
1126
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

PAPER

Name Binding is Easy with Hypergraphs

Alimujiang YASEN†, Nonmember and Kazunori UEDA†a), Member

SUMMARY We develop a technique for representing variable names
and name binding which is a mechanism of associating a name with an en-
tity in many formal systems including logic, programming languages and
mathematics. The idea is to use a general form of graph links (or edges)
called hyperlinks to represent variables, graph nodes as constructors of the
formal systems, and a graph type called hlground to define substitutions.
Our technique is based on simple notions of graph theory in which graph
types ensure correct substitutions and keep bound variables distinct. We en-
code strong reduction of the untyped λ-calculus to introduce our technique.
Then we encode a more complex formal system called System F<:, a poly-
morphic λ-calculus with subtyping that has been one of important theoret-
ical foundations of functional programming languages. The advantage of
our technique is that the representation of terms, definition of substitutions,
and implementation of formal systems are all straightforward. We formal-
ized the graph type hlground, proved that it ensures correct substitutions
in the λ-calculus, and implemented hlground in HyperLMNtal, a modeling
language based on hypergraph rewriting. Experiments were conducted to
test this technique. By this technique, one can implement formal systems
simply by following the steps of their definitions as described in papers.
key words: name binding, substitution, hypergraph rewriting, graph type,
formal systems

1. Introduction

1.1 Name Binding

Name binding is present in many fields of computer science.
It appears in logic in the form of quantifications such as ∀x.P
and ∃x.Q where x is universally quantified in P and exis-
tentially quantified in Q. In programming languages, name
binding appears in anonymous functions such as Haskell’s
\x → x + 1 where \x is a binder that introduces a bound
variable x. Besides, proofs in logic and mathematics need
to deal with name binding in their formalism.

The best platform for explaining various aspects of
name binding is the untyped λ-calculus. In a λ-term λx.M,
λ is a binding operator and x is a bound variable that may
occur in the term M which is the scope of the binding. Vari-
ables that are not bound are called free variables. Applying
β-reduction to an application (λx.M)N leads to a substitu-
tion M[x :=N]; the term N replaces all the occurrences of
the variable x in the term M.

When implementing formal systems involving name

Manuscript received August 9, 2017.
Manuscript revised November 9, 2017.
Manuscript publicized January 12, 2018.
†The authors are with the Department of Computer Science

and Engineering, Waseda University, Tokyo, 169–8555 Japan.
a) E-mail: ueda@ueda.info.waseda.ac.jp

DOI: 10.1587/transinf.2017EDP7257

binding, complications arise in the definition of substitu-
tions. For instance, applying β-reduction to (λx.(λy.xy))y
and naively replacing the occurrences of x by y leads to a
wrong result λy.yy. The result is wrong because the free
variable y in the original term became a bound variable af-
ter the substitution, which is called variable capture. We
could use α-conversion, which regards two λ-terms as equal
up to the renaming of bound variables (e.g., λx.x = λy.y),
to avoid variable capture. By α-conversion, we can rename
the bound variable y to another name z to have (λx.(λz.xz))y
and carry out the substitution to get a correct result λz.yz. It
seems that the renaming of bound variables solves the vari-
able capture problem, but the renaming is not necessary at
every step of substitution. To judge if renaming is necessary
in (λy.M)[x :=N], we need to know whether or not y occurs
free in N (unless we somehow know that N does not contain
y), which is in general a cumbersome process.

Name binding appears in logic, type theory, program-
ming languages and proofs. There has been extensive re-
search on how to handle name binding in practice [6], [8],
[18]. Two research communities frequently find themselves
in a situation where they have to formalize name binding.
Researchers in the programming language community en-
counter name binding during the development of program-
ming languages both in theory and implementation. Re-
searchers in automated theorem proving have been trying to
develop proof systems in which name binding could be eas-
ily managed and completely mechanized proofs about the
properties of formal systems involving name binding can
be correctly generated. Both communities need an intu-
itive technique which is easy to implement and keeps the
formal description close to its informal description [3]. The
techniques cited above in this paragraph are mainly oriented
towards the mechanized reasoning of metatheories of pro-
gramming languages. In this paper, we address another di-
rection in which the handling of name binding is important,
namely language constructs and techniques for a concrete
modeling language that allows us to model, simulate and test
formal systems involving name binding in a straightfoward
manner.

1.2 Our Solution

Ideally, a technique of name binding should keep terms
readable, avoid introducing extra operations in its formal-
ism, and be based on a simple idea. In particular, it should
offer an intuitive definition of substitutions as close to

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1127

theory as possible. By applying such a technique, one
should be able to work on the implementation as it is done in
the theory. Almost every available technique for name bind-
ing fails in one of these aspects. We summarize well-known
techniques and compare them to our technique in the final
section.

A simple way of representing name binding is using
graph links (or edges) as variables. Specifically, when we
apply our technique to a formal system, we use hyperlinks
(links with multiple endpoints) to represent variables, and
atoms (nodes of graphs) as constructors of the formal sys-
tem, and graph type hlground (described in Sect. 3) to define
substitutions. In this technique, we can define more than
one kind of hyperlinks to represent different kinds of vari-
ables. During the substitution, all bound variables are kept
distinct automatically. We implemented the whole idea in
HyperLMNtal (pronounced “hyper elemental”), a modeling
language based on hypergraph rewriting.

The paper is organized as follows. In Sect. 2, we intro-
duce HyperLMNtal briefly, focusing on its graph elements
and graph types. In Sect. 3, we explain our approach of
handling name binding by encoding the untyped λ-calculus.
Then we describe the graph type hlground with generalized
semantics and prove that hlground ensures correctness of
the encoding. In Sect. 4, we use the technique introduced
in Sect. 3 to encode a more complex formal system, System
F<:. In Sect. 5, we give experimental results of the previ-
ous two encodings. In Sect. 6, we review related work and
conclude the paper.

This work is based on our previous work [24] in which
we put forward the basic idea without working implementa-
tion. In this paper, we thoroughly examined the basic idea,
implemented it in HyperLMNtal, and worked on two non-
trivial formal systems involving name binding.

2. Hypergraph Rewriting Model: HyperLMNtal

2.1 Overview of HyperLMNtal

HyperLMNtal [23] is an extension of LMNtal [22], a mod-
eling language based on graph rewriting. Implementation
of HyperLMNtal (now integrated into the original LMNtal
implementation) is available on the web† and features state-
space search and LTL model checking. The main idea of
HyperLMNtal is that hypergraphs, consisting of atoms and
links, can be used as a platform for various computational
models.

The simplified syntax of hypergraphs in HyperLMNtal
is given as follows:

(Hypergraphs) P ::= 0 | p(X1, . . . , Xm) | P, P

where the two syntactic categories, links (denoted by Xi) and
atoms (denoted by p) are presupposed. A link is either (i) a
regular link with at most two endpoints or (ii) a hyperlink,
which may have multiple endpoints, with an attribute which

†http://www.ueda.info.waseda.ac.jp/lmntal/

is a natural number. Atoms and links form node-labeled
undirected graphs where the links of an atom (node) are to-
tally ordered.

Hypergraphs are the principal syntactic category: 0 is
an empty hypergraph; p(X1, . . . , Xm) is an atom with m (to-
tally ordered) endpoints of (regular or hyper) links; and P, P
is parallel composition. Section 2.2 explains why there are
two kinds of links in HyperLMNtal.

Computation in HyperLMNtal starts with an initial
graph, which we assume without loss of generality is a sin-
gle nullary atom in this paper. The initial graph is rewrit-
ten by rewrite rules repeatedly until none of them become
applicable.

A rewrite rule has the form H :-G | B, and will be
applied to a hypergraph P if the head H matches (i.e., is iso-
morphic to) a subgraph of P and that subgraph satisfies aux-
iliary conditions specified in the guard G. Then the matched
subgraph (together with a subgraph specified by G, if any)
is removed and a fresh copy of the hypergraph B (called
a body) is spliced into the rest of P. The auxiliary condi-
tions include type constraints and (in)equality constraints,
and their examples will be given throughout the paper. A
rewrite rule may have the form H :- B when the guard G
is empty. In HyperLMNtal programs, names starting with
lowercase letters denote atoms, and names starting with up-
percase letters denote links.

An abbreviation called term notation is frequently used
in HyperLMNtal programs. It allows an atom b without
its final argument to occur as an argument of a when these
two arguments are interconnected by regular links. For in-
stance, f(a,b) is the same as f(A,B),a(A),b(B). Also,
C=f(A,B) is the same as f(A,B,C) because f(A,B,C) is
defined to be equal to C=D,f(A,B,D) (by the predefined se-
mantics of the infix atom “=” that interconnects two links)
to which the above rule can be applied to obtain C=f(A,B).

