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SUMMARY  Automatic detection of heart cycle abnormalities in a long
duration of ECG data is a crucial technique for diagnosing an early stage of
heart diseases. Concretely, Paroxysmal stage of Atrial Fibrillation rhythms
(ParAF) must be discriminated from Normal Sinus rhythms (NS). The both
of waveforms in ECG data are very similar, and thus it is difficult to com-
pletely detect the Paroxysmal stage of Atrial Fibrillation rhythms. Previous
studies have tried to solve this issue and some of them achieved the discrim-
ination with a high degree of accuracy. However, the accuracies of them do
not reach 100%. In addition, no research has achieved it in a long dura-
tion, e.g. 12 hours, of ECG data. In this study, a new mechanism to tackle
with these issues is proposed: “Door-to-Door” algorithm is introduced to
accurately and quickly detect significant peaks of heart cycle in 12 hours of
ECG data and to discriminate obvious ParAF rhythms from NS rhythms.
In addition, a quantitative method using Artificial Neural Network (ANN),
which discriminates unobvious ParAF rhythms from NS rhythms, is inves-
tigated. As the result of Door-to-Door algorithm performance evaluation, it
was revealed that Door-to-Door algorithm achieves the accuracy of 100%
in detecting the significant peaks of heart cycle in 17 NS ECG data. In addi-
tion, it was verified that ANN-based method achieves the accuracy of 100%
in discriminating the Paroxysmal stage of 15 Atrial Fibrillation data from
17 NS data. Furthermore, it was confirmed that the computational time to
perform the proposed mechanism is less than the half of the previous study.
From these achievements, it is concluded that the proposed mechanism can
practically be used to diagnose early stage of heart diseases.

key words: electrocardiogram (ECG), door-to-door algorithm, paroxys-
mal stage of Atrial Fibrillation, adaptive threshold of detecting heart beat
cycle

1. Introduction

Signal processing research for the diagnosis of cardiovascu-
lar disease has tremendously been activated in the last sev-
eral decades due to a high number of cardiac-related fatal-
ities[1], [2]. The most widely used method to detect car-
diovascular conditions is electrocardiogram (ECG) exami-
nation. ECG is a record of the electrical activity of the heart
described as wave-forms in chronological order and it shows
the depolarization and repolarization processes in the my-
ocardial cells. In a normal heart cycle, ECG consists of five
different characteristic wave-forms and each wave includes
a peak, which is a spike or a dip. ECG contains a larger
number of cardiovascular information, hence, it plays a
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significant role in guiding clinical diagnoses of heart dis-
eases and their symptoms. Therefore, by identifying the
symptoms as early as possible, the treatments for the car-
diovascular disease can be effectively made.

Cardiac Arrhythmia is a group of cardiovascular dis-
ease that can either suddenly lead to death or gradually lead
to heart failure. The most common type of Cardiac Arrhyth-
mia is Atrial Fibrillation, which is a cardiovascular symptom
where irregular heartbeats occur at a certain period of time.
Atrial Fibrillation is categorized into 3 stages; paroxysmal,
persistent and permanent stages. Chronic Atrial Fibrillation
normally starts with its Paroxysmal stage, hence, the detec-
tion of the Paroxysmal stage of Atrial Fibrillation (ParAF)
is indispensable.

There are many studies on detecting Atrial Fibrilla-
tion [3]-[5]. Basically, their approaches consist of several
stages, such as elimination of baseline drift[6], [7], wave-
form detection [8], [9], feature extraction [10], and heart dis-
ease detection[11], [12]. However, there are two biggest
concern and challenge in this study. First, feature extrac-
tion process in long duration of ECG data and second is the
mechanism to analyze the disease itself. Long duration of
ECG data is that the longer the recording time is, the more
noise may occur in the ECG data. It has been noticed that a
long duration ECG data results in huge noise from various
sources like muscular activities, skin stretching and elec-
trode motion, movement of heart due to respiration, etc. that
can contaminate the ECG signal. It is difficult to control
the environment in such a long period of time consistently
and prevent the interference due to some physiological event
such as breathing. As a result, an automated analysis re-
quires noise free ECG signal for correct interpretation [13].

Atrial Fibrillation monitoring has been performed in
connection with cryptogenic ischemic stroke [14], interven-
tional ablation procedures [15], and pharmacological treat-
ment [16], providing information for evaluating the efficacy
of different treatment strategies. The episodes come and go
and last for seven days or less, and the possibility of missing
an episode is huge if the analysis is done for a short pe-
riod of time. Therefore, without a long-term monitoring and
analysis, lasting from 12 hours and above, all episodes of
ParAF cannot be detected precisely, including the very ob-
vious one. A recent study has shown that AF is often over-
looked after interventional therapies when the standard strat-
egy for treatment evaluation is used [3]. Based on the expert
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review, a monitoring process of the heart rhythm from day
and night will be done when a person is experiencing many
symptoms for Atrial Fibrillation, but there is no clinical re-
sult shows any sign of abnormalities to the heart.

