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PAPER

Infants’ Pain Recognition Based on Facial Expression: Dynamic
Hybrid Descriptions

Ruicong ZHI†,††a), Ghada ZAMZMI†††, Dmitry GOLDGOF†††, Terri ASHMEADE††††, Nonmembers,
Tingting LI†,††, Member, and Yu SUN†††, Nonmember

SUMMARY The accurate assessment of infants’ pain is important for
understanding their medical conditions and developing suitable treatment.
Pediatric studies reported that the inadequate treatment of infants’ pain
might cause various neuroanatomical and psychological problems. The fact
that infants can not communicate verbally motivates increasing interests to
develop automatic pain assessment system that provides continuous and
accurate pain assessment. In this paper, we propose a new set of pain fa-
cial activity features to describe the infants’ facial expression of pain. Both
dynamic facial texture feature and dynamic geometric feature are extracted
from video sequences and utilized to classify facial expression of infants
as pain or no pain. For the dynamic analysis of facial expression, we con-
struct spatiotemporal domain representation for texture features and time
series representation (i.e. time series of frame-level features) for geometric
features. Multiple facial features are combined through both feature fusion
and decision fusion schemes to evaluate their effectiveness in infants’ pain
assessment. Experiments are conducted on the video acquired from NICU
infants, and the best accuracy of the proposed pain assessment approaches
is 95.6%. Moreover, we find that although decision fusion does not per-
form better than that of feature fusion, the False Negative Rate of decision
fusion (6.2%) is much lower than that of feature fusion (25%).
key words: infants pain assessment, temporal geometric descriptor, LBP-
TOP, decision fusion, video analysis

1. Introduction

Pain can be defined as a protective mechanism that alerts
about damage or injury that is occurring or potentially oc-
curring [1]. Accurate pain assessment is important for un-
derstanding patients’ medical conditions and developing
suitable treatments. Studies have found that poor treatment
of infants’ pain might cause permanent neuroanatomical
changes, developmental, and learning disabilities [2]–[4]. A
significant proportion of sick infants receive poor pain as-
sessment and management when they receive medical pro-
cedures and treatment [5].

Pain is a subjective experience, and traditionally self-
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report is considered to be the best measurement for pain.
The most common self-report pain scales are verbal nu-
meric scale [6], verbal descriptive scale, and visual analogue
scale [7]. The main limitation of these scales is that they are
not reliable, and easily affected by physical, cognitive, emo-
tional state, and the pain history or pain expectation [8], [9].
In addition, they are only useful for patients who are able to
communicate verbally.

For infants or individuals with communicative impair-
ment, pain assessment is measured by physiological and/or
behavioral indicators such as facial movements and body
postures. NIPS (Neonatal Infant Pain Scale) and NPASS
(Neonatal Pain, Agitation and Sedation Scale) [10] are two
popular indicator-based scales for infants’ pain assessment
for acute pain and chronic pain respectively. The indicator-
based scales are utilized by trained nurses at different time
intervals for adequate pain monitoring. It is laboring for
long-term pain assessment, and the nurses’ judgement is
highly biased due to the observer’s experience, culture, and
state [11]. Therefore, an automatic pain assessment system
that can analyze infants’ pain behaviors intelligently has re-
cently attracted increasing interest, to provide continuous
and accurate pain assessment.

1.1 Related Work

Facial expression is the most specific pain indicator, which
is more sensitive to noxious procedures than cry, body
movements, and heart rate [12], [13]. Moreover, the care-
givers could judge the pain facial expression more salient
and consistent than cry [15]–[17]. The facial expression of
pain is unique and different from the six basic emotions [14]
which are widely accepted by psychologists. The impor-
tance of face has been acknowledged in all multidimen-
sional pain instruments [18].

Facial expression analysis of pain has attracted increas-
ing attention in the last decades. However, related research
on infants’ pain expression analysis is limited. Only a
few facial representations have been applied in automatic
infants’ pain expression recognition, such as appearance-
based features acquired by Discrete Cosine Transform [19],
Elongated Local Ternary Pattern and Elongated Local Bi-
nary Pattern [20], and Principle Component Analysis and
Linear Discriminant Analysis [21]. The main limitation of
these works is they deal with static images which ignore the
dynamic information. Only a few studies reported the tem-
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Fig. 1 Illustration of the automatic dynamic pain facial expression recognition system.

poral facial representation for infants’ video during pain ex-
perience. Zamzmi et al. [22]–[24] utilized an optical flow
method to spot the pain expression in the video and de-
scribed the facial strain changes over time to classify pain
facial expressions of infants undergoing acute painful pro-
cedures. Fotiadou et al. [25] presented Active Appearance
Model to extract facial features of each video frame and
the global motion information, and the evaluation was con-
ducted for eight infants using SVM classifier. However, it is
frame-level based method which treats the video frames as
static images.