2.2 Links in HyperLMNtal

Both regular links and hyperlinks that occur in the body
but not in the head of a rewrite rule are created fresh
upon hypergraph rewriting, that is, a created link is distinct
from all existing ones. Rewrite rules appearing through-
out the paper will explain them. In a rewrite rule, plac-
ing new(L,attribute) in the guard imposes a constraint that
L is a fresh hyperlink with an attribute which is a natural
number.

A regular link of a hypergraph has at most two end-
points. A regular link with only one endpoint (i.e., occur-
rence) in a hypergraph is called a free link, which is consid-
ered to be connected to some atom in the (implicit) context
in which the hypergraph is placed. For example, an atom
lam in Fig. 1 a has a free link as its third argument. In fig-
ures, the arrowhead on a circle indicates the first argument
of an atom and the ordering of its arguments, and an 8-point
star with curved links represents a single hyperlink.

There is a syntactic condition that a regular link name
occurring in a rule must occur exactly twice in the rule.

1128
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

Fig. 1 Hyperlinks

Otherwise, the link is a hyperlink and must be typechecked
in the guard. Consider the following program, where the
names preceding “@@” are rule names:

init.

ge@@ init :- new(H,1) | a(H,e), b(H), c(H), d(H).

rm@@ d(H) :- hlink(H) | .

The initial graph is the atom init in the first line. The
second line is a rewrite rule ge that transforms init to a
hypergraph a(H,e),b(H),c(H),d(H) which is shown in
Fig. 1 c. Applying the rule rm to the hypergraph shown
in Fig. 1 c will result in a hypergraph a(H,e),b(H),c(H)
shown in Fig. 1 b because the rule rm removes one endpoint
of the hyperlink H and the atom d. The hlink(H) checks if
H is an occurrence of a hyperlink. Note that the right-hand
side of the rule rm stands for an empty hypergraph (0 in the
abstract syntax).

A hyperlink can be seen as a data structure consisting
of a core (represented by an 8-point star in Fig. 1) and one or
more regular links called sublinks each connecting the core
and an atom (which is a, b, c, or d in Fig. 1). Numbers are
assigned to sublinks in some figures for the purpose of ex-
position. Fusion of two hyperlinks X and Y is written as
X >< Y . If X and Y belong to different hyperlinks, X ><Y
fuses them into a single hyperlink by merging their hyper-
link cores.

The above example illustrates two important points
about hyperlinks; hyperlinks are a generalization of reg-
ular links, and a hyperlink can change the number of its
endpoints.

There are good reasons for keeping two kinds of links
in HyperLMNtal rather than using hyperlinks only. First,
one can write numerous useful programs using regular links
alone. Second, a non-free regular link enjoys an invari-
ant that it always has two endpoints during computation in
which its endpoints may be redirected or two regular links
are interconnected. This invariant ensures key properties
about the shapes of graphs that are useful for both imple-
mentation and programming. Third, a graph with free (reg-
ular) links cannot simply be copied or deleted because they
are supposed to be connected to some atoms in the context,
while a graph with hyperlinks whose endpoints may exist
also in its context can be copied or deleted. This distinction
is exploited in the design of hlground described in Sect. 3.4.

Fig. 2 Copying a subgraph

2.3 Graph Types

HyperLMNtal graph types describe classes of graphs with
specific shapes. For example, hlink(L) ensures that L is an
occurrence of a hyperlink (i.e., is connected to a hyperlink
core), and unary(K) specifies that K is connected to a unary
atom.

Another important graph type provided by
HyperLMNtal is hlground. A graph type hlground(L,
a1, . . . , an) in a rewrite rule identifies a subgraph of a
hypergraph rooted by the link L, and a1, . . . , an (n ≥ 0)
are attributes of hyperlinks that are allowed to occur in the
subgraph. The following HyperLMNtal program explains
how hlground works, and its graphical illustration is given
in Fig. 2:

init.

ge@@ init :- new(H,1), new(K,2) | a(b(H,H,K)).

cp@@ a(A) :- hlground(A,1) | a(A,A).

The rule ge rewrites the initial atom init into
a(b(H,H,K)) where the hyperlink H has attribute 1 and
the hyperlink K has attribute 2, as shown in Fig. 2 a. The
hlground(A,1) in the guard of the rule cp identifies a hy-
pergraph consisting of an atom b and a hyperlink H with
attribute 1. Applying the rule cp to a(b(H,H,K)) creates
fresh copies of the atom b and the hyperlink H, while shar-
ing the hyperlink K with an unmatched attribute between the
two copies, as shown in Fig. 2 b.

In the example above, hlground(L,a1, . . . , an) iden-
tifies a subgraph which can be disconnected from the rest of
the hypergraph by cutting L and hyperlinks with unmatched
attributes. This is how hlground was originally designed
and implemented [14]. The idea of graph type constraints
for identifying subgraphs in HyperLMNtal goes back to
ground(L) of LMNtal, which identifies a subgraph which
can be disconnected from the rest of a hypergraph by cut-
ting L. Later, hlground was introduced to HyperLMNtal as
an extension of ground to allow one to specify which hyper-
links should be followed and which should be cut, and was
used to encode bigraphs [14]. Subsequently, it was used for
generating fresh copies of program clauses in higher-order
logic programming [25]. Now, from the above example and
the historical development of hlground, the question then
arises: for cases where a subgraph cannot simply be discon-
nected by cutting the root and hyperlinks with unmatched

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1129

attributes, can we still design and implement a reasonable
semantics of hlground? This will be discussed in Sect. 3.4.

3. Encoding The λ-Calculus

We show how the untyped λ-calculus can be implemented
in HyperLMNtal.

3.1 Barendregt’s Variable Convention

Barendregt’s variable convention is often assumed for for-
mal systems involving name binding [5]. It states that all
bound variables are taken distinctly from all free variables,
thus bringing convenience to theory by assuming implicit α-
conversion. Henceforth, we apply the spirit of variable con-
vention also to bound variables and keep all bound variables
distinct from each other. We call it variable convention.

Figure 3 illustrates the untyped λ-calculus under the
variable convention, which has no side conditions or extra
operations to guarantee the freshness of variables. In imple-
mentations, on the other hand, one usually formalizes fresh-
ness conditions or extra operations to ensure correct substi-
tutions. However, if we can keep every two bound variables
distinct and keep all free variables different from all bound
variables, as we assume, our formalization does not need
freshness constraints.

Figure 4 explains how we can ensure the distinctness
of bound variables during the substitution in the λ-calculus.

Initially, all the bound variables are given distinct. At
step 2, step 6 and step 10, applying substitution to an ap-
plication causes copying of the underlined term into two
places. When a substitution [x := N] is applied to an ap-
plication (M1M2), there are two cases for the term N. The
binders of n and m in step 2 and of n2 and m2 in step 6
are within the underlined terms being substituted and these
bound variables are renamed. On the other hand, at step
10, the binder of n1 is located outside of the term being
substituted, and therefore there is no need to rename it. It
is obvious that such copying of terms in the substitution
steps keeps the bound variables distinct and avoids variable
capture.

Our renaming technique differs from the classic text-
book renaming. In a substitution (M1M2)[x := N], we cre-
ate copies of N and rename bound variables of the copies
of N while copying N, rather than renaming a term to
which a substitution is applied. This technique is reason-
able in the following sense. First, it shares the advantages of
Barendregt’s variable convention; variable capture never
happens and side conditions are not necessary. Second, the
copying is done in the right-hand side of rules as an oper-
ation on subgraphs identified by hlground. As we will see
in later sections, our implementations of formal systems are
greatly simplified by this design choice.

In the subsequent sections, we discuss how these ideas
are formalized and implemented in HyperLMNtal.

Fig. 3 The untyped λ-calculus

Fig. 4 Substitution without variable capture

3.2 Hypergraph Terms for λ-Terms

Let x, y, . . . be variables of the λ-calculus; X,Y, . . . be hy-
perlinks; and L,R, . . . be regular links. M,N, . . . are used to
express both λ-terms and regular links. Their usage should
be clear from the context.

In Sect. 3.1, we mentioned that we apply the variable
convention to λ-terms. Hypergraph λ-terms are straightfor-
ward hypergraph representations of λ-terms respecting the
variable convention. For example, a λ-term λx.λx.x should
be written as λy.λx.x, and its corresponding hypergraph λ-
term is R=lam(Y,lam(X,X)). Another term λx.λy.(x(yz)),
which respects the variable convention, is encoded as

lam(X,L1,R), lam(Y,L2,L1),

app(X,L3,L2), app(Y,Z,L3)

which is abbreviated to

R=lam(X,lam(Y,app(X,app(Y,Z)))).