To overcome the above mentioned issues, in this pa-
per, a new mechanism, which accurately and quickly detects
the ParAF from 12 hours ECG data, will be proposed. The
new mechanism can mainly be divided into two steps. In
the first step, a newly proposed “Door- to-Door” algorithm
accurately and quickly detects characteristic wave-forms in
the ECG data and discriminates the obvious ParAF from the
others. The algorithms have the capability to capture nor-
mal heart cycle episode even in a noise environment like
base line wander. 3 specific models with 6 adaptive thresh-
olds to handles the noise environment is introduced in this
research. In the second step, Artificial Neural is utilized to
accurately detect the unobvious ParAF which cannot be eas-
ily detected by Door-to-Door algorithm. Therefore, a quan-
titative classification procedure is proposed in this research.
Note that NS symptom will be used as a reference to classify
the ParAF. NS symptom represents the characteristic of the
healthy human heart condition. By utilizing the error func-
tion that describes the deviation of predicted target value, a
proper quantification measurement can be used to describe
the tendency of the two symptoms.

The remainder of this paper is organized as follows:
Sect. 2 will introduce NS and Atrial Fibrillation Rhythms,
showing their characteristic wave-forms in ECG data. Sec-
tion 3 will discuss the related works to clarify the issues
of existing methods in detecting heart cycle and Atrial Fib-
rillation symptoms in ECG data. Section 4 will describe
the methodology of the proposed mechanism which elab-
orately detects characteristic wave-forms in ECG data and
identifies the ParAF. In Sect. 5, the evaluation result of the
proposed mechanism will be shown based on the two tech-
niques, Door-to-Door algorithm and Artificial Neural Net-
work. In Sect. 6, the conclusion will be made with discus-
sions on possible future study.

2. Principle of Electrocardiograph

Essentially, ECG data is the voltage time series data which
is generated by cardiac electrical activity. Medical doctors
usually use this data to diagnose the cardiovascular abnor-
mality and assist the patients in the treatment.

A typical ECG waveform periodically repeats 5 main
waves in each cycle; P, Q, R, S and T waves. The P wave
represents the depolarization of the right and left atria, the
Q, R and S waves follow the P wave and depict the acti-
vation of the right and left ventricles, and the T wave indi-
cates the repolarization of the ventricles. It is necessary to
detect these 5 waves in ECG data to diagnose the cardiovas-
cular abnormality. In this paper, two types of symptoms are
mainly focused on, which are NS and ParAF symptoms.
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Fig.1 Normal Sinus Rhythm pattern (left) and Premature Atrial Fibril-
lation Rhythm pattern (right) with P, Q, R, S and T peaks

2.1 Normal Sinus Rhythm

Sinus rhythm is the set of heart’s normal regular rhythms by
the heart’s natural pacemaker called sinoatrial node. Normal
cardiac impulses start at the right atrium wall and are trans-
mitted to the atria, then down to the ventricles. Additionally,
it is a reflection of normally functioning conduction system
in the body. This electrical current is following the normal
conduction pathway without interference from other bodily
system or disease processes [17].

2.2 Atrial Fibrillation Rhythm

Atrial Fibrillation rhythm is a situation where many different
impulses rapidly fire at once, causing an unstable rhythm in
the atria. Due to these unstable electrical impulses, the atria
cannot contract or squeeze blood effectively into the verti-
cal. Atrial fibrillation is the most common irregular heart
rhythm that starts in the atria area.

2.3 P, Q,R, S, T Wave Morphology

A normal ECG signal is considered as a periodic signal.
This electrical signal of the heart consists of a sequence
waves, named P, Q, R, S and T. Each wave basically has
a peak (hereafter P, Q, R, S or T peak), which is a spike or
a dip. This sequence constitutes the sinus waveform of the
heart signal. If there are irregularities in these waves, they
could be signs of the heart problem. From the comparison
in Fig. 1, which represents NS and premature Atrial Fibrilla-
tion, both waveforms show a huge similarity in many ways.
In this research, the five main peaks are considered as im-
portant parameters which are used for analysis of ECG data.
The process of detecting and collecting each peak in each
cycle is the main concern.

3. Related Works

Felix et al.[18] proposed an automatic multiscale-based
peak detection algorithm in noisy periodic and quasi-
periodic ECG signals. The achievement of this study is that
the accuracy of R peak detection is 100% for 200 seconds
of ECG data. However, it is skeptical that the proposed al-
gorithm can be applied to several hours of ECG data. In
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general, there are many ways to detect peaks for sig-
nal processing such as the use of wavelet transform [19]—
[24], artificial neural network [25], [26], nonlinear filter-
ing [27], linear prediction analysis[28], hidden Markov
models [29], momentum [30] and window-threshold tech-
niques [31]-[34]. The disadvantage with most of the exist-
ing peak detection algorithms is that different algorithms re-
quire different parameters to detect peaks. Therefore, these
methods cannot be easily combined to achieve a high per-
formance. Moreover, the issue of signal noise is one of the
biggest challenges.

