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PAPER

Efficient Reformulation of 1-Norm Ranking SVM∗

Daiki SUEHIRO†,††a), Kohei HATANO††,†††, and Eiji TAKIMOTO††††, Members

SUMMARY Finding linear functions that maximize AUC scores is im-
portant in ranking research. A typical approach to the ranking problem is
to reduce it to a binary classification problem over a new instance space,
consisting of all pairs of positive and negative instances. Specifically, this
approach is formulated as hard or soft margin optimization problems over
pn pairs of p positive and n negative instances. Solving the optimization
problems directly is impractical since we have to deal with a sample of size
pn, which is quadratically larger than the original sample size p + n. In
this paper, we reformulate the ranking problem as variants of hard and soft
margin optimization problems over p+n instances. The resulting classifiers
of our methods are guaranteed to have a certain amount of AUC scores.
key words: bipartite ranking, AUC, Ranking SVMs

1. Introduction

Learning to rank has been one of the most active areas of re-
search in machine learning and information retrieval in the
past decade, due to increasing demands in, for example, rec-
ommendation tasks and financial risk analysis [2], [5], [8],
[9], [12], [16], [20], [26], [27]. Among the problems related
to learning to rank, the bipartite ranking is a fundamental
problem, which involves learning to obtain rankings over
positive and negative instances [11], [12], [16], [17]. More
precisely, for a given sample consisting of positive and nega-
tive instances, the goal of the bipartite ranking problem is to
find a real-valued function h, which is referred to as a rank-
ing function, with the following property: For a randomly
chosen test pair of positive instance x+ and negative in-
stance x−, the ranking function h maps x+ to a higher value
than x− with high probability. Thus, a natural measure for
evaluating the goodness of ranking function h is the proba-
bility that h(x+) > h(x−), which we call the AUC (the area
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Fig. 1 AUC and classification accuracy.

under the receiver operating characteristic (ROC) curve) of
h. Note that maximizing AUC cannot be achieved by simply
using binary classification algorithms such as SVM (Sup-
port Vector Machine). Although the sign of the function val-
ues h(x) output by SVM indicate positive or negative class
of h(x), the magnitude of the values does not indicate the
level of positiveness or negativeness. In other words, SVM
outputs a good classification rule by margin-based theory,
but does not always outputs a good ranking rule. We show
an example of difference between AUC and classification
accuracy in Fig. 1. Both h(x) of (a) and (b) achieves same
classification accuracy, however, (b) achieves higher AUC
than (a). Because in (a), the value of the left (+) is less than
right two (−)s, but in (b), the value of the left (+) is less than
only one (−). We can see that maximizing AUC is different
from maximizing classification accuracy. Therefore, when
given binary labeled data, if we want to obtain a function
which achieves good AUC, bipartite ranking is reasonable
problem setting.

It is known that the bipartite ranking problem can be
reduced to a binary classification problem over a new in-
stance space, consisting of all pairs (x+,x−) of positive and
negative instances. More precisely, the problem of maxi-
mizing the AUC is equivalent to finding a binary classifier
f of the form of f (x+,x−) = h(x+) − h(x−) so that the
probability that f (x+,x−) > 0 is maximized for a randomly
chosen instance pair. Several studies including the Rank-
ing SVM have taken this approach with a linear classifier
f (x+,x−) = w · (x+ − x−) for some weight vector w as
the ranking function. The Ranking SVM is justified by gen-
eralization bounds [21] which say that a large margin over
pairs of positive and negative instances in the sample im-
plies a high AUC score under the standard assumption that
instances are drawn i.i.d. under the underlying distribution.

Note that a naive implementation of the reduction ap-
proach for bipartite ranking problem is impractical since
the sample constructed through the reduction (called the
pair-sample) is of size pn when the original sample con-
sists of p positive and n negative instances. This implies
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that we need to solve a quadratic problem (QP) problem of
size O(pn(pn + N)) in the primal form or of size O((pn)2)
in the dual form (with a kernel), where N is the dimen-
sion of the instance space. To overcome this inefficiency,
Joachims proposed a Cutting-Plane based algorithm called
the SVM-Perf [17], which simulates the Ranking SVM in
O(s(p + n) log(p + n)) time, where s is the maximum num-
ber of non-zero features in the given instances. Chapelle
and Keerthi proposed another efficient implementation of
the Ranking SVM, called the PRSVM [7], which runs in
O((p + n) log(p + n) + N(p + n)) time. Note that the Rank-
ing SVM simulated in the above implementations is based
on the standard SVM formulation. That is, they solve a
soft margin optimization problem with 2-norm of the weight
vector regularized.

In this paper, we consider a 1-norm SVM formula-
tion, which is originally proposed by Bradley and Mangasar-
ian [4] not for the ranking but for the classification prob-
lem, where the 1-norm of the weight vector is regularized.
This version of Ranking SVM is called the 1-norm Rank-
ing SVM. It has some advantages over the standard Ranking
SVM: It is formulated as a linear programming (LP) prob-
lem and thus can be solved much faster if its size is not too
large. Moreover, note that again, the resulting weight vector
tends to be sparse and thus is suitable for the feature selec-
tion. Unfortunately, the LP problem for the 1-norm Ranking
SVM is naturally of size O(pn(pn+N)), the same as the QP
problem for the standard Ranking SVM. However, in this
case, it is unclear how the techniques used in SVM-Perf and
PRSVM are applied for solving the LP problem efficiently.