The hypergraph λ-terms well reflect the structure of
original λ-terms. L1, L2 and L3 are regular links for con-
structing the abstract syntax trees of hypergraph λ-terms,
and one only needs to replace variables of a λ-term by ap-
propriate hyperlinks (X, Y and Z) to have a corresponding
hypergraph λ-term. A substitution M[x := N] is encoded as
R=subs(M, X,N), which means that a hypergraph λ-term N
replaces all occurrences of X in a hypergraph λ-term M, and
the result will be passed to R. The hypergraph λ-term of the

1130
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

Church numeral 2, λ f .λx. f (f x), is illustrated in Fig. 1 a of
Sect. 2.2.

We now define a function ϕ which translates a λ-term
t, which must respect the variable convention, to its hyper-
graph representation. The function ϕ(t,R) takes two argu-
ments, a λ-term t under variable convention and a regular
link R which will be the root of the hypergraph λ-terms rep-
resenting t, and return a hypergraph λ-term. The auxiliary
function ϕ′ takes one more argument, a set Γ of pairs (x, X)
of a variable x and a hyperlink X representing x, and returns
a hypergraph λ-term and a possibly extended set of pairs.
Note that a substitution M[x := N] is explicitly handled
in our framework rather than regarding it as a meta-level
notation.

ϕ(t,R)
def
= ϕ′(t,R, ∅)

ϕ′(λx.M,R,Γ)
def
=
(
(lam(X1, L,R),G),Γ′

)

where (G,Γ′) = ϕ′(M, L,Γ ∪ {(x, X1)})
ϕ′(MN,R,Γ)

def
=
(
(app(L1, L2,R),G1,G2),Γ′′

)

where (G1,Γ
′) = ϕ′(M, L1,Γ)

and (G2,Γ
′′) = ϕ′(N, L2,Γ

′)

ϕ′(x,R,Γ)
def
=
(
R=Xi,Γ

)
if(x, Xi) ∈ Γ

ϕ′(x,R,Γ)
def
=
(
R=X2,Γ ∪ {(x, X2)})

if ∀Yi((x,Yi) � Γ)

ϕ′(M[x := N],R,Γ)
def
=
(
(subs(L1,X1,L2,R),G1,G2),Γ′′

)

where (G1,Γ
′) = ϕ′(M, L1,Γ ∪ {(x, X1)})

and (G2,Γ
′′) = ϕ′(N, L2,Γ

′)

Xi stand for a hyperlink with attribute i, which is created
by new(X,i). Hyperlinks with attribute 1 represent bound
variables and hyperlinks with attribute 2 represent free vari-
ables. The lam and app atoms represent abstractions and
applications, respectively. R = Xi connects the entry point R
with Xi, in which case R becomes (a sublink of) a hyperlink.

In hypergraph λ-terms, the tree structure of a λ-term
is formed by regular links representing subterm-superterm
relationship, whereas variables of the λ-calculus are repre-
sented by hyperlinks, giving the additional graph structure to
λ-terms. This way, regular links and hyperlinks play distinct
and well-motivated roles. Ideas somewhat similar to hyper-
graph λ-terms can be found in classical Stoy diagrams [20],
and its conception dates back to Bourbaki [4]. However, we
are going to give a concrete encoding of λ-terms in an im-
plemented language, not just their drawings.

3.3 Encoding of the Untyped λ-Calculus

The HyperLMNtal encoding of the untyped λ-calculus is
given in Fig. 5 [24]. The rule beta encodes the β-reduction,
and the next four rules encode the substitution.

Let’s see how these rules in Fig. 5 work. The hy-
perlinks representing bound and free variables in the term
represented by N are classified by the second argument of

Fig. 5 Encoding of the untyped λ-calculus with capture-free substitution

hlground(N,1) in the rules var2 and app. For hyper-
links representing free variables, hlground(N,1) causes
the sharing of such hyperlinks when the graph rooted by N
is copied in app and removes some endpoints of such hy-
perlinks when the graph rooted by N is removed in var2. In
var2, the constraint X\=Y means that X and Y are different
hyperlinks.

To understand how the hyperlinks representing bound
variables are correctly copied and shared, recall the reduc-
tion example given earlier (Fig. 4). The bound variables m
and n at step 2 and the bound variables m2 and n2 at step
6 receive new names, but the bound variable n1 does not
receive a new name (step 10) because the binder of n1 is
located outside of the term which is replacing m3. Of the
bound variables of a term M[x := N], those occurring in N
could be further classified into two:

• Truly local variable: if the binder of a bound variable
y is within N, then y is called a truly local variable for
N;

• Partially local variable: if y occurs in N but its binder
is not within N, then y is called a partially local variable
for N.

As will be discussed in detail in Sect. 3.4, the graph
type hlground distinguishes between hyperlinks represent-
ing truly local variables those representing partially local
variables.

HyperLMNtal allows one to generate small λ-terms
and reuse them for constructing larger λ-terms, as shown
below:

init.

no2@@ N=n(2) :- new(F,1), new(X,1) |

N=lam(F,lam(X,app(F,app(F,X)))).

init@@ init :- app(n(2),n(2),r).

The rule no2 generates Church numeral 2, shown in
Fig. 1 a. The rule init generates an application represent-
ing a λ-term (λx.λy.x(xy))(λm.λn.m(mn)), which will be re-
duced (by the rules defined in Fig. 5) to a hypergraph λ-term
corresponding to the λ-term λx.λy.x(x(x(xy))).

Since we cannot avoid copying of terms in the abstract
definition of substitutions, it seems better to treat it as an
opportunity to rename bound variables. The α-conversion
is realized as the copying and sharing operations of rewrite
rules on subgraphs identified by hlground. By such copying
and sharing, two equal but syntactically separate hypergraph
λ-terms are generated, and the idea mentioned in Sect. 3.1

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1131

Fig. 6 Hypergraphs

became a reality.

3.4 Graph Type: hlground

We say that a HyperLMNtal graph S1 is a subgraph of S iff
there exists a graph S2 such that S = S1, S2.

The graph type hlground identifies a subgraph of a
given hypergraph. In hlground(K, a1, . . . , an), the link
K is called a root link, and a1, . . . , an are the attributes of
hyperlinks allowed to appear in the hlground. Links of
HyperLMNtal are undirected, but a root link K is always
indicated by an arrow in subsequent figures. The direction
of such an arrow is from a source atom explicitly occurring
in the left-hand side of a rule to some target atom not ex-
plicitly mentioned in the rule. Three hypergraphs are shown
in Fig. 6, in which the a’s are source atoms and the b’s are
target atoms of K. We assume that all the hyperlinks in Fig. 6
have attributes found in a1, . . . , an.

In Fig. 6 a, cutting the root link K splits the hy-
pergraph a(K),b(B,A,F,K),c(B,A),d(F) into two sub-
graphs, a(K) and b(B,A,F,K),c(A,B),d(F), where K ap-
pears as a free link in both graphs. The subgraph identified
by hlground(K,a1, . . . , an) is the latter one with the target
atom b.

The original hlground [14] only handles cases where
the cutting of a root link splits a graph into two sub-
graphs. In Fig. 6 b, in contrast, cutting the root link K
alone cannot split the hypergraph a(K,C),b(B,A,F,K),
c(B,C,A),d(F) into two because K is on cycles. We in-
troduce some concepts and extend hlground to handle such
cases.

In the rest of this subsection, we treat the cores of hy-
perlinks as atoms for the purpose of exposition. When a
hyperlink sublink is a root link of hlground, we consider the
core of the hyperlink as the target atom of the hlground. By
the definition of source atoms, a hyperlink core never ap-
pears as a source atom.

Definition 1 (Maximal attributed path, (Non-)returning path,
Pure path). For a root link K of hlground(K, a1, . . . , an)

pointing to a target atom, a maximal attributed path (or
MAP) from K is a maximal sequence of different regular
links and different sublinks of hyperlinks, whose attributes
are in a1, . . . , an, without cycles. Maximal means that each
sequence is taken so that it cannot be extended any further.
A MAP which leads to the source atom is called a return-
ing path. A MAP which does not lead to the source atom
is called a non-returning path. A returning path without

hyperlinks is called a pure path. �

In Fig. 6 b, the root link K has returning paths
B1B2C2C1 and A1A2C2C1, non-returning paths B1B2A2 and
A1A2B2 and F, and no pure paths.

Definition 2 (Critical sublinks). Let rp(K) be the set of all
returning paths of a root link K. Assume that rp(K) is non-
empty and that each returning path contains at least one
hyperlink. Then a set of critical sublinks is a smallest set
of sublinks whose removal cuts all returning paths in rp(K).
If there is more than one smallest set of critical sublinks,
the ones consisting of sublinks closer to the source atom are
chosen. �

In Fig. 6 b, the set of critical sublinks of the root link K
is {C1}.

Note that the smallest set of critical sublinks “closest
to the source atom” is uniquely determined for the follow-
ing reason. Instead of considering a graph cut as a set of
links, we consider a cut as a subgraph containing the source
atom and obtained by cutting those links. Then, from the
property of minimum cut in graph theory, the intersection
of all subgraphs each corresponding to a minimum cut is a
subgraph corresponding to a minimum cut. Clearly, such a
subgraph is uniquely determined.

