methods of these memories and the bus. The configu-
ration data in CF card and the DDR3 SODIMM are trans-
ferred to the PLB via the system ACE controller and the
muti-port memory controller (MPMC), respectively, which
increases the configuration time; and the RAM core is di-
rectly connected to PLB which get the fastest data configu-

624
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 10 Block diagram of memory connected on PLB in system.

Fig. 11 Time comparison of two configuration approaches.

ration speed.
Then experiments are conducted by adopting the

complete configuration and the discrepancy configuration
approaches respectively, with the embedded RAM core
adopted to store bitstreams. And the evolution time compar-
ison is shown in Fig. 11. As can be seen in Fig. 11, there is
a direct proportion relationship between the evolution time
and the evolution generation when the complete configura-
tion is adopted, because all the RRs corresponding to each
chromosome need to be reconfigured, which caused redun-
dant configuration. Therefore, it takes a little more time to
finish the evolution. When the discrepancy configuration
is adopted, only those RRs whose functionalities changed
need to be reconfigured, without redundant configuration.
Therefore, it takes less time (save more than 40% time in
10,000 generation) to finish the evolution.

In conclusion, the evolution speed of the adaptive sys-
tem can be accelerated significantly by adopting embedded
RAM core to store bitstreams and the discrepancy configu-
ration technology to perform DPR.

In addition, the size of storage space also lies on the
FPGA family utilized. And the configuration bitstream files
for each FPGA family are different. If the FPGA family
utilized changes, the bitstream files have to be regenerated.

In order to analysis the degree of configuration time
to evolution process further, we have calculate the fitness
calculation time in the evolution process and plotted it in
Fig. 11 too. As can be seen from Fig. 11, when the evo-
lution generation up to 10,000, the fitness calculation time
accounts for 75% of the time in discrepancy configuration
approach and it accounts for 40% of the time in complete
configuration approach. Therefore, it can greatly reduce the

Table 7 Mdpp for a set of experimental images.

The Mdpp of The Mdpp of
polluted image filtered image

5% S&P noise 6.55 1.01
10% S&P noise 13.167 2.223
15% S&P noise 19.671 8.373
Gaussian noise 20.495 10.085

with variance 0.01
Gaussian noise 43.363 16.669

with variance 0.05
Gaussian noise 56.493 26.602

with variance 0.1

Fig. 12 Result of image filtering.

configuration time when discrepancy configuration adopted.

4.5 Effect of Image Filtering

To validate the generality of the image filter system, exper-
iments are conducted by filtering 125 × 124 Lena images
polluted by different levels of Gaussian noise and salt and
pepper noise. Table 7 shows the comparison of Mdpp be-
tween the polluted image and the filtered image. Figure 12
shows the contrast results of polluted images and filtered
images.

In Fig. 12, a1, a2 and a3 represent images polluted by
different levels of salt and pepper noise, and b1, b2 and b3
represent the corresponding filtered results; c1, c2 and c3
represent the images polluted by different levels of Gaussian
noise, and d1, d2 and d3 represent the corresponding filtered
results.

As can be seen in Table 7, the Mdpp after filtering is
smaller than the one before filtering. And all the results in
Table 7 and Fig. 12 indicate that the system is able to evolve
very different type of filters. So we can come to conclusion
that the self-adaption system designed in this paper can filter
image noise in a certain extent.

5. Conclusions

In this paper, a general low-cost fast hybrid reconfigura-
tion architecture is proposed to construct stand-alone em-

YAO et al.: A GENERAL LOW-COST FAST HYBRID RECONFIGURATION ARCHITECTURE FOR FPGA-BASED SELF-ADAPTIVE SYSTEM
625

bedded self-adaptive systems based on EHW. This architec-
ture merges the advantages of the virtual reconfiguration and
the module-based DPR. The use of virtual reconfiguration
for setting the interconnections between PEs enhances the
flexibility of the DPR approach. And the utilization of DPR
for reconfiguring the functionality of PEs reduces the area
overhead of the virtual reconfiguration approach. Moreover,
our module-based DPR approach is more general compared
with the difference-based one, since it is independent on the
external software development environment and simplifies
the encoding and decoding of the bitstreams. In addition,
in view of the bitstream storage involved by DPR, the bit-
stream relocation technology is introduced to save the bit-
stream storage space, which reduces the amount of memory
needed to store the bitstreams.

Furthermore, the discrepancy configuration technology
is adopted to reduce reconfiguration time. And an embedded
RAM core implemented by BRAM resource of the FPGA
is included in the system except for the external CF and
DDR memory. During the evolution process, any bitstream
needed to reconfigure each RM is read from the internal
RAM core instead of the external CF and DDR memory,
which accelerates the reconfiguration speed significantly.

The proposed architecture is evaluated by the online
evolution of digital image filter implemented on the Xilinx
Virtex-6 FPGA development board ML605. And the ex-
perimental results demonstrate advantages over the previous
work considering flexibility, generality, area overhead, oper-
ating frequency, reconfiguration speed and bitstream storage
space in comparison with the previous works.

Although the reconfiguration speed has been acceler-
ated significantly by our approach, the total evolution time
to find a satisfactory solution is still long, which limits the
real-world applications of EHW-based embedded adaptive
systems. The evolution time mainly lies on the speed of fit-
ness calculation and the efficiency of the EA, except for the
configuration time. Therefore, in the future, we will explore
the parallel pipeline processing capabilities of FPGAs to ac-
celerate the fitness calculation process, and will introduce
new EAs to increase the search efficiency.