1.2 Overview of Contributions

In this paper, we propose a new set of pain facial activity
features to describe the infants facial expressions of pain,
and it is successfully applied to infants’ pain assessment.
The main contributions of our work include the following
three aspects:

• Both facial texture feature and geometric feature are
extracted from video sequences. Geometric represen-
tation is calculated simply with low dimensionality and
could depict the facial configuration intuitionally. To
our best knowledge, this work is the first to perform
geometric-based feature for infants’ pain facial expres-
sion analysis.
• Dynamic analysis is applied to pain facial expression

recognition. We perform spatiotemporal domain rep-
resentation for texture features and time series repre-
sentation (i.e. time series of frame-level features) for
geometric feature. Dynamic characteristics are impor-
tant to capture how the expression evolves over time,
e.g. eye squeeze during pain is hard to be distinguished
in a single static image. On the other hand, it is time-
consuming for pain labeling for every frame in the
video, and there is no need to do so since usually pain
lasts for a specific time-interval, it is better to segment

and annotate video with proper labels.
• Feature fusion and decision fusion schemes are con-

ducted to integrate multiple facial representations and
pain class labels, to fully exploit the advantages of mul-
tiple facial features. Both fusion schemes are utilized
to classify facial expressions of NICU infants as pain or
no pain. The experimental comparison shows that fu-
sion strategy could noticeably enhance the pain assess-
ment accuracy. An overview of the system is shown in
Fig. 1.

2. Dynamic Pain Facial Expression of Infants

First, the well-known Active Appearance Model [26] was
employed to locate the infant’s face and track 68 facial
landmarks (see Fig. 2 (a)) in the image sequences, including
landmarks of facial organs and boundary of the face region.
These landmark points were used to generate temporal ge-
ometric feature and temporal appearance feature related to
pain facial activities. The approach was described as fol-
lows.

2.1 Temporal Geometric Feature Representation

The facial geometric information could describe the changes
of facial organs, and the configuration parameters were de-
rived from a set of fiducial points. First, several distance
parameters were extracted from each video frame to capture
pain related facial changes. Then the static parameters com-
prised to a series of temporal signals, from which several
typical signal characterization descriptors were extracted to
obtain the temporal features of facial geometric representa-
tion.

2.1.1 Frame-Level Facial Configuration Measurement

The facial configuration elicited by pain could be measured
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Fig. 2 Frame-level parameters for infants pain facial expression.

by sign judgment method, such as Neonatal Facial Coding
System (NFCS) which is designed for newborns to 2 months
of age. There are ten discrete facial actions, including brow
bulge, nasolabial furrow, eye squeeze, chin quiver, open lips,
lip purse, horizontal mouth stretch, vertical mouth stretch,
taut tongue, and tongue protrusion [27].

Based on the facial actions defined in NFCS, several
frame-level geometric distance parameters were designed to
capture the facial activities of pain. The distance parameters
include: distance between eyebrows and eyes (debl and debr),
distance between upper eyelid and lower eyelid (del and der),
distance between eyebrow and mouth (dmbl and dmbr), dis-
tance between eye and mouth (deml and demr), distance be-
tween nose and mouth (dnm), and the width (dmw) and height
(dmh) of the mouth. Therefore, there are 11 distance param-
eters for geometric description of pain facial configuration.

Head movement is one of the major sign judgements
for infants’ pain assessment. According to the observation,
head movement happened very commonly during pain ex-
perience. Therefore, a simple method was employed for
head pose description by exploiting pose parameters from
distances between key facial landmarks to face boundary
landmarks (dbbl, dbel, dbnl, dbml, dbbr, dber, dbnr, dbmr). The
distance parameters were calculated for left side of face as
well as right side of face, if the head shakes, the distances of
two face sides would change related inversely. The facial ac-

tivity parameters and pose motion parameters are illustrated
in Fig. 2 (b) and Fig. 2 (c), respectively.