Shadnaz et al. [4] proposed an automatic detection of
Atrial Fibrillation using stationary wavelet transform and
support vector machine. The proposed method achieved a
sensitivity of 97.0% and specificity of 97.1% without re-
lying on the detection of P wave, R wave and heartbeat.
However, the method induces a computational complexity.
During ECG feature extraction stage, data with a different
frequency band requires a different stationary wavelet trans-
form process. Moreover, the proposed method does not dy-
namically choose the most effective wavelet scale for noise
reduction, resulting in less flexibility in implementation.

Likewise Andrius et al. [3] designed a low-complexity
method to detect Atrial Fibrillation by observing the irregu-
larity of R to R interval and associating it with the increase
of heart rate. The proposed method achieved a sensitivity
of 97.1% and specificity of 98.3 % with low space com-
plexity. The proposed method relies on several processes
which are preprocessing data, R to R interval irregularity
analysis, bigamy suppression analysis, signal fusion and de-
tection analysis. There are two drawbacks in this method.
First, it has not been fully automated to analyze the ECG
data. Second, this method is impractical because it requires
a lot of time to analyze a long duration of ECG data.

Sujit et al. [35] reviewed several techniques for detect-
ing Atrial Fibrillation from Non-Episodic ECG data. Sev-
eral features have been defined to describe the behavior
of Atrial Fibrillation by focusing on P wave, QRS waves
cycle and R to R interval. However, most of the re-
viewed techniques do not focus on the data distribution
model of NS heart cycle to distinguish ParAF. Since the
ParAF symptom has similarities in rhythm to NS symp-
tom. Therefore, a constructive data distribution model for
NS is required to classify the diseases. This data distribu-
tion model is basically regarded as a series of P, Q, R, S
and T peak values in millivolt in ECG data. Some of the
techniques to detect Atrial Fibrillation are K-nearest neigh-
bor (KNN) [36], [37], Bayer Optimal classier [36], Artificial
Neural Network (ANN) [36], [38], [39], Linear Discrimina-
tion Analysis[35] and Empirical Detector [40]. However,
there exist a few drawbacks. Some methods have defined
too many ECG parameters to characterize Atrial Fibrilla-
tion, resulting in the increase of computational complexity.
Although, some methods [36], [37] attempted to overcome
this issue by reducing the number of parameters in charac-
terizing the Atrial Fibrillation, but the relation of the trade-
off of the computational complexity and the classification
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performance cannot be solved.

4. Automatic Detection of Paroxysmal Stage of Atrial
Fibrillation Symptoms

In this section, an automatic mechanism to detect ParAF
symptoms is proposed. Door-to-Door algorithm, which is a
new algorithm with the capability to accurately extract heart
cycle in ECG data, is proposed in this research. This algo-
rithm captures normal heart cycle episodes even in a noise
environment like base line wander. “Door-to-Door” is de-
rived from a continuous process of finding the right heart
cycle among a series of local maximums in the ECG data.
The word “Door” refers to the highest local maximum de-
tected among a group of data for local search. Each “Door”
represents the entrance or starting point for the deep inves-
tigation, which is performed to the surrounding data of the
local maximum. Once the investigation is done to one lo-
cal maximum, this “Door” will be used again as an exit to
search for another “Door”. This process will be continued
until the end of data. Therefore, “Door-to-Door” was named
after this investigation process. The flowchart of the mech-
anism is described in Fig. 2.

The five significant peaks in ECG data, which are P, Q,
R, S and T peaks, are extracted using “Door-to-Door” algo-
rithm and the number of detected peaks is counted. If the
number of detected peaks is smaller than a certain threshold
value (e.g. when a 12 hours ECG data is utilized, the thresh-
old value is set to 46,000), the ECG data is regarded as an
obvious ParAF rhythm or the advanced one. This is because
it shows that the five significant peaks are not fully detected
due to the unstable heart cycle. On the other hand, if the
number of detected peaks is larger than the threshold value,
the ECG data may be NS rhythm, but there is still the pos-
sibility that it is an unobvious ParAF rhythm. In this case, it
must be discriminated from NS rhythm.

In this research, therefore, the values of significant five
peaks in each heart cycle are investigated using Artificial
Neural Network (ANN). ANN outputs a numerical value

Fetch ECG data |

I
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I Count the number of detected peaks I
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Fig.2  Proposed automatic mechanism to detect ParAF
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Fig.3 P, Q, S, T peaks detection mechanism based on R peak position

to each heart cycle which indicates how much tendency of
Atrial Fibrillation rhythm or NS rhythm the heart cycle has.
Based on the numerical values for whole heart cycles of the
ECG data, the unobvious ParAF rhythm is detected. The de-
tails of Door-to-Door algorithm and ANN will be stated in
Sects. 4.1 and 4.2.