To avoid the difficulty, we take a different approach
by simplifying the LP formulation for the 1-norm Rank-
ing SVM, rather than devising a fast algorithm for it. More
precisely, we reformulate the LP problems for hard as well
as soft margin optimization, with additional constraints that
the dual variables di j are restricted to the product form
di j = d+i d−j , where i and j range over the p positive and
n negative instances, respectively. With these constraints,
the number of variables is reduced from pn to p + n, which
results in greatly simplified optimization problems of size
O((p + n)(p + n + N)). We call the simplified problems
OPThard and OPTsoft that correspond to the hard and soft
margin optimization, respectively. Apparently, they would
have worse solutions (i.e., weight vectors with less mar-
gins) than the original hard and soft margin 1-norm Rank-
ing SVMs, because the additional constraints significantly
reduce the feasible solution spaces. However, surprisingly,
OPThard turns out to be equivalent to the original hard mar-
gin 1-norm Ranking SVM. In other words, the optimal solu-
tion (d∗i j) of the hard margin 1-norm Ranking SVM and the

optimal solution (d̂+i , d̂
−
j ) of OPThard actually have the rela-

tion d∗i j = d̂+i d̂−j . This motivates the reformulation for the
soft margin optimization, i.e., OPTsoft.

Unfortunately, unlike in the case of the hard margin
optimization, the equivalence between OPTsoft and the soft
margin 1-norm Ranking SVM does not hold. To make mat-

ters worse, OPTsoft is not a convex problem, let alone an LP
problem. Nevertheless, we show that a feasible solution can
be found by solving an LP problem that is obtained from
OPTsoft by fixing a parameter, and the solution has a certain
amount of margin. Furthermore, if the given sample is close
to be linearly separable, then our theoretical guarantee on
the margin becomes close to that of the soft margin 1-norm
Ranking SVM. We also give a practical heuristic to improve
the feasible solution up to a local optimum.

Although, as mentioned above, several efficient al-
gorithms for the 2-norm Ranking SVM have been pro-
posed [7], [17], we show that our reformulation technique
can be extended to the formulation of the 2-norm Ranking
SVM, which yield simplified QP problems of size O((p +
n)N) in the primal form and of size O(pn) in the dual form.

We conduct several experiments using artificial and
real data sets. Surprisingly, the results show that our meth-
ods not only run much faster than most of the previously
proposed algorithms as expected, they achieve relatively
high AUC scores for many data sets.

Several related works have been done in the literature.
Yu and Kim proposed a different notion of 1-norm Rank-
ing SVM [33], where the weight vector is restricted to a lin-
ear combination of support vectors, so that the dual form
of its LP formulation can be kernelized. However, then
its size is O((pn)2), which is an unacceptable blowup in
size. Moreover, in their formulation the 1-norm of the dual
variables (the coefficients of linear combination) is regular-
ized, and so the resulting weight vector is not always sparse.
Another approach to maximizing the margin with a sparse
weight vector is to use the boosting technique such as the
AdaBoost [13], [24], [25], although in the naive implemen-
tation we would again face with the same obstacle that the
pair-sample constructed through the reduction is of size pn.
Freund et al. proposed the RankBoost [12] that simulates the
AdaBoost over the pair-sample in time linear in the origi-
nal sample size (p + n). Later, Rudin and Schapire showed
that under certain assumptions, the AdaBoost is equivalent
to the RankBoost [27]. However, the RankBoost has only
a (weak) guarantee of hard margin and no theoretical jus-
tification is given when the sample is not linearly separa-
ble. Moribe et al. proposed the SoftRankBoost [22] based on
the smooth boosting framework [3], [10], [14], [15], [29], so
that it works well when the sample is not linearly separable.
The SoftRankBoost runs in O((p + n)N) time per iteration
and is shown to have the same guarantee of soft margin as
that of our algorithm. But the SoftRankBoost does not seem
to solve a soft margin optimization problem in any sense.

We would like to mention that the notion of AUC con-
sistency is recently proposed for a criterion of ranking algo-
rithms. An algorithm is said to be AUC consistent if the al-
gorithm outputs a ranking function that converges the Bayes
optimal one, that is, the ranking function that maximizes
the AUC with respect to the underlying probability distri-
bution. Uematsu et al. [18] first propose this notion and
investigate the relation between AUC maximization and a
convex loss minimization, where the loss function is an up-
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per bound on the ranking risk. In particular, they show that
the algorithm for minimizing hinge loss is not AUC con-
sistent. Kotolowski et al. [19] and Agarwal [1] show that
the algorithms for minimizing exponential loss and logistic
loss are both AUC consistent. These results would suggest
that as for AUC maximization the AdaBoost (minimizing
exponential loss) works well but the Ranking SVM (mini-
mizing hinge loss) does not. However, in these results, the
ranking functions are assumed to be chosen from the univer-
sal hypothesis class containing all functions (not only linear
functions), and they do not discuss the performance of algo-
rithms when the hypothesis class is restricted to, say, linear
functions.

The rest of this paper is organized as follows: In
Sect. 2, the problem setting and a known theorem of the
generalization bound for AUC are described. In Sect. 3,
we show the formulation of 1-norm Ranking SVM. In
Sect. 4, we show the equivalence between 1-norm hard mar-
gin Ranking SVM and 1-norm hard margin classification
SVM with bias. In Sect. 5, we provide our reformulation
of soft margin 1-norm Ranking SVM. In Sect. 6, we pro-
vide an algorithm for the reformulated optimization prob-
lem approximately. In Sect. 7, we experiment evaluate the
performance of our method on AUC and computation time
comparing various methods. In Sect. 8, we mention the con-
clusion of this paper.