2.1.2 Temporal Descriptors for Video Sequence

The facial activity descriptors, consisting of facial configu-
ration parameters and head pose parameters, were extracted
from each image frames. Next, the corresponding tempo-
ral series were employed for each facial descriptor obtained
from all video frames, which is inspired by [28].

Let x(•) denote the descriptor signal, and the signal is
firstly smoothed by a Butterworth filter (first order with cut-
off 1 Hz for temporal signals) temporally. Then, the first
and second temporal derivations of the smoothed descriptor
signal were estimated for feature description. These signals
could be treated as the state signal, speed signal and accel-
eration signal of the descriptor signal, respectively. Subse-
quently, several parameters could be extracted from the tem-
poral signals to better depict the characteristics of the signal
variance over time [28]. A total of 16 temporal geometric
facial features were extracted for each video sequence, and
we categorized these parameters into 6 groups as follows:

— State parameters: maximum value (MAX), mini-
mum value (MIN), mean value (MEAN), and median value
(MEDIAN);

— Variability parameters: range (RANGE), standard
deviation (SD), inter-quartile range (IQR), inter-decile range
(IDR), and median absolute deviation (MAD);

— Peak parameters: instant of time when the ampli-
tude is at its maximum (TMAX);

— Duration parameters: duration of when the ampli-
tude is greater than mean (DGM), and duration of when
the amplitude is greater than the average of mean and min
(DGA);

— Segment parameters: number of segments where the
amplitude is greater than mean (SGM), and number of seg-
ments where the amplitude is greater than the average of
mean and min (SGA);

— Area parameters: area between signal and its min-
imum (AREA), and quotient of AREA and (the difference
between MAX and MIN) (AREAR).

The temporal features extracted from the smoothed
temporal signals and its derivations could reflect the facial
actions related to pain, for example, the state parameters are
related to the facial activity intensity; the variability param-
eters are measure of statistical dispersion of the signal, e.g.
the inter-decile range is the difference between the first and
the ninth deciles; the peak parameter depicts the time of the
apex and the duration parameters are related to the time in-
terval of the facial motion lasts; other parameters capture
additional information, e.g. MAX and TMAX of the speed
signal mean the speed and its timing. The temporal fea-
tures provide facial motion information related to amplitude,
speed, duration, and variability, which are helpful to depict
the geometric variance in the video. Figure 3 demonstrates
some of the parameters extracted from the temporal signal.

Each facial activity descriptor (11 facial configuration
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Fig. 3 An example of the temporal signal feature.

descriptors, and 8 head pose descriptors) could compose a
temporal signal and the previously described discrete pa-
rameters were extracted from the smoothed signal and its
derivation signals. Therefore, the dimensionality of geomet-
ric feature would be n × (3 × 16), where n is the number of
frame-level facial descriptor (n = 19 in this study).

2.2 Temporal Appearance Feature Representation

The histogram based static appearance descriptors could be
extended to three dimensions for dynamic appearance infor-
mation encoding. The resulting spatiotemporal representa-
tion could boost the accuracy compared to their static coun-
terparts. The most well-applied histogram representation is
Local Binary Patterns (LBP) and Local Phase Quantisation
(LPQ), and their dynamic variances are LBP-TOP [29] and
LPQ-TOP [30], which compute features from three orthog-
onal planes of X-Y, X-T, and Y-T, individually. The X-plane
and Y-plane denote the spatial dimensions and T-plane de-
notes the time dimension.

It has been reported that spatiotemporal facial appear-
ance descriptors perform better in small patches than holis-
tically in the entire face [31] since it could better capture
the skin texture at different facial regions, such as eye-
brow corner, nasolabial furrow and mouth corner. In addi-
tion, local patch derived features could significantly reduce
the computational complexity comparing to that extracted

from the entire face (usually the whole face is divided into
small blocks, and the descriptors are extracted from all the
blocks). Therefore, we extracted the dynamic facial ap-
pearance features, namely LBP-TOP and LPQ-TOP, from
32× 32 landmark patches located around the 31 facial land-
marks demonstrated in Fig. 2 (d). For each landmark patch
in a pain video, we obtained a feature vector with 177 di-
mensions for LBP-TOP, and 768 dimensions for LPQ-TOP.
The dynamic appearance feature for each pain video is 5487
(177 × 31) dimensions (for LBP-TOP)/ 23808 (768 × 31)
dimensions (for LPQ-TOP) by concatenating the local ap-
pearance descriptors over 31 facial landmark patches to rep-
resent the whole face.