4.1 Door-to-Door Algorithm for Five Significant Peaks
Detection

Figure 3 illustrates the procedure of Door-to-Door algo-
rithm. R peak, Q peak, P peak, S peak and T peak are de-
tected in a sequential order. When R peak is searched for,
adaptive thresholds to the neighboring data points are intro-
duced. Here, let D, D,, D3 and D4 be the relative horizontal
distances from R peak to the direction of Q peak, from Q
peak to the direction of P peak, from R peak to the direction
of S peak and from S peak to the direction of T peak, respec-
tively. Note that the relative horizontal distance is expressed
as data point unit. Q peak and S peak are detected as the
minimum values in the range of D; and Dj, respectively. In
the same way, P peak and T peak are detected as the max-
imum values in the range of D, and Dy, respectively. The
values of Dy, D,, D3 and Dy are determined by investigat-
ing the MIT-BIH Normal Sinus rhythm database [36]. The
detailed procedure of each peak detection is described in the
following sections.

4.1.1 R Peak Detection with Adaptive Thresholds

R peak detection is a fundamental pre-requisite for the de-
tection of other peaks and its detection accuracy is crucial
for diagnosing the ParAF. R peak detection based on an ab-
solute threshold has a significant weak point. Figure 4 de-
picts two different waveforms of NS rhythm in ECG data.
As seen from this comparison, it is not appropriate to use
the absolute threshold value of 2.5mV since the value of R
peak fluctuates so much. In contrast, R peak detection by
Door-to-Door algorithm relies on the adaptive thresholds to
overcome the difficulty.

In this paper, three types of heart cycles in ECG data
are considered to detect R peak in different ways. These
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Fig.4 Different ECG heart cycle behaviors in Normal Sinus rhythm

three types of heart cycles correspond to normal rhythm
scenario, irregular rhythm scenario and off-the-baseline sce-
nario. The detail of each procedure to detect R peak is men-
tioned below.

(1) Detection of Local Maximum Point
When Door-to-Door algorithm starts, it searches for the lo-
cal maximum point in the range of successive seven data
points from the beginning of ECG data. If the local maxi-
mum point is not detected, the considered successive seven
data points are shifted one data point onward and the local
maximum point is searched for again. This procedure is re-
peated until the local maximum point is detected.

Let V; denote the value of the detected local maximum
point at i-th data point. Hereafter, the local maximum value
is described as V; for the sake of simplicity.

(2) Identification of R Peak

In this study, 6 adaptive threshold values have been intro-
duced to accurately extract all heart cycles in ECG data.
False Acceptance Rate (FAR) analysis has been done to de-
termine the most optimal value to be used as each adaptive
threshold value for this algorithm.

(a) Normal Rhythm
When ECG data shows a normal rhythm, the five significant
peaks can easily be seen at the standard positions as shown
in the figure on the left side of Fig. 4. In this case, no abnor-
mal waveforms such as noisy or unexpected signals are ob-
served. However, there need some restrictions to V; in order
to regard the local maximum point as R peak. Here, three
types of adaptive threshold values are introduced, which re-
strict the relative position of the local maximum point to the
neighboring data points. The values of five data points, V;,
Vi—2, Vi_g, Viyz and Vi, are utilized to identify R peak as
shown in Fig. 5.

When all the following conditions are fulfilled, V; is
identified as the value of R peak:

(D Vip2a < Vigr <V,
2) Vi <Vii <V,
(3) Vint £ Vi—Vipz
DV <Vi=Vis
5) Visekk=1,15) < Vi

For this research, Vy;; and Vi, are 0.35. Vg k=1,15) repre-
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Fig.6 R peak detection in an irregular rhythm scenario

sents the range of data which is used to check if other local
maximums close to the current local maximum exist or not.
k = 15 is determined by using False Acceptance Rate (FAR)
analysis where the most optimal value to be used is selected.
This process is very important to ensure the only the right
heart cycle detection, not a noise signal.

(b) Irregular Rhythms

When ECG data shows an irregular rhythm, it is difficult to
identify the local maximum point as R peak only by compar-
ing the value to the neighboring data points. This is because
the values of data points around the baseline fluctuate so
much, and thus it is necessary to confirm that V; is only the
local maximum value within a certain range of data points.
Therefore, in addition to the value differences of V; — V;,,
and V; — V;_,, V; must be compared to the other data points
values onward as shown in Fig. 6.

When all the following conditions are fulfilled, V; is
identified as the value of R peak:

(1) Visa < Vg <V,
(2)Via < Vi <V,
(3) Vinz < Vi = Viya
(D) Vina <Vi=Via
(5) Visk=1,15 < Vi
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Fig.7 R peak detection in an off-the-baseline rhythm scenario

For this research, V3 is 0.35 and V4 is 0.4. Vi+k(k:1,15)
represent the range of data to be check for any possible of
other local maximum value exist that close to the current
local maximum value location. k = 15 is determined by
using False Acceptance Rate (FAR) analysis where the most
optimal value to be used is selected. This process is very
important to ensure the only right heart cycle is detected and
not a noise signal.