2. Preliminaries

Let X ⊆ RN be an instance space. X is partitioned into two
classes: X+ the class of positive, X− the class of negative. A
ranking function is a function that maps X to R and let H be
a class of ranking functions. The learner is given a sample
S that consists of p positive instances x+1 , . . . ,x

+
p ∈ X and

n negative instances x−1 , . . . ,x
−
n ∈ X. Let m(= p + n) de-

note the number of instances. We assume that instances are
independently and identically distributed (i.i.d.) according
to some unknown distribution D over X. The goal of the
learner is to find a function h ∈ H that maximizes the AUC
score given by

AUC(h) = Pr
x,x′∼D

{h(x) > h(x′) | x ∈ X+,x′ ∈ X−}.

For ρ > 0, we define the empirical AUC score of h at ρ as

AUCS ,ρ(h) =
1
pn

p∑
i=1

n∑
j=1

I

⎛⎜⎜⎜⎜⎝h(x+i ) − h(x−j )

2
≥ ρ

⎞⎟⎟⎟⎟⎠
where I(·) denotes the indicator function.

Throughout the paper, we assume that H is a class of
linear functions of the form of h(x) = w ·x for some weight
vector w ∈ RN . For simplicity, we assume without loss of
generality that the weight vectors are non-negative and its
1-norm are normalized. That is,

H = {x 	→ w · x | w ∈ PN},
where PN denotes the N-dimensional probability simplex,

i.e., PN = {p ∈ [0, 1]N | ∑i pi = 1}. To see why we may
assume weight vectors to be non-negative, observe that any
vector w can be written as w = w+ − w− for some two
non-negative vectors w+ and w− such that ‖w‖1 = ‖w+‖1 +
‖w−‖1. This implies that the reduction x 	→ (x,−x) enables
us to learn the general class {x 	→ w · x | ‖w‖ = 1} by a
learning algorithm for H (with dimension 2N).

For the class H of linear functions, Mohri and Ros-
tamizadeh give the following bound on the AUC score in
terms of the empirical AUC score [21].

Theorem 1 ([21]). For any ρ > 0 and δ > 0, with probabil-
ity at least 1 − δ, the following bound holds for any linear
ranking function h(x) = w · x:

AUC(h) ≥ AUCS ,ρ(h) − σ,
where

σ =

√
4

mE4

(
8 ln N
ρ2

ln

(
4mE2ρ2

ln N

)
+ 2 ln

(
2
δ

))
and

E = E
x,x′∼D

[I(x ∈ X+, x′ ∈ X−)].

This theorem says that a reasonable way of finding a
linear function h(x) = w · x with high AUC score is to
enlarge AUCS ,ρ(h) for as large ρ as possible. Note that the
empirical AUC score is rewritten as

AUCS ,ρ(h) =
∑
z∈S ′

I(w · z ≥ ρ)/|S ′|,

where S ′ = {(x+i − x−j )/2 | 1 ≤ i ≤ p, 1 ≤ j ≤ n} is
called the pair-sample. Thus, the problem of finding h with
large empirical AUC score can be seen as the standard bi-
nary classification problem of finding a large margin classi-
fier w over the pair-sample. For convenience, we will use
AUC(w) and AUCS ,ρ(w) to denote AUC(h) and AUCS ,ρ(h)
with h(x) = w · x, respectively.

3. 1-Norm Ranking SVM

We use an SVM formulation for the problem of finding a
large margin classifier w over the pair-sample. In partic-
ular, we use the hard and soft margin SVM formulations
with the 1-norm of the weight vector regularized. We call
the resultant hard and soft margin optimization problems
over the pair-sample the hard and soft margin 1-norm Rank-
ing SVMs, respectively. In what follows, we use the fol-
lowing conventions: For an integer u, [1, u] denotes the set
{1, . . . , u}, and M = [1, p] × [1, n].

Below we give the primal form of the hard margin 1-
norm Ranking SVM.

OP 1: Hard Margin 1-norm Ranking SVM (primal)

max
ρ,w
ρ
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sub.to

w · (x+i − x−j )/2 ≥ ρ, (i, j) ∈ M,

w ∈ PN .

This is the optimization problem for finding w that maxi-
mizes the margin ρ such that AUCS ,ρ(w) = 1. So, if the
sample is not linearly separable, then we have ρ < 0 and
Theorem 1 says nothing about AUC(w). The dual form is
given as follows.

OP 2: Hard Margin 1-norm Ranking SVM (dual)

min
γ,d
γ

sub.to∑
i, j

di j(x
+
i − x−j )/2 ≤ γ1,

d ∈ Ppn.

Next we give the primal form of the soft margin 1-norm
Ranking SVM.