A second scheme for temporal appearance feature ex-
traction was also employed due to the simplicity and low
dimensionality, i.e. calculating the frame-level mean gradi-
ent magnitude for each landmark patch firstly. The static
parameters comprised sequence signals, and then the sig-
nal characterization features were extracted using the simi-
lar procedure described in Sect. 2.1. Therefore, the feature
dimension of dynamic gradient features is 1488 (48 × 31).

2.3 Dimensionality Reduction Using SLPP

The original dynamic geometric features and appearance
features yield a high-dimensional feature space, and the per-
formance of entering the original feature matrix to classifier
directly is not ideal due to the redundancy of features. The
intrinsic features usually lie in a lower dimensional subspace
which could represent the useful information from raw fea-
ture matrix. There are a number of dimensionality reduc-
tion methods, and manifold learning is one of nonlinear di-
mensionality reduction algorithms which have been widely
applied in pattern recognition tasks. However, there is no
explicit mapping expression in traditional manifold learn-
ing method, and it could not deal with new test samples for
classification. Therefore, we utilized the Supervised Local-
ity Preserving Projections (SLPP) [32], which is a linear ap-
proximation of Laplacian Eigenmaps (LE), to obtain a more
compact feature subspace with much fewer parameters. The
SLPP inherits the advantages of nonlinear manifold learning
and also provides transformation function explicitly. The
principle of the SLPP is illustrated as follows.

Let X = [x1, x2, . . . , xN] denote the original feature ma-
trix in RD. The SLPP aims to seek a transformation A to
map the high-dimensional input data into a low-dimensional
subspace Y = [y1, y2, . . . , yN] in RL through yi = AT xi, such
that the local structure is preserved.

The local relationship between data points is described
by weight matrix W, which is determined through the k-
nearest-neighbors of each point. In this study, the heat-
kernel was utilized to construct the weight matrix, i.e. if x j

is the neighbor of xi or xi is the neighbor of x j, the weight
coefficient is set to Wi j = exp(−||xi − x j||2/t), where t is a
constant parameter; otherwise, Wi j = 0.

The key point is to find the optimal mapping to remain
that the neighbors in original data space are also close in
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the projected space, by minimizing the objective function:
minA

∑N
i, j ||yi − y j||2Wi j. According to the linear transforma-

tion defined as yi = AT xi, the minimization problem could
be converted to

arg min
AT XDXT A=1

AT XLXT A (1)

where D is a diagonal matrix with Dii =
∑

j Wi j, and
L = D −W is the Laplacian matrix. The optimization prob-
lem of Eq. (1) could be solved by a generalized eigenvalue
problem. Thus, the projection is implemented according to
the eigenvectors corresponding to the eigenvalues obtained
from Eq. (1).

The compact and effective features extracted by SLPP
were fed to classifier to enhance the classification perfor-
mances. Moreover, feature matrix with low dimensional-
ity could reduce the computational complexity significantly,
and less storage resources are needed.

2.4 Fusion and Classification

To best exploit the superiority of facial representations, we
applied two fusion schemes which are feature fusion and
decision fusion, and compared the pain assessment perfor-
mances. Feature fusion method combines multiple tempo-
ral geometric representations and temporal appearance rep-
resentations to form a single feature vector. Decision fusion
method made the final decision according to the output of
single classifier via majority voting, as a specific classifier
is learned for a type of feature.

The dimensionality-reduced facial features (single type
of feature or joint feature) were fed into Support Vector Ma-
chine (SVM) classifier for pain recognition. SVM is a pow-
erful statistical classifier for binary classification. In feature
level fusion, multiple facial features are integrated into one
feature vector, and one SVM classifier is trained by the re-
duced features utilizing SLPP, and the classifier output the
pain label of the system. In decision level fusion, each type
of reduced facial feature trained a SVM classifier individu-
ally, and it contributes one vote (i.e., class label) to the final
classification, and the major class in the combination is the
final label of pain assessment. If there is a tie for different
indicators, the class with highest confidence score is chosen
as the final decision of pain assessment.

3. Experimental Results and Discussion

In this section, we evaluated the proposed scheme in IPAD
(Infants Pain Assessment Database), using both dynamic ge-
ometric features and dynamic appearance features described
above. Multiple feature integration methods and fusion
methods (feature fusion and decision fusion) were evalu-
ated. Moreover, the importance of descriptors was also dis-
cussed.