(C) Off-the-baseline Rhythms
When the heart rhythm is off the baseline of ECG data, it is
also difficult to identify the local maximum point as R peak
only by comparing the value to the neighboring data points.
This is because the absolute value of V; is meaningless due
to the offset of the baseline. To avoid the miss-detection
of R peak, the values of adjacent data points around the lo-
cal maximum point must be carefully investigated, consid-
ering the offset of the baseline. Therefore, in addition to the
value differences of V; — V;,» and V; — V,_,, it must be con-
firmed that V; is the local maximum value at the center of
the successive seven data points and each data point value
decreases from V; to V,_3 and from V; to V;,3 as shown in
Fig.7.

When all the following conditions are fulfilled, V; is
identified as the value of R peak:

(1) VigsVigo < Vigr < V5
Q) VisVia < Vi <V,
B) Vins <Vi—Vipz

4 Vins < Vi = Viz

(5) 0 < Visk (k=16

(6) 0 < Vikr=1)

For this research, Vj,s and Ve are 0.2, Vigp=16) and
Vi—kk=16) represent the range of data to be check for any
possible of other local maximum value exist that close to the
current local maximum value location. k = 6 is determined
by using False Acceptance Rate (FAR) analysis where the
most optimal value to be used is selected. This process is
very important to ensure the only right heart cycle is de-
tected and not a noise signal in the off-the-baseline rhythms.
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4.1.2 Q Peak Detection

After R peak in a heart cycle is detected, Q peak detection is
performed. Q peak is searched for in the range of D;. The
data point, which has the minimum value in the range, is
identified as Q peak as shown in Fig. 3.

4.1.3 P Peak Detection

After Q peak in the heart cycle is detected, P peak detection
is performed. P peak is searched for in the range of D,.
The data point which has the maximum value in the range is
identified as P peak as shown in Fig. 3.

4.1.4 S Peak Detection

After P peak in the heart cycle is detected, S peak detection
is performed. S peak is searched for in the range of Ds.
The data point which has the minimum value in the range is
identified as S peak as shown in Fig. 3.

4.1.5 T Peak Detection

After S peak in the heart cycle is detected, T peak detection
is performed. T peak is searched for in the range of Dy.
The data point which has the maximum value in the range is
identified as T peak as shown in Fig. 3.

4.2 Artificial Neural Network (ANN) Classifier

Artificial Neural Network (ANN) is one of the machine
learning methods which imitate human’s way of thinking
to decide the most suitable solution to an issue. In this re-
search, ANN is used to classify an ECG data into unobvious
ParAF rhythm or NS rhythm based on the values of P, Q, R,
S and T peaks.

When ANN is performed with the values of P, Q, R, S
and T peaks in a heart cycle as an input dataset, a numeri-
cal value is output. In this research, the output values of 0
and 1 indicate a typical NS rhythm and an unobvious ParAF
rhythm, respectively. Therefore, the middle value of 0.5 can
be the border. Note that the output value is sometimes larger
than 1 or smaller than O since it can be overestimated or
underestimated by ANN, depending on the training dataset.
When ANN is performed for the whole ECG data, the same
number of output values as the heart cycles is obtained. Fig-
ure 8 and Fig. 9 show the output values obtained from a NS
data and an unobvious ParAF data, respectively. In these fig-
ures, the horizontal axis indicates data point for each heart
cycle, however, it is arranged in ascending order.

Let Nys and Ny be the number of data points that has
the output value less than 0.5 and the number of data points
that has the output value more than 0.5. In Fig. 8, Nys/Nys
is obviously larger than 1. On the other hand, N;s/Ny is
much smaller than 1 in Fig.9. It revealed that the unobvi-
ous ParAF rhythm can clearly be discriminated from the NS

1671

ANN output

Heart cycle

Fig.8 ANN output values obtained from an ECG data of a Normal Sinus
patient.
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Fig.9  ANN output values obtained from an ECG data of an Atrial Fib-
rillation patient.

rhythm by using ANN.
5. Performance Evaluation

In this section, the performance of the proposed mechanism
to detect five significant peaks and to discriminate Atrial
Fibrillation data from NS data is evaluated. In addition, the
computational time of the proposed mechanism is also dis-
cussed. In the following subsections, the databases utilized
for the evaluation, ANN setup, the performance metrics and
the evaluation results will be presented.

5.1 Databases Used for Evaluation

In this research, two types of databases, which are “MIT-
BIH Normal Sinus” and “MIT-BIH Atrial Fibrillation”,
were utilized in order to evaluate the performance of the pro-
posed mechanism. These two databases have been provided
by PhysioNet[41]. PhysioNet is a research resource, pro-
viding a large number of recorded physiological data and
the related open-source software.