Definition 3 (Global hyperlinks). Global hyperlinks are the
hyperlinks containing critical sublinks. �

In Fig. 6 b, the set of global hyperlinks for the root link
K is {C}.
Definition 4 (Local path). A local path is the prefix of a
returning path starting from the target atom and ending at
the global hyperlink, excluding that global hyperlink. �

In Fig. 6 b, the local paths of the root link K are B1B2

and A1A2.

Definition 5 (hlground). For a root link K in a hyper-
graph S that does not contain pure paths for K,
hlground(K, a1, . . . , an) is a subgraph Ga1,...,an

K consisting
of non-returning paths and local paths of K and atoms on
them. �

We give an example of hlground after Definition 6.
Copying and the removal of a link K of type hlground

in a rewrite rule causes the copying and the removal of
Ga1,...,an

K , respectively, in the following manner:

Definition 6 (Operations on hlground graphs). When K is
of type hlground(K, a1, . . . , an) and is copied (or removed)
in the right-hand side of a rewrite rule,

• links in Ga1,...,an
K will be freshly copied (or removed),

• global hyperlinks and hyperlinks whose attribute is not
in a1, . . . , an will be shared (or their sublinks in Ga1,...,an

K
will be removed), and

• atoms within Ga1,...,an
K will be copied (or removed),

respectively. �

1132
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

Fig. 7 Rewriting a subgraph

Consider the following HyperLMNtal program,

cp@@ a(R,T) :- hlground(R,1) | a(R,R,T).

rm@@ a(R,T) :- hlground(R,1) | a(T).

and let us apply these two rewrite rules to the hypergraph
shown in Fig. 6 b. We assume that all hyperlinks in Fig. 6 b
have attribute 1. The rule cp copies a subgraph identified
by hlground as shown in Fig. 7 a, where hyperlinks A and B
are copied into X,Y and W,V, respectively, and C is shared
between the two copies and the rest of the hypergraph. The
rule rm deletes a subgraph identified by hlground as shown
in Fig. 7 b, where an endpoint of a hyperlink C is removed
together.

From the definition of hlground, we know that a
subgraph hlground(K, a1, . . . , an) exists if and only if
there are no pure paths for K. For example, there is
no hlground(K, a1, . . . , an) for the hypergraph shown in
Fig. 6 c.

3.5 Correctness of The Encoding

As shown in Fig. 5, our encoding of the untyped λ-calculus
has only five rules (one β-rule and four substitution rules). In
this section, we show that the encoding handles hypergraph
λ-terms correctly.

Lemma 1. In a hypergraph λ-term R=lam(X, S), the hyper-
link X has possible occurrences in the hypergraph λ-term
rooted at S only.

Proof. Follows from the definition of hypergraph λ-terms in
Sect. 3.2. �

We first prove that, for any root link in any hyper-
graph λ-term, the hlground in our encoding of the untyped
λ-calculus in Fig. 5 never fails.

Theorem 1 (Non-existence of pure paths). There are no
pure paths for an arbitrarily chosen root link in any hyper-
graph λ-term.

Proof. Suppose that each subterm of a given λ-term is given
a level number in the standard way, i.e., the whole λ-term is
of level 0, and subterms M and N in a term λx.M, MN and
M[x := N] of level n are of level n+1. Similarly, the toplevel
atom of a hypergraph lambda-term of level n is given the
level number n.

Suppose the source atom of a root link L is of level n

Fig. 8 Hypergraph λ-terms during substitution

and the target atom of L is of level n + 1. If there is a pure
path for L, we must keep following different regular links
until we reach the source atom of level n. However, from
the construction (defined by the function ϕ) of a hypergraph
λ-term, following the next regular link always takes us to
an atom at a deeper level. Hence, assuming the target atom
is of a deeper level than the source atom, there must be no
pure paths, i.e., returning paths consisting only of regular
links. If we exchange the source and the target atoms of L,
the claim still holds because the notion of a pure path does
not depend on which endpoint of L is a source atom. �

When hlground identifies a set of global hyperlinks
{H1, . . . ,Hn} of a root K in a hypergraph λ-term, H1, . . . ,Hn

are actually the hyperlinks representing the partially local
variables of the corresponding λ-term, as illustrated in the
following examples.

The two hypergraphs given in Fig. 8 are hypergraph
representations of two λ-terms at the second renaming and
the third renaming steps of the reduction in Fig. 4. The links
with arrowheads in the figure indicate the root links.

The rule app of Fig. 5 will be applied to these two
terms. In Fig. 8 a, there are no partially local variables in
λm2λn2.m2n2 to be substituted for m1. For the second λ-
abstraction in Fig. 8 b, the variable n1 is a partially local
variable. As a hypergraph λ-term, n1 is a global hyperlink
because of the returning paths {n12 , n12 n3, n12 n3m3}† (here
and henceforth, we may use hyperlinks rather than sublinks
to denote some of the path elements when the order of sub-
links of a hyperlink is unambiguous).

The rewrite rules in Fig. 5 correspond to β-reduction

†For uniformity with the original λ-terms, hyperlinks are de-
noted with lowercase letters in this example.

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1133

Fig. 9 Hypergraph λ-term substitution

and substitution in Fig. 3. The rules beta, var1 and abs are
straightforward. On the other hand, the rules var2 and app
have hlground type constraints. The copying of terms dur-
ing substitution appears only in the rule app; it creates two
α-equivalent but non-identical copies of subgraphs rooted
at N in (M1M2)[x := N]. Therefore, the renaming tech-
nique discussed in Sect. 3.1 avoids variable capture in the
rule abs. Again, hlground identifies a subgraph in the rule
var2 which is then removed. In the next lemma, we show
that hlground correctly identifies truly local variables and
partially local variables of hypergraph λ-terms during the
substitution.

Lemma 2. For the substitution subs(S , X,T,V) obtained
by applying the rule beta in Fig. 5 to app(lam(X,S),T,V)
where links S and T are roots of some hypergraph λ-terms,
the truly local variables and the partially local variables ap-
pearing in the substituting term rooted at T will be identi-
fied as local hyperlinks (hyperlinks whose endpoints are all
in hlground(T)) and global hyperlinks of hlground(T),
respectively.

Proof. First we recall that truly local variables are bound
inside the term rooted at T and partially local variables are
bound outside of the term rooted at T . We use s[S] and
t[T] to represent some hypergraph λ-terms rooted at S and
T , respectively. Note that S and T could be sublinks of hy-
perlinks (which is the case when s[S] and t[T] represent
variables) although they are shown as regular links in Fig. 9.

First case: The root link T has no returning paths.
Consider V=subs(S ,X,T),s[S],t[T] in Fig. 9 a. By
Lemma 1, hyperlinks bound inside t[T], which represent
truly local variables of t[T], will be identified as local hy-
perlinks of hlground(T).

Second case: The root link T has returning paths.
Consider R=lam(Y,U),subs(S,X,T,V),s[S],t[T] in
Fig. 9 c, where the lam represents a direct or an indirect
superterm of (a term represented by) the subs. Y repre-
sents a partially local variable of t[T] and may appear also
in s[S]. If Y does not occur in s[S], Y is a global hyperlink
of hlground(T). If Y occurs in s[S], there are returning
paths Y and YX, therefore Y is again a global hyperlink of
hlground(T). When t[T] has more returning paths repre-
senting partially local variables Y2, . . . Yn, each of them is a
global hyperlink for the same reason. As shown in the first
case, hyperlinks bound inside t[T] will be identified as local
hyperlinks of hlground(T). �

Note that a bound variable may be introduced by subs
occurring as a superterm of subs(S , X,T,V), for example
R=subs(M,Y,U), subs(S,X,T,V), m[M], s[S], t[T]
in Fig. 9 b. However, by Lemma 1 and the beta rule in
Fig. 5, Y may only occur in m[M] and therefore not in t[T];
therefore it will not form a returning path of the root link T
as covered by the first case of the proof.

This lemma and Definition 6 ensure that the last four
rules in Fig. 5 correctly perform substitution and keep bound
variables distinct. The next two theorems show the com-
pleteness of the encoding in Fig. 5.

Theorem 2. If M → M′ in Fig. 3, then ϕ(M,R) →∗
ϕ(M′,R) by the rewrite rules in Fig. 5.

Proof. The proof is by structural induction. We note that the
definition of ϕ uses ϕ′, where ϕ′(N,R,Γ) produces a hyper-
graph λ-term of N rooted at R. The Γ is a list to keep track
of already translated variables, and such Γ’s are not essential
here.

In the following, we consider the cases where M → M′
reduces the β-redex at the root of M, i.e., M is of the form
(λx.P)N. The other cases where M → M′ reduces a redex
inside M easily follow from the root cases.