OP 3: Soft Margin 1-norm Ranking SVM (primal)

(ρ∗,w∗, ξ∗) = arg max
ρ,w,ξ
ρ − 1
νpn

p∑
i=1

n∑
j=1

ξi j

sub.to

w · (x+i − x−j )/2 ≥ ρ − ξi j, (i, j) ∈ M

w ∈ PN ,

ξi j ≥ 0, (i, j) ∈ M,

where ν ∈ (0, 1] is a parameter. Intuitively, this optimization
problem is for finding w that maximizes the target margin
ρ as well as minimizes the sum of the hinge losses ξi j, i.e.,
the quantity by which the instance (x+i − x−j )/2 in the pair-
sample violates the target margin ρ. Here the parameter ν
controls the tradeoff between the two objectives. By using
the KKT conditions, we can show that the optimal solution
guarantees that the number of indices (i, j) ∈ M for which
w∗ · (x+i − x−j )/2 ≤ ρ∗ is at most νpn [28], [32]. In other
words, we have

AUCS ,ρ∗(w
∗) ≥ 1 − ν. (1)

Note that ρ∗ depends on ν and becomes positive when ν is
small, even if the sample is not linearly separable. So, the
soft margin 1-norm Ranking SVM is quite a robust approach
for obtaining a linear function with high AUC score.

The dual problem is given as

OP 4: Soft Margin 1-norm Ranking SVM (dual)

(γ∗,d∗) = arg min
γ,d
γ

sub.to∑
i, j

di j(x
+
i − x−j )/2 ≤ γ1,

di j ≤ 1
νpn
, (i, j) ∈ M

d ∈ Ppn.

Note that the size of the soft margin 1-norm Ranking SVM
is O(pn(pn + N)).

4. Reformulation of the Hard Margin 1-Norm Ranking
SVM

In this section, we reformulate the hard margin 1-norm
Ranking SVM by restricting the dual variables d ∈ Ppn to
the product form di j = d+i d−j , where d+ ∈ Pp and d− ∈ Pn

are new variables. Then, since∑
i, j

di j(x
+
i − x−j )/2

=
∑
i, j

d+i d−j (x+i − x−j )/2

=
∑

i

d+i

(∑
j

d−j

)
x+i /2 −

∑
j

d−j

(∑
i

d+i

)
x−j /2

=
∑

i

d+i x+i /2 −
∑

j

d−j x
−
j /2,

we obtain from OP 2 the following simplified LP problem,
called OPThard.

OP 5: OPThard (dual)

min
γ,d+,d−

γ

sub.to∑
i

d+i x+i /2 −
∑

j

d−j x
−
j /2 ≤ γ1,

d+ ∈ Pp, d− ∈ Pn.

It turns out that the primal form of the LP problem above
is the standard classification version of hard margin 1-norm
SVM over the original sample S , which now has the bias
term:

OP 6: OPThard (primal)

max
ρ,w,b
ρ

sub.to

w · x+i + b ≥ ρ, i ∈ [1, p]

w · x−j + b ≤ −ρ, j ∈ [1, n]

w ∈ PN .

Note that OPThard is of size O((p + n)N) in the both forms.
In the following, we show that OPThard is equivalent to

the original hard margin 1-norm Ranking SVM (OP 1), by
showing that an optimal solution of OP 1 can be constructed
from an optimal solution of OP 6†.

†Simlilar results are seen in other literature (e.g., [31], [34]).
However, in our knowledge, the previous version of this paper is
the original [30], and this theorem is not the main claim of this
paper.
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Theorem 2. Let (ρb,wb, bb) be an optimal solution of OP 6.
Then, (ρb,wb) is also an optimal solution of OP 1.

Proof. Let (ρp,wp) be an optimal solution of OP 1. Clearly,
(ρb,wb) is a feasible solution of OP 1. Hence, ρb ≤ ρp.
Next, we show that the opposite is true. Let x+ and x−
be positive and negative support vectors of OP 1 for which
wp · (x+ − x−)/2 = ρp. Let

bp = −wp · (x+ + x−)/2.

Then, (ρp,wp, bp) is a feasible solution of OP 6. To see this,
for any positive instance x+i , observe that

wp · x+i + bp = wp · (x+i − x−)/2 +wp · (x+i − x+)/2

≥ ρp +
wp · (x+i − x−) −wp · (x+ − x−)

2
≥ ρp + ρp − ρp = ρp.

A similar inequality holds for negative instances as well. So
we have ρp ≤ ρb. �

5. Reformulation of the Soft Margin 1-Norm Ranking
SVM

Motivated by the equivalence result of the hard margin case,
we now reformulate the soft margin 1-norm Ranking SVM
with the same additional constraints di j = d+i d−j . Then
we obtain from OP 4 the following simplified optimization
problem:

OP 7: OPTsoft

γ̂ = min
γ,d+,d−,ν+

γ

sub.to∑
i

d+i x+i /2 −
∑

j

d−j x
−
j /2 ≤ γ1,

d+i ≤
1
ν+p
, i ∈ [1, p]

d−j ≤
ν+

νn
, j ∈ [1, n]

d+ ∈ Pp, d− ∈ Pn.

Note that we replace the constraint max(i, j)∈M di j ≤ 1/νpn of
OP 4 by maxi d+i max j d−j ≤ 1/νpn, which is further replaced
by the two constraints maxi d+i ≤ 1/ν+p and max j d−j ≤
ν+/νn with a new variable ν+ to be optimized.

OPTsoft is of size O((p+ n)(p+ n+ N)) and thus seems
to be easier to solve. But it is not a convex optimization
problem since the constraints d+i ≤ 1/ν+p are not convex. To
overcome this difficulty, we first consider OPTsoft as an LP
problem with ν+ to be fixed to a constant. The LP problem
with parameter ν+ is called OPTsoft(ν+):

OP 8: OPTsoft(ν+) (dual)

Fig. 2 Non-convexity of the function γ̂(ν+) for an artificial data set.