Acknowledgments

This work was supported by National Natural Science Foun-
dation of China (NO. 61402226).

References

[1] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and
L. Sekanina, “Self-reconfigurable evolvable hardware system for
adaptive image processing,” IEEE Trans. Comput., vol.62, no.8,
pp.1481–1493, Aug. 2013.

[2] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa,
I. Kajitani, E. Takahashi, K. Toda, N. Salami, N. Kajihara, and N.
Otsu, “Real-world applications of analog and digital evolvable hard-
ware,” IEEE Trans. Evol. Comput., vol.3, no.3, pp.220–235, Sept.
1999.

[3] A. Stoica, “Evolvable hardware for autonomous systems,” Proc.
Congress Evolutionary Computation, pp.1–125, 2004.

[4] L. Sekanina, “Virtual reconfigurable circuits for real-world applica-
tions of evolvable hardware,” Proc. Fifth Int. Conf. Evolvable Sys-
tems: From Biology to Hardware, Lecture Notes in Computer Sci-
ence, vol.2606, pp.186–197, Springer, Berlin, Heidelberg, 2003.

[5] Xilinx Inc., Partial Reconfiguration of a Processor Peripheral
(ug744), 2010-9-21.

[6] C.-S. Choi and H. Lee, “A self-reconfigurable adaptive FIR filter
system on partial reconfiguration platform,” IEICE Trans. Inf. &
Syst., vol.E90-D, no.12, pp.1932–1938, Dec. 2007

[7] A. Otero, R. Salvador, J. Mora, E. de la Torre, T. Riesgo, and
L. Sekanina, “A fast reconfigurable 2D HW core architecture on
FPGAs for evolvable self-adaptive systems,” NASA/ESA Confer-
ence on Adaptive Hardware and Systems, AHS 2011, pp.336–343,
June 2011.

[8] A. Otero, A. Morales-Cas, J. Portilla, E. de la Torre, and T. Riesgo,
“A modular peripheral to support self-reconfiguration in SoCs,” 13th
Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, DSD 2010, pp.88–95, Sept. 2010.

[9] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L.
Sekanina, “Implementation techniques for evolvable HW systems:
Virtual vs. dynamic reconfiguration,” 22nd International Confer-
ence on Field Programmable Logic and Applications, FPL 2012,
pp.547–550, Aug. 2012.

[10] R. Dobai and L. Sekanina, “Image filter evolution on the Xilinx
Zynq platform,” NASA/ESA Conference on Adaptive Hardware and
Systems, AHS 2013, pp.164–171, 2013.

[11] R. Dobai and L. Sekanina, “Low-level flexible architecture with hy-
brid reconfiguration for evolvable hardware,” ACM Trans. Recon-
figurable Technology and Systems, vol.8, no.3, pp.20:1–pp:24, May
2015.

[12] K. Zhang, H. Lu, S. Xiao, and W. Hu, “Runtime bitstream reloca-
tion based intrinsic evolvable system,” Elektronika ir Elektrotech-
nika, vol.20, no.6, pp.93–99, 2014.

[13] S. Corbetta, M. Morandi, M. Novati, M.D. Santambrogio, D. Sciuto,
and P. Spoletini, “Internal and external bitstream relocation for par-
tial dynamic reconfiguration,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.17, no.11, pp.1650–1654, 2009.

[14] M.A. Ponrani, G. Manoj, and R. Rajesvari, “Module based partial
reconfiguration on bitstream relocation filter,” Int. Journal of Com-
puter Applications, vol.66, pp.23–28, 2013.

[15] F. Cancare, D.B. Bartolini, M. Carminati, D. Sciuto, and M.D.
Santambrogio, “On the evolution of hardware circuits via reconfig-
urable architectures,” ACM Trans. Reconfigurable Technology and
Systems, vol.5, no.4, pp.22:1–22:22, 2012.

Rui Yao received the B.S. and M.S. de-
grees in optoelectronics and physical electron-
ics from Harbin Institute of Technology in 1996
and 1998, respectively, and the Ph.D. degree in
Testing and Measuring Technology and Instru-
mentation from Nanjing University of Aeronau-
tics and Astronautics (NUAA) in 2008. She is
currently an associate professor with College of
Automation Engineering, Nanjing University of
Aeronautics and Astronautics, Nanjing, China.

http://dx.doi.org/10.1109/tc.2013.78
http://dx.doi.org/10.1109/4235.788492
http://dx.doi.org/10.1007/3-540-36553-2_17
http://dx.doi.org/10.1093/ietisy/e90-d.12.1932
http://dx.doi.org/10.1109/ahs.2011.5963956
http://dx.doi.org/10.1109/dsd.2010.100
http://dx.doi.org/10.1109/fpl.2012.6339376
http://dx.doi.org/10.1109/ahs.2013.6604241
http://dx.doi.org/10.1145/2700414
http://dx.doi.org/10.5755/j01.eee.20.6.4878
http://dx.doi.org/10.1109/tvlsi.2008.2005670
http://dx.doi.org/10.1145/2392616.2392620

626
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Ping Zhu is currently pursuing the Mas-
ter degree in Instrumentation engineering, from
NUAA. Her current research direction is the
computer measurement and control system.

Junjie Du is currently pursuing the Mas-
ter degree in Instrumentation engineering from
NUAA.

Meiqun Wang is currently pursuing the
Master degree in Instrumentation engineering
from NUAA.

Zhaihe Zhou received the M.S. and Ph.D.
degrees in navigation, guidance and control
from NUAA in 2002 and 2010, respectively. He
is currently an associate professor with College
of Automation Engineering NUAA China.