First case: let M = (λx.x)N, then M′ = N. The rewrit-
ing of ϕ(M,R) by beta and var1 is as follows.

app(lam(X1, X1), L,R), ϕ′(N, L,Γ)
→ subs(X1, X1, L,R), ϕ′(N, L,Γ)
→ ϕ′(N,R,Γ)

The resulted hypergraph λ-term corresponds to N.
Second case: let M = (λx.y)N, then M′ = y. The

rewriting of ϕ(M,R) by beta and var2 is as follows.

app(lam(X1, L1), L2,R), ϕ
′(y, L1,Γ

′), ϕ′(N, L2,Γ
′′)

→ subs(L1, X
1, L2,R), ϕ

′(y, L1,Γ
′), ϕ′(N, L2,Γ

′′)
→ ϕ′(y,R,Γ′)

In var2, hlground(L,1) identifies the scope of
ϕ′(N, L2,Γ

′′), which is then deleted upon reduction. The
resulted hypergraph λ-term corresponds to y.

Third case: let M = (λx.λy.M1)N, then M′ =
λy.(M1[x := N]). The rewriting of ϕ(M,R) by beta and
abs is as follows.

app(lam(X1,lam(Y1, L1)), L2,R), ϕ
′(M1, L1,Γ

′),
ϕ′(N, L2,Γ

′′)
→ subs(lam(Y1, L1), X

1, L2,R), ϕ
′(M1, L1,Γ

′),
ϕ′(N, L2,Γ

′′)
→ lam(Y1,subs(L1, X

1, L2),R), ϕ
′(M1, L1,Γ

′),
ϕ′(N, L2,Γ

′′)

The resulted hypergraph λ-term corresponds to λy.(M1[x :=
N]).

Fourth case: let M = (λx.M1M2)N, then M′ =
(M1[x := N])(M2[x := N]). The rewriting of ϕ(M,R) by

1134
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

beta and app is as follows.

app(lam(X1,app(L1, L2)), L,R), ϕ
′(M1, L1,Γ

′),
ϕ′(M2, L2,Γ

′′), ϕ′(N, L,Γ)
→ subs(app(L1, L2), X

1, L,R), ϕ′(M1, L1,Γ
′),

ϕ′(M2, L2,Γ
′′), ϕ′(N, L,Γ)

→ app(subs(L1, X
1, L3),subs(L2, X

1, L4),R),

ϕ′(M1, L1,Γ
′), ϕ(M2, L2,Γ

′′),
ϕ′(N, L3,Γ1), ϕ′(N, L4,Γ2).

Note that ϕ′(N, L,Γ), ϕ′(N, L3,Γ1) and ϕ′(N, L4,Γ2) are
α-equivalent but non-identical hypergraph λ-terms by the
definition of ϕ. In app, the subgraph ϕ′(N, L,Γ) identi-
fied by hlground(L,1) is copied into ϕ′(N, L3,Γ1) and
ϕ′(N, L4,Γ2). The resulted hypergraph λ-term corresponds
to (M1[x := N])(M2[x := N]). �

Theorem 3. If M →∗ M′ in Fig.3, then ϕ(M,R) →∗
ϕ(M′,R) by the rewrite rules in Fig. 5.

Proof. By repeated application of Theorem 2. �

Next, in order to show the soundness of the encoding
in Fig. 5, we first introduce a lemma about the application of
substitutions.

Lemma 3. Applying the rules except the rule beta in Fig. 5
to a hypergraph λ-term always terminates with a unique hy-
pergraph λ-term.

Proof. The substitution rules in Fig. 5 will be applied to G
which is of the form subs(M, X,N,R). Assume M has no
subs atoms. When M is a hyperlink, either the rule var1
or var2 will be applied to G to have a unique G′, where the
rewriting terminates. When M is either lam or app, then
the rule abs or app will be applied to G, gradually mov-
ing the substitution into the subterms of M. Applying the
substitution rules to G in any order will result in a hyper-
graph λ-term in which its every subterm has a copy of the
substitution. We know that regular links represent subterm-
superterm relations in hypergraph λ-terms, and there are no
pure paths in M by Theorem 1. This means the rules abs
and app will be applied only finitely many times, and the
copies of the substitutions in the subterms will finally have
hyperlinks at their first arguments, which means these sub-
stitutions will terminate with unique results.

Now assume M has one or more subs atoms. There
is no rule in Fig. 5 for rewriting two subs’s simultaneously.
Different subs’s may move down concurrently, but the one
above the other cannot overtake the one below it. Therefore
the result is the same as rewriting subs’s sequentially from
the lowest-level one. �

Now we are ready to prove the soundness of the en-
coding. Note that soundness is less obvious than com-
pleteness because our encoding handles substitutions explic-
itly but does not specify particular order in which they are
processed.

Theorem 4. Let G and G′ be hypergraph λ-terms such that
G →∗ G′, where →∗ starts with the application of the rule
beta in Fig. 5, followed by zero or more applications of
other rules. Then there exist λ-terms H and H′ such that
(i) G →∗ ϕ(H,R) without using beta in Fig. 5,
(ii) G′ →∗ ϕ(H′,R) without using beta in Fig. 5, and
(iii) H →∗ H′ in Fig. 3.

Proof. When G does not contain subs atoms, apply the rule
beta to G once to have G → G′′, then apply other rules to
have G′′ →∗ ϕ(H′,R), where G′ is somewhere between G′′
and ϕ(H′,R) inclusive. The latter rewriting terminates with
correct substitution by Lemma 2 and Lemma 3. Since G
has no subs atoms, G →∗ ϕ(H,R) holds with zero step,
and we have H → H′ (in one step) by reducing the β-redex
corresponding to the one in G.

The interesting case is where G contains possi-
bly nested, not yet expanded substitutions (i.e., subs
atoms) in which the β-redex occurs. Let G be a hyper-
graph λ-term subs(M1, X1,N1,R), subs(M2, X2,N2,N1),
. . . , subs(Mn, Xn,Nn,Nn−1), where each Mi has mi (≥ 0)
occurrences of Xi. Assume Ni contains the β-redex under
consideration. After applying beta to G, we can apply the
other rules to have G → G′′ →∗ ϕ(H′,R). We can also apply
the rules except beta to G to have G →∗ ϕ(H,R). Lemmas 2
and 3 guarantee the correctness and the termination of both
reduction sequences. Note that the latter reduction copies
the β-redex in G to

∏i
k=1 mk places in H, but it is easy to

see that performing β-reduction to all those β-redexes in H
leads to H′. �

Theorem 5. Let M be a λ-term without substitutions. If
ϕ(M,R)→∗ G in Fig. 5, then there exists M′ such that M →∗
M′ and G = ϕ(M′,R) in Fig. 3.

Proof. By repeated application of Theorem 4. �

Section 5 shows working examples of the untyped λ-
calculus.

3.6 Implementation of hlground

Implementation of hlground defined in Sect. 3.4 can be done
by using well-known graph algorithms including depth-first
search and max-flow min-cut.

There are two cases of hlground subgraphs: the first
case in which there are no returning paths for the given root
link, as shown in Fig. 6 a, and the second case in which
there is at least one returning path for the given root link,
as shown in Fig. 6 b. Algorithm 1 checks if an hlground
subgraph exists in the following way. In the first case, the
function cycle exist dfs returns false and then the function
get local atoms computes the local atoms of the hlground,
which are atoms within the hlground. In the second case,
the function cycle exist dfs returns true and the function
purepath exist dfs returns false, and then the function
mincut finds global hyperlinks. Then, again, the function
get local atoms computes the local atoms of the hlground.

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1135

Algorithm 1 Find hlground
1: procedure Find hlground(G, L) � Graph G and root link L
2: global hlinks← ∅
3: result← true � true if hlground exists
4: if cycle exist dfs(G, L) then
5: if ¬ purepath exist dfs(G, L) then
6: global hlinks← mincut(G, L)
7: else
8: result← false
9: end if

10: end if
11: if result then
12: local atoms← get local atoms(G, L, global hlinks)
13: end if
14: return result
15: end procedure

In the both cases, Algorithm 1 returns true, and the global
variables global hlinks and local atoms hold the calculated
results. If there are pure paths, Algorithm 1 returns false.

Our implementation of mincut uses Dinic’s blocking
flow algorithm [10] to find global hyperlinks for the root
link. Dinic’s blocking flow algorithm has a time complexity
of O(V2E), where V is the number of vertices and E is the
number of edges. In our implementation, V = Na+Nh where
Na is the number of atoms and Nh is the number of hyper-
links, and E = Er +

∑Nh

i=1 sublinks(i) where Er is the number
of regular links and

∑Nh

i=1 sublinks(i) is the total number of
all hyperlink sublinks.