3.1 Database

The experiments were conducted on our IPAD database

which contains videos acquired for NICU infants at Tampa
General Hospital. The collected videos have facial expres-
sion, body movement, and sound for 12 infants. The ra-
tio between male and female is 1:1. The age of the infants
ranged from 32 to 40 gestational weeks, with a mean age
of 35.9 (±2.8). Infants are also racially diverse with White
(10) and Black (2). The infants were recorded during rou-
tine painful procedure (e.g. heel lancing). Each infant has
one or two recordings for the pain procedure.

The ground truth of the pain assessment was ob-
tained by trained nurse using NIPS. Two experienced nurses
(worked in the NICU) of Tampa General Hospital are in
charge of the pain scoring by NIPS, they score the pain indi-
cators individually. The kappa coefficient of their scores is
0.86 which indicates very good agreement. The results that
they agree on are utilized as ground truth. The pain scale is
composed of six indicators including facial expression, cry,
breathing patterns, arms, legs, and state of arousal. The total
pain score is obtained by summing up all the scores of pain
indicators. The label of “pain” or “no pain” was assigned to
samples for training and classifying, which was also called
as “gold standard” in clinic.

Each of the procedure video was segmented into seven
time periods (T0 ∼ T6) for subsequent analysis, and each of
the segmentation is labeled with pain or no pain according
to the NIPS score. There are 81 instances in total in the
database. These seven epochs are:

T0: 5 minutes pre-procedure to provide the baseline
state.

T1: actual pain procedure.
T2: 1 minute after the completion of the painful proce-

dure.
T3: 2 minute after the completion of the painful proce-

dure.
T4: 3 minute after the completion of the painful proce-

dure.
T5: 4 minute after the completion of the painful proce-

dure.
T6: 5 minute after the completion of the painful proce-

dure.

3.2 Fusion Scheme for Multiple Features

In this section, the facial representation descriptors were
divided into three categories, i.e. dynamic geometric fea-
tures for facial configuration representation (DGDisFace),
dynamic geometric features for head pose representation
(DGDisPose), and dynamic appearance features including
LBP-TOP (DALBPTOP), LPQ-TOP (DALPQTOP), and tempo-
ral gradient features (DAgradient). The symbols denoted the
low-dimensional features that were fed to classifiers. The
output of classifier was one of two classes, i.e. pain and no
pain. Cross-validation is widely adopted strategy which har-
nesses the maximum data without losing significant model-
ing or testing capability. The experiments were conducted
by leave-one-subject-out cross-validation for subject inde-
pendent evaluation.
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Table 1 Comparison of recognition accuracies (%) of single feature and multiple features (The fea-
ture dimension is in the brackets).

Feature fusion Decision fusion
Features PCA LDA SLPP Majority voting
DGDisFace 84.2 (4) 89.4 (1) 87.1 (2) -
DGDisPose 76.6 (10) 78.4 (1) 85.6 (2) -
DAgradient 79.9 (14) 81.1 (1) 84.3 (1) -
DALPQTOP 79.9 (4) 81.3 (1) 85.4(3) -
DALBPTOP 90.9 (5) 91.1 (1) 92.8 (2) -
DGDisFace & DGDisPose 79.9 (15) 88.0 (1) 88.8 (1) 86.4

DGDisFace & DAgradient 81.3 (11) 83.8 (1) 87.5 (3) 87.7
DGDisPose & DAgradient 79.9 (13) 76.4 (1) 85.4 (2) 84.0
DGDisFace & DGDisPose & DAgradient 79.9 (13) 81.9 (1) 87.6 (2) 86.4
DGDisFace & DALPQTOP 79.9 (4) 81.3 (1) 85.4 (3) 85.2
DGDisPose & DALPQTOP 78.9 (4) 81.3 (1) 84.1 (1) 81.5
DGDisFace & DGDisPose & DALPQTOP 79.9 (4) 81.3 (1) 87.6 (3) 85.2
DGDisFace & DALBPTOP 90.9 (5) 88.4 (1) 95.1 (2) 92.8
DGDisPose & DALBPTOP 92.3 (4) 88.3 (1) 94.3 (3) 91.4
DGDisFace & DGDisPose & DALBPTOP 92.8 (4) 90.2 (1) 95.6 (3) 93.8