γ̂(ν+) = min
γ,d+,d−

γ

sub.to the same constraints as in OPTsoft

Clearly, minν+ γ̂(ν+) = γ̂. Unfortunately, the function γ̂(ν+)
is not convex with respect to ν+ (see Fig. 2 for example).
So, it seems to be hard to obtain the optimum. In the next
section we propose an iterative linearization-minimization
method to find a local optimal solution of ν+.

On the other hand, for any fixed choice of ν+, we
can guarantee that the solution of OPTsoft(ν+) has a certain
amount of empirical AUC score. To see this, we first give
the primal form of OPTsoft(ν+):

OP 9: OPTsoft(ν+) (primal)

(ρ̂, ŵ, b̂, ξ̂+, ξ̂−)

= arg max
ρ,w,b,ξ+,ξ−

ρ − 1
2ν+p

∑
i

ξ+i −
ν+

2νn

∑
j

ξ−j

sub.to

w · x+i + b ≥ ρ − ξ+i , i ∈ [1, p]

−w · x−j − b ≥ ρ − ξ−j , j ∈ [1, n]

w ∈ PN , ξ+, ξ− ≥ 0.

Theorem 3. For a fixed ν+, let ρ̂ and ŵ be the solutions of
OPTsoft(ν+) (primal). Then,

AUCS ,ρ̂(ŵ) ≥ 1 − ν+ − ν
ν+
+ ν.

Proof. By using the KKT conditions, we have ξ̂+i (d̂+i −
1/ν+) = 0. So, if ξ̂+i > 0 then d̂+i = 1/ν+p. Since there
are at most ν+p indices i such that d̂+i = 1/ν+p, there are
at most ν+p indices i with ξ̂+i > 0. Similarly, there are at
most νn/ν+ indices j with ξ̂−j > 0. Therefore, for at least
(p−ν+p)(n−νn/ν+) pairs of instances zi j in the pair-sample,
ŵ · z ≥ ρ̂. �

For particular choices of the parameters ν and ν+, we
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obtain the following corollary.

Corollary 4. Let ρ̂ and ŵ be the optimal solution of
OPTsoft(ν+) (primal) for ν+ =

√
ν. Then,

AUCS ,ρ̂(ŵ) ≥ (1 − √ν)2.

For comparison, we show the guarantee (1) of the orig-
inal soft margin 1-norm Ranking SVM for the same choice
of ν as in the corollary above:

AUCS ,ρ∗(w
∗) ≥ 1 − ν.

Below we compare ρ∗ and ρ̂. Note that, by duality we have

ρ̂ − 1
2ν+p

∑
i

ξ̂+i −
ν+

2νn

∑
j

ξ̂−j = γ̂(ν
+).

Combined this with the fact that

γ̂(ν+) ≥ γ̂ ≥ γ∗ = ρ∗ − (1/νpn)
∑

i j

ξ∗i j,

we have

ρ̂ ≥ ρ∗ − 1
νpn

∑
i j

ξ∗i j.

Therefore, if
∑

i j ξ
∗
i j is small, i.e., the sample is close to be

linearly separable, then we can say that the solution ŵ of
OPTsoft(ν+) has nearly as high AUC score as the original
1-norm soft margin Ranking SVM.

6. An Iterative Linearization-Minimization Method
for Optimizing ν+

Now we give an iterative linearization-minimization method
for finding a local optimal solution of ν+, which attains a
local minimum of OPTsoft. Recall that in OPTsoft, we have
non-convex constraints d+i ≤ 1/ν+p. In order to make them
convex, we replace them by their linear approximations. To
be more precise, we consider the constraint that every d+i is
bounded by the tangent line of 1/ν+p at some point ν+ = ν+c .
That is,

d+i ≤ −
1

(ν+c )2 p
ν+ +

2
ν+c p
. (2)

Thus we have the following LP problem called LPsoft, where
ν+c is a parameter:

OP 10: LPsoft

(γ̃, d̃+, d̃−, ν̃+) = arg min
d+,d−,γ,ν+

γ

sub.to∑
i

d+i x+i /2 −
∑

j

d−j x
−
j /2 ≤ γ1,

d+i ≤ −
1

(ν+c )2 p
ν+ +

2
ν+c p
, i ∈ [1, p]

Fig. 3 Illustration of our algorithm. The dotted line shows the tangent
line of 1/ν+p at ν+ = ν+c . ν̃+ is the solution of LPsoft.

d−j ≤
ν+

νn
, j ∈ [1, n]

d+ ∈ Pp, d− ∈ Pn.

Note that since any d+i satisfying the new constraint (2) also
satisfies the original constraints d+i ≤ 1/ν+p, the optimal
solution of LPsoft is a feasible solution of OPTsoft.

Now we are ready to describe our algorithm:

1. Let ν+c be an initial guess.
2. Solve LPsoft and get a solution (d̃+, d̃−, γ̃, ν̃+).
3. If the value of γ̃ decreases, then let ν+c = ν̃

+ and go to
2.

4. Solve OPTsoft(ν+)(dual) with ν+ = ν̃+ and get a solution
(d̂+, d̂−, γ̂).

A reasonable choice of the initial guess in the first step
would be ν+c =

√
ν, as in Corollary 4. Observe that the

solution (d̃+, d̃−, γ̃, ν̃+) of LPsoft is a feasible solution of
LPsoft(ν̃+). So, the minimum γ̃′ of LPsoft(ν̃+) satisfies γ̃′ ≤ γ̃.
Therefore, by repeating this procedure, we can obtain a
monotonically decreasing sequence of γ̃, which will con-
verge to a local minimum. Figure 3 illustrates the algorithm.
Note that the final step is redundant and thus can be skipped.
We add this just for numerical stability.