4. Encoding System F<:

System F<: [17] is an extension of System F, which is poly-
morphic λ-calculus with subtyping. System F allows bind-
ing of type variables as well as binding of term variables.
By having bound type variables, System F provides power-
ful polymorphism since abstract types are instantiated later
by concrete types through type applications. System F has
been used as a basis for research on polymorphism. System
F<: also supports subtyping found in many programming
languages.

We encode System F<: and test it with the inputs in
Challenge 3 of the PoplMark challenge, which is a set
of benchmarks designed to evaluate techniques of name
binding for both theorem proving systems and program-
ming languages [3]. Although our encoding running on a
HyperLMNtal system is not a certified implementation of
System F<:, it is an executable prototype specification that
can be used by itself or testing other implementations.

4.1 Terms and Types

We follow the idea of representing variables by hyperlinks
to have a readable hypergraph representation of System F<:
terms and types. Hyperlinks with attribute 1, denoted as
X1, represent term variables, and hyperlinks with attribute
2, denoted as X2, represent type variables. In addition,
we use lists to represent records, patterns and their types.

Hyperlinks L1, . . . , Ln (which we assume to have attribute
0) represent labels in records, patterns and types. Tr and
Ty are regular links connected to hypergraphs representing
System F<: terms and types, respectively. R is a regular link
appearing as the last argument of atoms. The atoms type
and stype represent typing relation and subtyping relation,
respectively. The hypergraph representation of System F<:
types and terms is straightforward. System F<: types are
represented as follows:

(Types) Ty ::=

X2 type variables

| top(R) maximum type

| arr(Ty,Ty,R) type of functions

| all(stype(X2,Ty),Ty,R) universal type

| rcd ty([type(Li,Ty), . . .],R) type for records

Similarly, System F<: terms are represented as follows:

(Terms) Tr ::=

X1 term variable

| abs(type(X1,Ty),Tr,R) term abstraction

| app(Tr,Tr,R) term application

| abs(stype(X2,Ty),Tr,R) type abstraction

| tapp(Tr,Ty,R) type application

| rcd([p(Li,Tr), . . .],R) record

| proj(Tr, Li,R) projection

| let(P,Tr,Tr,R) pattern binding

where the atom p represents a field in records, and P is a
regular link connected to patterns shown below:

(Patterns) P ::=

type(X1,Ty,R) variable pattern

| pat([p(Li, P), . . .],R) record pattern

We use HyperLMNtal lists to represent type contexts:

(Type Context) Γ ::=

ctx([],R)

| ctx([type(X1,Ty), . . .],R)

| ctx([stype(X2,Ty), . . .],R)

For example, Church numeral one in System F<:, namely

λX <: top . λS <: X . λZ <: X .

λs : X → S . λz : Z . s z

(as in [17]), is written as

sone
def
= abs(stype(X,top),

abs(stype(S,X),

abs(stype(Z,X),

1136
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

abs(type(St,arr(X,S)),

abs(type(Zt,Z),app(St,Zt))))))

where the hyperlinks are created by new(X,2), new(S,2),
new(Z,2), new(St,1), new(Zt,1).

Next, we show how System F<: evaluates its terms and
types and how it is implemented in HyperLMNtal.

4.2 Evaluation

System F<: uses the call-by-value strategy in its evaluation
of terms and types, as shown below. Note that x is a term
variable, X,T,T1,T2 are type variables and t is a term.

(λx : T.t) v −→ t[x := v] term evaluation

(λX <: T1.t) T2 −→ t[X := T2] type evaluation

Here, v is a value which is either a term abstraction or a type
abstraction whose hypergraph representation was shown in
Sect. 4.1:

Value v ::=λx : T.t term abstraction

|λX <: T.t type abstraction

The evaluation rules of terms and types are implemented as
follows:

appabs @@ R= app(abs(type(A,B),C),value(D)) :-

hlground(B,1,2) |

R=eval(subst(A,D,C)).

tapptabs@@ R=eval(tapp(abs(stype(X,T11),T),T12)) :-

hlground(T11,1,2) |

R=eval(subst_tp_tm(X,T12,T)).

We implemented call by value with HyperLMNtal
rewrite rules. The idea here is to use tokens, represented
by the atoms eval and value, to control the order of evalu-
ation. The original idea of implementing call by value using
graphs can be found in [19]. Our implementation has the
following rules:

R=eval(abs(A,B)) :- R=value(abs(A,B)).

R=eval(app(A,B)) :- R=app(eval(A),B).

R=app(value(A),B) :- R=app(A,eval(B)).

The atom eval has two arguments; the first is a regular link
pointing to the term being evaluated, and the second is an-
other regular link to pass the evaluation result. The atom
value wraps a term if it is an abstraction. When an ab-
straction is applied to a value, we generate a substitution.
The first rule says that an abstraction is a value. The second
rule evaluates the first argument of an application. The third
rule evaluates the second argument of an application if the
first argument is already a value. The rule appabs will be
applied when an abstraction is applied to a value. Call by
value also applies to records and patterns. The details are
omitted.

Since both term abstractions and type abstractions are
evaluated, we need to define three kinds of substitutions.

Fig. 10 The term to term substitution

Fig. 11 The type to type substitution

Fig. 12 The type to term substitution

A hypergraph term R=subst(X,V,Y) is a substitution in
which occurrences of a term variable X in a term Y will be
replaced by a term V, as shown in Fig. 10. A hypergraph
term R=subst tp tp(X,V,Y) is a substitution in which
occurrences of a type variable X in a type Y will be re-
placed by a type V, as shown in Fig. 11. A hypergraph term
R=subst tp tm(X,V,Y) is a substitution in which occur-
rences of a type variable X in a term Y will be replaced by a
type V, as shown in Fig. 12. The link R returns the result of
a substitution.

The definitions of all the substitutions straightfor-
wardly follow the structure of the terms or types Y to which
the substitution is applied. We use hlground(V,1,2)
whenever a term represented by V is copied or removed ac-
cording to the structure of the terms and types Y. The reason
of hlground having two attributes in its arguments is that
two kinds of variables are abstracted in System F<:, term
variables (represented by hyperlinks with attribute 1) and
type variables (represented by hyperlinks with attribute 2);
therefore both attributes should be specified to ensure cor-
rect substitutions. Besides those two points, no complica-
tions are involved in the definition of substitutions.

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1137

4.3 Type Checking with Equality Assumptions

We can easily turn the typing rules of System F<: into the
rewrite rules of HyperLMNtal. Type checking is a process
of decomposing type judgments and generating a proof tree.
Since the hypergraph representation of System F<: terms
and types is almost the same as the description of System
F<: terms and types in theory, let us first review a pen-and-
paper style type checking so that we know how to model
such a process in HyperLMNtal.

Among System F<: typing rules, the rule TA-TABS for
type abstractions is shown below:

TA-TABS
Γ, X <: T1 t2 : T2

Γ λX <: T1.t2 : ∀X <: T1.T2

The typing rule TA-TABS states that the two type vari-
ables X’s bound by λ and ∀ in the conclusion have the
same supertype T1. When a type judgment is given for type
checking, the two X’s come with different names, which are
different hyperlinks in our case. In the premise, the type
context is extended by X<:T1 where X refers to the both
bound variables of the conclusion. The both abstractions are
opened up in the premise, which means we need to rename
one type variable to another so that X<:T1 can be provided
for typechecking free occurrences (in t2 and T2) of the both
bound type variables later. Meanwhile, we need to ensure
that the both bound type variables have the same supertype
T1. We use hyperlink fusion to merge the two bound type
variables in the premise.

An example of a typechecking step with TA-TABS (for
sone in Sect. 4.1) is given below:

X <: top λS <: X.λZ <: X.λm : X→ S .λn : Z.mn
:∀S ′ <: X.∀Z′ <: X.(X→ S ′)→Z′ → S ′

 λX <: top.λS <: X.λZ <: X.λm : X→ S .λn : Z.mn
:∀X′ <: top.∀S ′ <: X′.∀Z′ <: X′.(X′ → S ′)→Z′ → S ′

First, we fuse X and X′ into one hyperlink so that all the
occurrences of them will be identified by the same hyper-
link X. Meanwhile, an equality assumption eq(top,top)
is created. Because eq(top,top) obviously holds, it is re-
moved. If we continue the type checking, fusions will be
performed several times and many eqs will be generated,
and all the eqs will be removed eventually because the orig-
inal judgment is correct.

Solving an eq is essentially the same as judging if two
λ-terms are α-equal because types are abstracted in System
F<:. An intuitive example is checking λx.x =? λy.y. First we
open up abstractions to have x =? y[y := x], then we have
x =? x, which is true. The fusion operation acts like an
instant variable-variable substitution. Some of the rewrite
rules for checking the equality of two types are shown in
Fig. 13.