17 patients’ ECG data from the Normal Sinus database
and 15 patients’ ECG data from the Atrial Fibrillation
database were selected for the evaluation. Each patient’s
data consists of a time series ECG data for 12 hours, which
is one of the most important criteria to select the data.
Note that the 15 patients’ data from the Atrial Fibrillation
database show the ParAF. Therefore, the characteristics of
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their ECG waveforms are quite similar to the ones of NS.
The proposed mechanism was performed to discriminate
these 15 ParAF data from the 17 NS data. The sampling
frequency of all the ECG data utilized in this evaluation
is 129 Hz. The amplitude range of typical ECG signals is
from -5 mV to 5 mV. For a routine recording, most electro
cardiographers agree that visual diagnostic accuracy can be
maintained with a high frequency specification between 50
and 100 Hz [42]. In this experiment, the sampling frequency
of 129 Hz is acceptable for measuring the consecutive R-
peak of electrocardiogram. A small difference in sampling
frequency does not influence the adaptive threshold setting
and the detection performance itself. Therefore, in this re-
search, ECG data with sampling frequency of 129 Hz, which
is the original data configuration provided by Physionet, was
utilized.

5.2 ANN Setup

As mentioned in Sect. 4, the obvious ParAF data were dis-
criminated from NS data by counting the number of detected
five significant peaks using Door-to-Door algorithm. Af-
ter that, ANN was performed to discriminate the unobvi-
ous ParAF data from the NS data. The input parameters
to ANN were the voltage values of P, Q, R, S and T peaks
in each heart cycle. These five values constitute a dataset
for a heart cycle. In this experiment, a conventional two-
layered neural network with a single output neuron was used
for ANN model development. As a result of network train-
ing, a decision function is chosen from the family of func-
tions represented by the network architecture. This function
family is defined by the complexity of the neural network:
number of hidden layers, number of neurons in these lay-
ers, and topology of the network. The decision function
is determined by choosing the appropriate weights for the
neural network. Optimal weights usually minimize an er-
ror function for the particular network architecture. The er-
ror function describes the deviation of predicted target val-
ues from the observed or desired values. In this research,
class/nonclass classification problem the target values is 1
for class (Atrial Fibrillation) and O for nonclass (Normal Si-
nus). The number of hidden layers is 20. Training of neu-
ral network is performed on variations of ECG peak value
based on Levenberg-Marquardt algorithms by trying to min-
imize an error function with 60% of dataset is allocated from
the whole dataset. To avoid over fitting and under fitting,
cross validation is used to find an earlier point of training
by providing about 5% of validation data from the whole
dataset. Finally, 35 % dataset is allocated to provide an un-
biased evaluation of a final model fit on the training dataset.
As shown in Table 2, the data divisions for each set are stated
in this table. The main aim of the separation into 5% valida-
tion and 35% testing is to create a balance prediction model
between over fitting and under fitting. Since the prediction
model may perfectly predict predefine training data, but it is
very unlikely to perfectly predict any other data, a balance
prediction model is required to support the case. Hence, the
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Table 1  Average Mean Square error for training, testing and validation
for different ratio
Training | Testing | Validation | Average | Average Average
dataset | dataset dataset Training Testing | Validation
(%) (%) (%) Mean Mean Mean
Square Square Square
error error error
100 40 0 0.001109 | 0.001175 | 0.001222
60 15 5 0.001660 | 0.001874 | 0.001640
55 15 10 0.001696 | 0.001923 | 0.001983
Table 2  Data division for testing, training and validation for ANN ex-
periment
Validation Testing data Training
data (5%) (35%) data (60%)
3,094 21,662 37,135
2,458 15,732 29,499
2,828 19,781 33,940
3,065 22,428 36,775
3.204 22,428 38,445
2,954 20,678 35,449
2,704 18,928 32,449
2,798 19,591 33,584
2,827 19,791 33,927
3,187 22,312 38,249
3439 24,072 41,266
3,107 21,751 37,288
3,251 22,754 39,007
2,611 18,276 31,330
2,340 16,379 28,078
3,069 21,488 36,829
3,543 24,804 42,521
3,142 21,996 37,708
2,867 20,067 34,400
2,791 19,535 33,489
3,289 23,023 39,467

proposal is used to get the balance prediction model. In or-
der to provide a balance prediction model, the average mean
square errors of training, testing and validation values are
used to evaluate. Mean square errors represent the average
square difference between output and targets. The lowers
values of mean square errors are better for prediction. The
equation for Mean square errors (MSE) of the predictor are
shown below.