7. Experiments

In the following experiments, we verify effectiveness and
efficiency of our method for maximizing AUCs. The data
sets include artificial data sets, and some real data sets.

7.1 Artificial Data

For the first experiment, we used artificial data sets with
r-of-k threshold functions as target functions. An r-of-k
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Table 1 AUCs for artificial data sets with random noises 5%, 10%, and 15% so that ratios of positive
and negative instances are 5:5.

data
SVM-Perf

1-norm Rank Soft Original our method
r noise C. SVM Boost RankBoost 1-norm 1-norm 2-norm

1 0.9363 0.9259 0.9480 0.6991 0.9380 0.9445 0.9566
8 5(%) 0.8967 0.9607 0.9285 0.9441 0.9592 0.9601 0.9566

15 0.9325 0.9547 0.9236 0.9537 0.9515 0.9526 0.9374
1 0.8951 0.3469 0.9030 0.6459 0.8909 0.9071 0.9209
8 10(%) 0.8658 0.9166 0.8928 0.9227 0.9186 0.9221 0.9169

15 0.8862 0.8929 0.8786 0.9158 0.9002 0.9044 0.8914
1 0.8480 0.0455 0.8338 0.6343 0.6396 0.8343 0.8650
8 15(%) 0.8337 0.8595 0.8516 0.8566 0.8663 0.8730 0.8687

15 0.8436 0.8307 0.8359 0.8598 0.8450 0.8613 0.8347

Table 2 AUCs for artificial data sets so that ratios of positive and negative instances are 7:3, 9:1.

data
SVM-Perf

1-norm Rank Soft Original our method
p : n r C. SVM Boost RankBoost 1-norm 1-norm 2-norm

1 0.9411 0.9339 0.9257 0.8440 0.9231 0.9046 0.9458
7:3 8 0.9166 0.9397 0.9078 0.9317 0.9333 0.9336 0.9177

15 0.9179 0.9344 0.9027 0.9392 0.9282 0.9333 0.9093
1 0.7950 0.3724 0.8014 0.8095 0.8049 0.8175 0.7974

9:1 8 0.7659 0.8180 0.7734 0.7773 0.7678 0.7748 0.7645
15 0.7269 0.7946 0.7567 0.7573 0.7494 0.7774 0.7578

threshold function f over N Boolean variables is associated
with some set A of k Boolean variables and f outputs +1 if
at least r of the k variables in A are positive and f outputs
−1, otherwise. Assume that the instance space is {+1,−1}N .
That is, the r-of-k threshold function f is represented as

f (x) = sign

⎛⎜⎜⎜⎜⎜⎝∑
x∈A

x + k − 2r + 1

⎞⎟⎟⎟⎟⎟⎠ .
For N = 100, k = 30, and r = 1, 8, 15, we fix r-of-k thresh-
old functions which determine labels. Then for each set of
parameters, we generate m = 1000 random instances so that
ratios of positive and negative instances are 5 : 5, 7 : 3, and
9 : 1 respectively. Finally, we add random noise into la-
bels by changing the label of each instance with probability
5%, 10%, and 15%. As hypotheses, we use N Boolean vari-
ables themselves and the constant hypothesis which always
outputs +1.

We compare RankBoost [12], SoftRankBoost [22],
original 1-norm Ranking SVM (which solves OP 3 and
OP 4, and we call “Original 1-norm”), and our methods.
We also compare with classification version of soft mar-
gin 1-norm SVM [4] (we call 1-norm C. SVM for short),
which solves soft margin version of OP 6. Additionaly,
we also compare with 2-norm version of our method† and
SVM-Perf [17] which efficiently simulates 2-norm (stan-
dard) Ranking SVM. Note that the experimental results of
2-norm methods are expletive since our method of 2-norm
Ranking SVM work efficiently more than original Ranking
SVM [16] but not efficiently more than SVM-Perf or the
other latest methods (e.g. [7]). The main goal of this paper
is to solve 1-norm Ranking SVM efficiently.

†The 2-norm version of our method and the formulations are
described in Appendix.

For RankBoost, we set the number of iterations as
T = 1000, 10000, 100000. For the other methods, we set the
parameter ν ∈ {0.05, 0.1, 0.15, 0.2}. For SVM-Perf, we set
the parameter ε = 0.001, C = 10, 20, . . . , 100. We evaluate
each method by 5-fold cross validation. Table 1 is the result
that we change the noises, keep p : n = 5 : 5. Table 2 is the
result that we change the ratios p : n, keep noises 5%. Sur-
prisingly, our methods achieve high AUC scores comparing
with the other methods. Particularly, contrast to our theo-
retical speculation (see Corollary 4), our method of 1-norm
often beats Original 1-norm in practice. It is not easy to ex-
plain the reason, however, we think that our methods may
avoid overfitting through simplifying. We can observe that
SoftRankBoost also often achieves high AUC scores, our
methods perform better in stably. 1-norm C. SVM some-
times achieves high AUC scores, however, the performance
is highly unstable. It is considered to be due to weakness
against noise. Therefore, also in practice, we cannot say
that classification SVM has robustness for bipartite ranking
problem.