Now we are ready to implement the typing rules. The
implementation is straightforward. In the following, we
show the implementation of TA-TABS. The hypergraph

Fig. 13 Equality checking of types

typeof(G,type(Tr,Ty)) represents a type judgment G
Tr : Ty which says that a term Tr has the type Ty under the
type context G:

typeof(G,type(abs(stype(X1,T11),A),

all(stype(X2,T12),B))) :-

hlground(T11) |

add_env(stype(X1,T11),G,G1),

typeof(G1,type(A,B)), eq(T11,T12), X1><X2.

Here, add env(stype(X1,T11),G,G1) extends the type
context G with a pair X1<:T11 and returns the extended
type context G1. Hyperlinks X1 and X2 are fused, and
eq(T11,T12) is generated for checking the equality of T11
and T12. Type checking is a process of decomposing type
judgments and eliminating them eventually. A same type
variable may occur in different branches of the derivation
tree of the type checking, and such variable occurrences
should have the same name to reflect that they are of the
same type. Therefore, we use hlground(T11) to share the
type variables occurring in T11 between the copies of T11.

When type checking is completed successfully, all the
eqs will be eliminated eventually. When type checking
fails for a given type judgment, some eq will remain. For
example, consider the type checking of Church numeral
typeof([],type(sone,SZero)), where sone is as defined
in Sect. 4.1 and SZero is the encoding of the type of Church
numeral zero

∀X <: top .∀S <: X .∀Z <: X . (X→ S)→Z→ Z

encoded as

SZero
def
= abs(stype(X,top),

abs(stype(S,X),

abs(stype(Z,X),

arr(arr(X,S),arr(Z,Z))))).

The type checking will end up with a single eq(X,Y), where
X and Y are not the same, thus indicating that the type judg-
ment is wrong. It is wrong because SZero is the type of
Church number zero in System F<:.

Some of the original typing rules of System F<: are
not syntax-directed. To implement them, they should be
converted to syntax-directed rules called algorithmic typing
rules [17]. Indeed, we implemented the algorithmic typing
rules of System F<:.

5. Experiments

In the previous sections, we showed the implementation of

1138
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

Table 1 Computing Church numerals (1)

Term Steps(beta) Execution Time (in ms)
2 2 I I 64(11) < 1
2 2 2 I I 358(48) 31
3 3 I I 356(45) 46
3 2 2 I I 7344(676) 23046
2 2 3 I I 1308(148) 359
4 4 I I 3522(347) 7983

The I is λx.x and 2, 3, 4 are Church numerals. 2 2 I I is the same as
((2 2) I) I.

Table 2 Computing Church numerals (2)

Term Steps(beta) Execution Time (in ms)
2 2 41(5) < 1
2 2 2 287(30) 31
3 3 241(16) 46
3 2 2 6313(435) 22812
2 2 3 977(65) 390
4 4 2491(89) 8140

the untyped λ-calculus and System F<:†. The evaluator of
System F<: consists of 30 rewrite rules, the typechecker of
System F<: consists of 54 rules, and the definition of substi-
tution consists of 22 rules. We conducted experiments of

1. computing Church numerals in the untyped λ-calculus,
2. computing factorials of Church numerals in System

F<:,
3. typechecking in System F<:.

These experiments were made using a Windows PC
with an Intel Core 7 Quad, 3.40 GHz, and 16.0 GB of RAM,
running under Windows 10 Pro.

Table 1 shows the execution time and how many times
rules are applied until an input is fully evaluated. These
inputs are used in benchmarking several λ-evaluators [12],
[13]. Table 2 shows examples which evaluate to Church nu-
merals only with strong (full) reduction, i.e., a strategy that
reduces terms inside abstraction. Note that our implemen-
tation performs strong reduction, while most graph-based
evaluators are focused on some form of weak reduction.
Note also that the main point of our implementation is that
we keep the encoding close to its abstract form as in theory,
and efficient reduction is not our primary concern.

The above experimental results are obtained from our
encoding of the untyped λ-calculus in which rules are given
in a particular order as shown in Fig. 5. The results will be
different if we change the order of rules because (i) hlground
copies and removes a subgraph in these rules, and (ii) the
present HyperLMNtal implementation tries rules in a given
order, so rules at the top are most likely to be applied.

As can be expected, the number of steps in Table 2 are
less than the number of steps in Table 1, while execution
time in both tables is very similar.

The number of steps for the input shown in Table 1
is greater than the number of steps for the same input in
[12], [13]. This is because terms and substitutions in our
approach correspond to the standard definitions, while term

†available at https://gitlab.com/alimjanyasin

Table 3 PoplMark: factorial of Church numerals
Input (n!) Atoms Steps Execution Time (in ms)
2! 185 397 31
3! 213 730 109
4! 229 1350 343
5! 245 2254 1155
6! 261 3494 3156
7! 277 5122 7750
8! 293 7190 17780
9! 309 9750 40561

2! is the factorial of Church numeral 2 in System F<:.

Table 4 PoplMark: type checking

Type Checking Input Steps Execution Time (in ms)
one 274 15
succ 692 31
pluspp 1134 78
multpp 804 62
two plus three 4629 359
three times (two plus two) 3660 296
two times one 4704 390
one hundred 22725 8297

and substitutions in [12], [13] are designed for efficient re-
duction by sharing terms whenever possible.

We tested our implementation of System F<: with the
benchmark of the PoplMark Challenge††. The results of
evaluating System F<: terms are shown in Table 3, and the
results of type checking in System F<: are shown in Table 4.

In Table 3, inputs are factorials of Church numerals in
System F<:. Each of 2!, 3!, . . . , 9! is given in the form of
nested let, pattern terms and basic arithmetic operations
defined in System F<:, so the benchmark tests the correct-
ness of the implementation with broad coverage. The size
of an input is reflected by the number of atoms it contains.

In Table 4, inputs are type judgments in System F<:.
We observed that our implementation correctly judged all
the inputs.

On the PoplMark Challenge website, there are several
implementations of System F<:. They use nominal tech-
nique in αProlog, locally nameless technique in Coq, a com-
bination of higher-order abstract syntax and de Bruijn in-
dices in ATS/LF, and de Bruijn indices in Isabelle/HOL.
Here in HyperLMNtal, we used hypergraph based tech-
nique, tested our implementation with the inputs of Chal-
lenge 3 of the PoplMark Challenge and obtained results
in reasonable execution time. This means our hypergraph
based technique passed its first test and gave us confidence
to pursue further research in future.

6. Related Work and Conclusion

There are a number of proposals in which graphs are used
to represent terms with name binding for various motiva-
tions. Of these, term graphs are mainly concerned with the
sharing of subterms, the aspect which we do not pursue in
the present work. Of the proposals addressing binding and
substitution, graphs are used to achieve an efficient closed

††https://www.seas.upenn.edu/∼plclub/poplmark/

YASEN and UEDA: NAME BINDING IS EASY WITH HYPERGRAPHS
1139

reduction strategy for untyped λ-terms [12], [13], for opti-
mal reduction [2], for a small set of rules for strong reduc-
tion [21], and so on. Nonetheless, they express multiple oc-
currences of variables using sharing constructors such as cp
(copy) atoms. Terms in these formalizations do not look
like standard λ-terms. Furthermore, these techniques take
a fine-grained approach, that is, one or two graph elements
are rewritten in one step of reduction. As a result, their def-
inition of substitutions does not exactly correspond to the
standard definition. In our approach, we have hyperlinks
to express variables naturally, and terms represented in our
technique look like the terms of the theory. In our technique,
the definition of substitution is kept close to that in theory,
which seems suitable for quick modeling of formal systems
involving name binding.

In addition to the historical account in Sect. 3.2, graph
representation of name binding can be found for instance in
[11], where variable identity and binders are represented us-
ing links different from links representing the tree structure
of terms. Another paper [1] describes a technique of han-
dling recursion in the λ-calculus using cyclic graphs. Our
emphasis, in contrast, is to stay close to the abstract descrip-
tion of formal systems involving name binding. Although
our hypergraph λ-terms do not have cyclic structures formed
by regular links, we can handle recursion by using fixpoint
combinators, but this is beyond the scope of the present
paper.

There are several well-known techniques for represent-
ing name binding that are not graph based. A classic tech-
nique, the de Bruijn representation [6], uses natural numbers
to represent variable names. As the result, it needs to define
shifting operation to keep the indices correct during the sub-
stitution and a context to keep track of indices of free vari-
ables. Although the de Bruijn representation is always crit-
icized for its poor readability, it has been used to complete
all the tasks in the PoplMark challenge [7]. The higher-
order abstract syntax uses the higher-order features of the
λ-calculus to encode object systems. However, the cost of
implementing high-order features is high [15], [16]. The lo-
cally nameless representation [8] is a simple solution, but
it has to define variable opening and variable closing opera-
tions to define substitutions. Besides, terms in this technique
look different from the standard λ-terms. The λ-calculus
can be easily encoded in the αProlog language [9], which is
based on the nominal logic [18], However, the formalization
of name binding with swapping and freshness constraints,
which are the fundamental part of the nominal logic, seems
somewhat difficult to understand for non-experts. Most of
these techniques are oriented towards the mechanized rea-
soning of metatheories of programming languages, while
our objective has been to find an appropriate language con-
struct for describing runnable models.