1 & .
MSE = - ) (Y; - 1)?
"Zo( )

Y is a vector of n predictions, and Y is the vector of ob-
served value of the variable being predicted. In order to get
the best ratio, a series of experiments are conducted where
10 different ECG datasets with 3 different ratios for testing,
validation and training data were investigated. Moreover,
270 times of training model was tested to find the best ra-
tio to be used in this research. As the result, over fitting
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Table 3  The sensitivity of heart cycle detection on MIT-BIH Normal
Sinus database with Door-to-Door algorithm
Peak P Q R S T
True 100% 100% 100% 100% 100%
Positive
False 0% 0% 0% 0% 0%
Negative
Sensitivity 100% 100% 100% 100% 100%

occurred when mean square errors values are very low for
training data compared to the others two, while under fit-
ting occurred when Mean Square Error value are very high
for testing and validation data. Here, the investigation result
was described in Table 1. As seen in Table 1, the best ratio is
the one with validation 5 %, testing 35 % and training 60%
comparatively.

5.3 Results of Performance Evaluation

The performance of Door-to-Door algorithm was evaluated
in quantitative ways. The performance evaluation was di-
vided into two: (1) How correctly five significant peaks in
12 hours ECG data of NS is detected, (2) How correctly the
obvious ParAF data is discriminated from the NS data.

To evaluate the peaks detection performance, “Sensi-
tivity” was selected as the evaluation metric. It indicates
how correctly each peak can be detected. The detection sen-
sitivity of the five peaks (expressed as “Sensitivity”) is de-
fined as follows:

Sensitivity

= True Positive/(True Positive + False Negative)

where,

True Positive: The number of actual peaks that are correctly
detected as peaks.

False Negative: The number of actual peaks that are not
detected as peaks.

Since there were a huge number of heart cycles in a 12
hours ECG data for 17 NS data, 1000 heart cycles data ran-
domly sampled from each Normal Sinus data were manually
investigated. In other words, 1000 (heart cycles) x 5 (peaks)
x 17 (data) = 85,000 (peaks) were validated. As the result,
the detection sensitivity of the five significant peaks for the
sampled data was 100%. This surprising accurate sensitivity
concludes that Door-to-Door algorithm works very well to
detect heart cycles of ECG data with adaptive thresholds as
shown in Table 3.

In this research, it was assumed that when the num-
ber of detected peaks (including P, Q, R, S and T peaks) is
smaller than 46,000 in a 12 hours ECG data, it is identi-
fied as an obvious ParAF data. Therefore, 32 ECG data (15
Atrial Fibrillation data and 17 NS data) were investigated if
each data is an obvious ParAF data or not. As the result, 11
out of 32 ECG data were regarded as obvious ParAF data
and actually they were correctly identified.
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Table4 N, /Ny for the 21 ECG data
ECG data number Nie/Nag
NS16265 1048.000
NS16272 246.075
NS16273 1177.458
NS16420 424.638
NS16483 2287.536
NS16539 808.328
NS16773 1039.019
NS16786 3997.143
NS16795 276.181
NS17453 826.896
NS18177 437.063
NS18184 738.845
NS19088 138.209
NS19090 599.195
NS19093 1455.75
NS19140 229.759
NS19830 119.320
AF04043 0.0566
AF05261 0.153
AF06995 0.049
AF08455 0.091

At this moment, the rest of 21 ECG data have not as yet
identified with either unobvious ParAF data or NS data since
the number of detected peaks was larger than 46,000. Then,
subsequently, ANN was performed to the 21 ECG data as
stated in Sect. 4.2. The value of N,/N,s for each ECG data
was obtained as the result as shown in Table 4.

As clearly seen from Table 4, N;s/Ny¢ is much larger
than 1 in the first 17 ECG data, and in the other 4 ECG data,
Nns/Nar is much smaller than 1. Therefore, the 17 ECG
data and the 4 data were regarded as NS data and unobvious
ParAF data. As a matter of fact, these 21 ECG data were
correctly identified.

To compare the discrimination performance of the pro-
posed mechanism with other existing studies, “Sensitivity”
and “Specificity” were selected as the evaluation metrics.
The sensitivity and specificity are considered as the best
paired performance metrics to evaluate the discrimination
accuracy of Atrial Fibrillation from NS [26]. The discrim-
ination sensitivity of Atrial Fibrillation indicates the true
positive rate in identifying Atrial Fibrillation. On the other
hand, the discrimination specificity of Atrial Fibrillation in-
dicates the true negative rate in identifying Atrial Fibrilla-
tion, which means the rate how correctly NS is identified.
The discrimination sensitivity and specificity (expressed as
“Sensitivity” and “Specificity”, respectively) are defined as
follows:

Sensitivity

= True positives / (True positive + False negative)
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Table 5  Overall performance evaluation results comparing this research
with conventional SVM, Decision Tree and KNN using same dataset
ECG data SVM Proposed Decision KNN
number Accuracy method Tree Accuracy
(%) Accuracy Accuracy (%)
(%) (%)
NS16265 99.9 100 99.9 99.9
NS16272 96.7 100 98.0 99.4
NS16273 99.8 100 99.9 99.9
NS16420 99.5 100 99.8 99.8
NS16483 99.9 100 99.9 99.9
NS16539 100 100 100 100
NS16773 99.8 100 99.9 99.9
NS16786 100 100 100 100
NS16795 98.3 100 99.2 99.4
NS17453 99.8 100 99.9 99.9
NS18177 99.5 100 99.7 99.7
NS18184 99.7 100 99.8 99.9
NS19088 96.2 100 97.5 97.1
NS19090 99.2 100 99.8 99.8
NS19093 99.6 100 99.9 99.9
NS19140 99.0 100 99.3 99.2
NS19830 97.8 100 98.0 98.4
AF04043 85.6 100 95.1 96.6
AF05261 584 100 86.4 90.7
AF06995 86.1 100 94.9 96.6
AF08455 61.8 100 89.9 94.7
Specificity

= True negatives / (True negative + False positives)

where,

True positive: The number of Atrial Fibrillation data cor-
rectly identified as Atrial Fibrillation data.