7.2 Real Data

For the next experiment we use data sets “hypothyroid”,
“ionosphere”, “australian”, “colon cancer” and “duke breast
cancer” in LIBSVM data [6]. We set the parameter C of
SVM-Perf 100, 200, . . . , 1000. The parameters of the other
algorithms are the same as in Sect. 7.1. As can be seen in
Table 3, It is not to say that our methods are clearly better
than the other methods, but our methods stably archive high
AUCs for all data sets.

7.3 Computation Time

In this experiment, we will compare our method of 1-norm
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Table 3 AUCs for LIBSVM data sets.

data SVM-Perf
1-norm Rank Soft Original our method
C. SVM Boost RankBoost 1-norm 1-norm 2-norm

hypothyroid 0.9374 0.6661 0.7883 0.8504 0.8504 0.9091 0.9318
ionosphere 0.9643 0.9282 0.8961 0.9518 0.9778 0.9790 0.9568
australian 0.8882 0.8980 0.9171 0.8896 0.9298 0.9257 0.9325

colon-cancer 0.8200 0.7850 0.8500 0.9350 0.7900 0.8950 0.9000
duke 0.9520 0.9520 0.6720 0.8720 0.9600 0.9520 0.9120

Table 4 Computation time (sec.).

m
SVM-Perf 1-norm Rank Soft Original our method

C = 100 C = 10000 C. SVM Boost RankBoost 1-norm 1-norm 2-norm

250 4.2930 17.20 0.0884 0.4039 0.1283 7.9 0.4204 2.5001
500 3.4043 245.21 0.1879 0.0682 0.1313 35.3 1.5280 7.7216
1000 4.6884 524.81 0.6226 0.0514 0.1934 149.3 2.8103 34.0069
1500 6.5211 356.32 1.0289 0.0734 0.2971 391.2 7.9647 70.8608
3000 9.5591 771.55 3.3639 0.0978 0.3606 1320.0 8.6830 288.0392

Table 5 The number of non-zero features of weight vectors obtained by each method using LIBSVM
data sets. N is the dimension each data set has.

data
SVM-Perf

1-norm Rank Soft Original our method
N C. SVM Boost RankBoost 1-norm 1-norm 2-norm

hypothyroid 43 29 16 12 2 32 2 28
ionosphere 34 33 9 12 11 7 9 32
australian 14 8 7 6 6 9 8 14

colon-cancer 2000 1997 29 159 4 27 18 1991
duke 7129 7048 25 375 21 25 25 7066

to 1-norm C. SVM Original 1-norm and boosting methods,
and compare our method of 2-norm to SVM-Perf. The time
complexity of SVM-Perf is guaranteed O(sm log(m)), where
s is the number of non-zero features. We use the machine
with 16 cores of Intel Xeon 5560 2.80GHz and 198GByte
memory, and use the artificial data sets, the size of each data
set is m = 250, 500, 1000, 1500, 3000, respectively. The pa-
rameters of SVM-Perf are ε = 0.001, C = 100 and 10000.
For RankBoost, we set T = 100. We evaluate each execu-
tion time which is consumed to train for 5-fold cross valida-
tion and is averaged.

In 1-norm case, as is shown in Table 4, our method is
clearly faster than Original 1-norm. However, RankBoost
and SoftRankBoost is much faster than our method. 1-norm
C. SVM is faster than our method because our method iter-
atively runs as described in Sect. 6. However, the difference
does not depend on sample size. Also in 2-norm case, our
method is faster than SVM-Perf set by C = 10000. Since the
computation time of SVMPerf depends on parameter C (see
[17] lemma 2), we have to take time to find the best param-
eter C for any data sets. Our method stably runs regardless
of each parameter ε.

7.4 Sparsity

Finally, we show that the hyperplane obtained by 1-norm
regularized methods has high sparsity using LIBSVM data
sets. As seen in Table 5, 1-norm C. SVM, SoftRankBoost,
Original 1-norm and our method of 1-norm obtain sparse
weight vectors for large feature data sets, and weight vectors

of our method of 1-norm are as sparse as those of Original
1-norm. Note that the each norm of weight vector of SVM-
Perf, RankBoost, and our method of 2-norm are normalized
to 1.

8. Conclusion and Future Work

In this paper, we have reformulated the Ranking SVMs for
ranking functions as significantly simplified optimization
problems of size O(m2), where m is the size of the origi-
nal sample. We give theoretical guarantees on the general-
ization ability of the ranking functions obtained by solving
the optimization problems. In particular, the reformulation
of the 1-norm Ranking SVM yields the first practical algo-
rithm that is competitive with the original 1-norm Ranking
SVM in performance.

As future work, we apply our practical method to opti-
mizing other criteria biased to top elements [23], [26].
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maximizing the soft margin,” Advances in Neural Information Pro-
cessing Systems 20, pp.1585–1592, 2008.

[33] H. Yu, J. Kim, Y. Kim, S. Hwang, and Y.H. Lee, “An efficient
method for learning nonlinear Ranking SVM functions,” Informa-
tion Sciences, vol.209, pp.37–48, 2012.

[34] H. Yu and S. Kim, “SVM Tutorial — Classification, Regres-
sion and Ranking,” Springer Berlin Heidelberg, Berlin, Heidelberg,
pp.479–506, 2012.

Appendix: Reformulation of the Soft Margin 2-Norm
Ranking SVM

In this section, we employ a similar reformulation and sim-
plification strategy to the standard 2-norm Ranking SVM,
although as stated in Introduction, it has efficient algorithms
under the original formulation. Here we no longer assume
that the weight vector w is in PN . First we give the stan-
dard soft margin 2-norm Ranking SVM, which is based on
the ν-SVM formulation [28], where ν-SVM is an equivalent
variant of SVM and useful for showing a lower bound on
the empirical AUC score†.