Each of these techniques comes with its own advan-
tages and disadvantages. In designing our technique, we
mainly considered the following perspectives:

• readability of terms,

• keeping the framework close to the theory from the
user’s viewpoint,

• natural support for free variables,
• simplicity of the theory and the cost of the implemen-

tation.

To conclude, our contributions are the following. We
developed the idea of using hyperlinks as variables and
hypergraphs as terms involving name binding in a hyper-
graph rewriting framework. We designed and implemented
graph type hlground that is based on graph-theoretic notions
and yet enables us to define substitutions. The untyped λ-
calculus was encoded and its correctness was proved. We
have tested our theory by encoding F<:. Implementing Sys-
tem F<: is not a trivial task because System F<: has two
kinds of bound variables. Consequently, guaranteeing cor-
rect substitutions requires careful reasoning. In our case,
substitutions are defined simply by following the structures
of terms and using hlground whenever a term is copied or re-
moved during the substitution. We implemented type check-
ing of System F<: in HyperLMNtal, a language without
built-in unification.

Our technique is currently available only on
HyperLMNtal, and users should be moderately familiar with
the language and know how to use the graph type hlground.
However, once a user gets the idea, he/she who wants
to make a formal system runnable should be able to do
so in HyperLMNtal by straightforward encoding. Users
do not need to ‘reinvent the wheel’ as in the de Bruijn
representation.

We consider the hypergraph based approach a promis-
ing one, and hope that HyperLMNtal will find a new appli-
cation in the prototyping of formal systems involving name
binding such as programming languages, type systems and
logic. One concern we have currently is that the current
implementation of the graph type hlground is not very ef-
ficient. However, the hypergraph terms obtained from our
technique follow the same structure, and it may be possi-
ble to exploit it. Our extension to hlground currently works
under ordinary, i.e., don’t-care nondeterministic, execution
mode of HyperLMNtal. It is our future work to incorpo-
rate our hlground into the model checking framework of
HyperLMNtal.

Acknowledgments

The authors are indebted to anonymous referees for their
careful reading, useful comments and pointers to the litera-
ture. This work is partially supported by Grant-In-Aid for
Scientific Research ((B) 26280024), JSPS, Japan.

References

[1] Z.M. Ariola and S. Blom, “Cyclic Lambda Calculi,” Proc. TACS’97,
LNCS 1281, pp.77–106, Springer, 1997.

[2] A. Asperti and S. Guerrini, The Optimal Implementation of Func-
tional Programming Languages, Cambridge University Press, 1998.

[3] B.E. Aydemir, A. Bohannon, M. Fairbairn, J.N. Foster, B.C. Pierce,

http://dx.doi.org/10.1007/bfb0014548
http://dx.doi.org/10.1007/11541868_4

1140
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic,
“Mechanized Metatheory for the Masses: The POPLMark chal-
lenge,” Proc. 18th International Conference on Theorem Proving in
Higher Order Logics, LNCS 3603, pp.50–65, Springer, 2005.

[4] N. Bourbaki, Théorie des Ensembles, Hermann, 1970.
[5] H. Barendregt, The Lambda Calculus: Its Syntax and Semantics,

Volume 103 of Studies in Logic and the Foundations of Mathemat-
ics, North-Holland, 1981.

[6] N.G. de Bruijn, “Lambda Calculus Notation with Nameless Dum-
mies, a Tool for Automatic Formula Manipulation, with Applica-
tion to the Church-Rosser Theorem,” Indagationes Mathematicae,
vol.75, no.5, pp.381–392, 1972.

[7] S. Berghofer, “A Solution to the POPLMARK Challenge Using de
Bruijn indices in Isabelle/HOL,” J. Automated Reasoning, vol.49,
no.3, pp.303–326, 2012.

[8] A. Charguéraud, “The Locally Nameless Representation,” J. Auto-
mated Reasoning, vol.49, no.3, pp.363–408, 2012.

[9] J. Cheney and C. Urban, “αProlog: A Logic Programming Language
with Names, Binding and α-Equivalence,” Proc. ICLP 2004, LNCS
3132, pp.269–283, Springer, 2004.

[10] Y. Dinitz, “Algorithm for Solution of a Problem of Maximum Flow
in a Network with Power Estimation,” Soviet Math Doklady, vol.11,
pp.1277–1280, 1970.

[11] W. Kahl, “Relational Treatment of Term Graphs with Bound Vari-
ables,” Logic Jounal of the IGPL, vol.6, no.2, pp.259–303, 1998.

[12] I. Mackie, “An Interaction Net Implementation of Closed Reduc-
tion,” Proc. IFL 2008, LNCS 5836, pp.43–59, Springer, 2008.

[13] I. Mackie, “YALE: Yet Another Lambda Evaluator Based on Inter-
action Nets,” Proc. ICFP 98, pp.117–128, ACM, 1998.

[14] M. Meguro, Y. Naoki, and K. Ueda, “Model Checker for Mul-
tiple Models of Computation,” Conference of Japan Society for
Software Science and Technology, 2012, http://www.ueda.info.
waseda.ac.jp/lmntal/.

[15] D.A. Miller and G. Nadathur, “Higher-Order Logic Programming,”
Proc. ICLP’86, LNCS 225, pp.448–462, Springer, 1986.

[16] F. Pfenning and C. Elliott, “Higher-Order Abstract Syntax,” Proc.
PLDI’88, pp.199–208, ACM, 1988.

[17] B.C. Pierce, Types and Programming Languages, The MIT Press,
2002.

[18] A.M. Pitts, “A First Order Theory of Names and Bindings,” Infor-
mation and Computation, vol.186, pp.165–193, 2003.

[19] F.-R. Sinot, “Call-by-Name and Call-by-Value as Token-Passing In-
teraction Nets,” TLCA 2005, LNCS 3461, pp.386–400, Springer,
2005.

[20] F. Turbak and D. Gifford, Design Concepts in Programming Lan-
guages, The MIT Press, 2008.

[21] K. Ueda, “Encoding the Pure Lambda Calculus into Hierarchi-
cal Graph Rewriting,” Proc. RTA 2008, LNCS 5117, pp.392–408,
Springer, 2008.

[22] K. Ueda, “LMNtal as a Hierarchical Logic Programming
Language,” Theoretical Computer Science, vol.410, no.46,
pp.4784–4800, 2009.

[23] K. Ueda and S. Ogawa, “HyperLMNtal: An Extension of a Hierar-
chical Graph Rewriting Model,” Künstliche Intelligenz, vol.26, no.1,
pp.27–36, 2012.

[24] A. Yasen and K. Ueda, “Hypergraph Representation of Lambda-
Terms,” Proc. TASE 2016, pp.113–116, IEEE Computer Society,
2016.

[25] A. Yasen and K. Ueda, “Implementing a Subset of Lambda Pro-
log in HyperLMNtal,” Conference of Japan Society for Soft-
ware Science and Technology, 2014, http://jssst.or.jp/files/user/
taikai/2014/toc.html.

Alimujiang Yasen received his B.S and
M.Eng degrees in Computer Science and Tech-
nology from XinJiang University in 2007 and
2010, respectively. He is now a PhD candidate
in the Department of Computer Science and En-
gineering, Waseda University.

Kazunori Ueda received his M. Eng. and
Dr. Eng. degrees from the University of Tokyo in
1980 and 1986, respectively. He joined NEC in
1983, and from 1985 to 1992, he was with the
Institute for New Generation Computer Tech-
nology (ICOT) on loan. He joined Waseda Uni-
versity in 1993 and has been Professor since
1997. He is also Visiting Professor of Egypt-
Japan University of Science and Technology
sinde 2010. His research interests include de-
sign and implementation of programming lan-

guages, concurrency and parallelism, high-performance verification, and
hybrid systems.

http://dx.doi.org/10.1007/11541868_4
http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1007/s10817-011-9231-4
http://dx.doi.org/10.1007/s10817-011-9225-2
http://dx.doi.org/10.1007/978-3-540-27775-0_19
http://dx.doi.org/10.1093/jigpal/6.2.259
http://dx.doi.org/10.1007/978-3-642-24452-0_3
http://dx.doi.org/10.1145/289423.289434
http://dx.doi.org/10.1007/3-540-16492-8_94
http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1007/11417170_28
http://dx.doi.org/10.1016/j.tcs.2009.07.043
http://dx.doi.org/10.1007/s13218-011-0162-3
http://dx.doi.org/10.1109/tase.2016.25