False negative: The number of Atrial Fibrillation data in-
correctly identified as NS data.

False positive: The number of NS data incorrectly identified
as Atrial Fibrillation data.

True negative: The number of NS data correctly identified
as NS data.

In this evaluation, to discriminate ParAF data from NS
data, two steps were taken, that is to say, the steps using
Door-to-Door algorithm and ANN. Based on the definitions
of sensitivity and specificity for the discrimination perfor-
mance, the overall results for both are 100%. In order to
ensure the proposed method are the most suitable model
for classification, 3 different classification model have been
selected to compare with, which are conventional Sup-
port Vector Machine (SVM), Decision Tree, and K-Nearest
Neighbor (KNN) with 5 folds cross-validation. Since all
those techniques are highly effective in data classification,
hence, this result may describe the significance of the ANN
and the study itself. The same dataset is used to test the
performance of these 3 models. However, ANN has shown
more advantages in predicting medical outcome compared
to the other 3 classification model. The results are shown in
Table 5.

Table 6 shows the results of the sensitivity and speci-
ficity of other studies with this research using the same
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Table 6  Overall performance evaluation result comparing this research
with other studies. The bold font shows the results re-evaluated by Larbruru
et al. [43]

Algorithm name Sensitivity (%) | Specificity ( %)

Slocum et al. [44] 62.8 77.5
Babacizadeh et 87.3 95.5

al.[45]

Tateno et al. [46] 91.2 96.1
Couceiro et al. 93.8 96.1

[47]

Dash et al.[48] 94.4 95.1
Huang et al.[49] 96.1 98.1
Sarkar et al.[50] 97.5 99

Leeetal.[51] 98.2 97.7

Jiang et al.[52] 98.2 97.5
Shadnaz et al.[4] 97.0 97.1
Zhou et al. [53] 96.9 98.3

Carvalho et al. 93.8 96.1

[54]

Huang et al. [49] 96.1 98.1
Lake et al. [55] 91 94
Lian et al. [56] 95.8 96.4
Dash etal. [57] 94.4 95.1
Tateno & Glass 94.4 97.2

[45]
Proposed method 100 100

database with duration more than 10 hours long. It is re-
vealed that the proposed mechanism in this research outper-
formed the other studies.

To complete research, the computational time of de-
tecting heart cycle was evaluated. The computational time
of Door-to-Door algorithm implemented on a personal com-
puter (with Intel® Core™ {7 2.50 GHz, 16 GB RAM, 64 bit
0OS) was approximately 15 ms for a 30 second of ECG data.
To the best of our knowledge, few research has mentioned
the computational time of heart cycle detection for a long
duration of ECG data. One research [4] stated that the com-
putational time to detect heart cycle for a 30 second of ECG
data was 40ms, which is more than two times longer than
Door-to-Door algorithm. The computational time of Door-
to-Door algorithm for a 12 hour of ECG data varied from 30
seconds to 360 seconds. Even in the longest case, it takes
only six minutes, which is clinically acceptable for diag-
nosis. Given this short computational time, the proposed
mechanism can effectively be used in diagnosing a long du-
ration of ECG data, especially to detect ParAF.

6. Conclusion

In this paper, a novel and hybrid mechanism, which auto-
matically detects ParAF symptom using Door-to-Door al-
gorithm and ANN classifier, was proposed. To show the
effectiveness of the proposed mechanism, the performance
was thoroughly evaluated. The sensitivity of peaks detec-
tion in NS data by Door-to-Door algorithm was 100% and
the obvious ParAF data were perfectly discriminated from
NS data based on the number of detected heart cycles. By



SINAL and KAMIOKA: HYBRID MECHANISM TO DETECT PAROXYSMAL STAGE OF ATRIAL FIBRILLATION

performing ANN, the overall unobvious ParAF data were
discriminated from NS data with the accuracy of 100%. The
comparison result between this research and other studies
shows that the proposed mechanism outperformed in sen-
sitivity and specificity of the discrimination performance.
Moreover, the proposed mechanism holds strong advan-
tages, that is to say, the computational cost and time are less
than the other studies. It is concluded that this research can
contribute to the medical field as one of the best technolo-
gies in diagnosing ParAF symptoms.
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