OP 11: Soft Margin 2-norm Ranking SVM (primal)

(ρ∗,w∗, ξ∗) = min
ρ,w,ξ

1
2
‖w‖22 − νρ +

1
pn

p∑
i=1

n∑
j=1

ξi j

sub.to

w · (x+i − x−j )/2 ≥ ρ − ξi j, (i, j) ∈ M

ξ ≥ 0,

where 0 ≤ ν ≤ 1 is a parameter. By the property of the ν-
SVM (see, e.g., [28]), the optimal solution guarantees that
the number of pairs (x+i ,x

−
j ) for which w∗ ·(x+i −x−j )/2 ≤ ρ∗

is at most νpn. In other words, we have
†In the original formulation [28], there is another constraint

that ρ ≥ 0. In our analysis, we omit the constraint for simplic-
ity.
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AUCS ,ρ∗(w
∗) ≥ 1 − ν. (A· 1)

The dual form is given below:

OP 12: Soft Margin 2-norm Ranking SVM (dual)

α∗ = arg max
α
−1

2

∥∥∥∥∥∥∥∥
p∑

i=1

n∑
j=1

αi j(x
+
i − x−j )/2

∥∥∥∥∥∥∥∥
2

sub.to

0 ≤ αi j ≤ 1
pn
, (i, j) ∈ M

p∑
i=1

n∑
j=1

αi j = ν.

Note that the dual form is of size O((pn)2), assuming that
each inner product between instances is of unit size.

Now we give our reformulation. Like the 1-norm case,
we replace each dual variable αi j with a (slightly modified)
product form 4α+i α

−
j /ν but now we put an additional con-

straint
∑

i α
+
i =

∑
j α
−
j (= ν/2). Then, it is easy to see that we

obtain from OP 12 the following simplified but non-convex
optimization problem, called 2-norm OPTsoft:

OP 13: 2-norm OPTsoft

(α̂+, α̂−, ν̂+)

= arg max
α+,α−,ν+

−1
2

∥∥∥∥∥∥∥∥
p∑

i=1

α+i x+i −
n∑

j=1

α−j x
−
j

∥∥∥∥∥∥∥∥
2

sub.to

0 ≤ α+i ≤
ν+

2p
, i ∈ [1, p]

0 ≤ α−j ≤
ν

2nν+
, j ∈ [1, n]

p∑
i=1

α+i =

n∑
j=1

α−j =
ν

2
.

Note that we replace the constraint max(i, j)∈M αi j ≤ 1/(pn)
of OP 12 by maxi α

+
i max j α

−
j ≤ ν/(4pn), which is further

replaced by the two constraints maxi α
+
i ≤ ν+/(2p) and

max j α
−
j ≤ ν/(2nν+) with the new variable ν+ to be opti-

mized.
When we fix ν+ to a constant, then we have the QP

problem, called 2-norm OPTsoft(ν+), which has the follow-
ing primal form:

OP 14: 2-norm OPTsoft(ν+) (primal)

(ρ̂, ŵ, b̂, ξ̂+, ξ̂−)

= arg min
ρ,w,b,ξ+,ξ−

||w||2
2
− νρ + ν

+

2p

p∑
i=1

ξ+i +
ν

2nν+

n∑
j=1

ξ−j

sub.to

w · x+i + b ≥ ρ − ξi, i ∈ [1, p]

−w · x−j − b ≥ ρ − ξ j, j ∈ [1, n]

ξ+, ξ− ≥ 0,
ρ ≥ 0.

For any fixed choice of ν+, we can guarantee that the
solution of 2-norm OPTsoft(ν+) has a certain amount of em-
pirical AUC score.

Theorem 5. For a fixed ν+, let ρ̂ and ŵ be the solutions of
2-norm OPTsoft(ν+) (primal). Then,

AUCS ,ρ̂(ŵ) ≥ 1 − ν+ − ν
ν+
+ ν.

Proof. By the KKT conditions, ξ+i > 0 implies α+i =
ν+/(2p). Since

∑
i α
+
i = ν/2, there are at most νp/ν+ indices

i such that ξi > 0. Similarly, there are at most ν+n indiecs
j such that ξ j > 0. Therefore, at least (p − νp/ν+)(n − ν+n)
pairs of instances zi j in the pair-sample, ŵ · z ≥ ρ̂. �

For a paricular choice of ν+, we we obtain the following
corollary.

Corollary 6. Let ρ̂ and ŵ be the optimal solutions of 2-
norm OPTsoft(ν+) (primal) for ν+ =

√
ε. Then,

AUCS ,ρ̂(ŵ) ≥ (1 − √ν)2.

Moreover, we can use the iterative linearization-
minimization technique to find a local optimal value of ν+,
as we did for the 1-norm case. In this case, we replace the
non-convex constraints

α−j ≤
ν

2nν+

of 2-norm OPTsoft with the linear constraints

α−j ≤ −
ν

2n(ν+c )2
ν+ +

ν

nν+c
,

where ν+c is the current guess. Then, solve the QP problem
and obtain ν̂+. Repeat the procedure above with ν+c = ν̂

+

until convergence. Finally, solve 2-norm OPTsoft(ν+) with
ν+ = ν̂+.
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