The overall accuracy measure was utilized to report the
performances which were shown in Table 1. Three types of
dimensionality reduction methods including PCA (Principle
Component Analysis), LDA (Linear Discriminant Analysis)
and SLPP were employed for comparison, and the results il-
lustrated that SLPP performed best for most of the cases.
The dimension of PCA was determined by PCAratio (per-
centage of variance), while in LDA and SLPP, the PCAratio
is set to 0.95. The superiority of SLPP is due to the two
properties, i.e. supervised and locality preserved, which can
reflect the underlying nonlinear manifold that the samples
lie on. The experimental comparison is summarized as fol-
lows:

• Appearance & Geometry: First, single facial feature
of temporal texture description or temporal geometric
description was evaluated, and DALBPTOP achieved the
highest recognition accuracy of 92.8%. The evalua-
tion result of DGDisFace (87.1%) was better than that
of DGDisPose (85.6%), which meant that the facial con-
figuration parameters were more effective than head
pose parameters. For different dynamic appearance
features, DALBPTOP (92.8%) outperformed DAgradient

(84.3%) and DALPQTOP (85.4%) significantly. More-
over, the accuracies of geometric features DGDisFace

and combination of (DGDisFace + DGDisPose) (88.8%)
were higher than appearance features DAgradient and
DALPQTOP, while DGDisPose performed poorly compar-
ing to other features.
• Feature fusion: The evaluation results of a variety

of combinations of temporal appearance features and
temporal geometric features were compared. It can
be seen that the joint feature could promote the as-
sessment performance, and the recognition accuracy of
the joint feature was higher than a single feature. The
best performance was obtained by the combination of
(DGDisFace + DGDisPose + DALBPTOP), with the highest
recognition accuracy of 95.6%. The evaluation results
were close to the best when DGDisFace was concate-

Table 2 Confusion matrices of the best results for feature fusion and
decision fusion.

Feature fusion Decision fusion
Pain No pain Pain No pain

Pain 75% 25% 93.8% 6.2%
No pain 0 100% 6.2% 93.8%

nated with dynamic appearance feature, while it was
not ideal when only DGDisPose was utilized for feature
fusion with dynamic appearance feature. Significant
difference was found between the recognition accu-
racy of three-feature fusion of (DGDisFace + DGDisPose

+ DALBPTOP) and that of single-feature in statistical T-
test. Although the three-feature combination achieved
the highest recognition accuracy, no significant differ-
ence was found between three-feature combinations
and two-feature combinations. Similar result was ob-
served for decision fusion. In spite of it, multiple dy-
namic facial features provide sufficient information for
infants’ pain assessment and tolerate to data missing
caused by hospitalization environment.
• Decision fusion: The decision fusion accuracy of the

combination of (DGDisFace + DGDisPose + DALBPTOP)
reached the highest recognition accuracy (93.8%) com-
paring to other combinations, while it was lower than
the best accuracy of feature fusion. Furthermore, the
confusion matrices of feature fusion and decision fu-
sion for (DGDisFace + DGDisPose + DALBPTOP) with
SLPP were illustrated in Table 2 (each row of the ma-
trix denotes the instances in an actual class, and each
column represents the instants in a predicted class).
The results depicted that decision fusion got higher
False Positive Rate (FPR, type I error) (6.2%) than
that of feature fusion (0%), while the False Negative
Rate (FNR, type II error) of decision fusion (6.2%)
was much lower than that of feature fusion (25%). The
AUC of decision fusion (0.9144) was greater than the
AUC of feature fusion (0.8798). For infants pain as-
sessment, it is expected to minimize FNR rather than
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FPR when the goal is to correctly detect pain when it
occurs, even if there is a degree sacrifice of misclassi-
fication for the non-pain state. From this point of view,
although the accuracy of feature fusion is higher than
that of decision fusion, decision fusion is more suitable
for infants’ pain assessment, and vice versa.
• Instance variation: The infants videos were captured

under real condition of NICU, the instances differ from
light condition and occlusions. For the decision fu-
sion of (DGDisFace + DGDisPose + DALBPTOP), the ac-
curacies of ten infants instances achieved 100%, and
the other two infants instances were 85.7% and 40%.
The lowest accuracy due to frequent head shaking and
mouth movement during no-pain procedure. Although
sometimes there is side-effect for pose motion related
features as infants in normal state may also have head
movement, we could see from Table 1 that pose motion
related features could enhance the overall accuracy of
pain recognition. Some pain instances were misclas-
sified to no-pain as the infants did not show pain ex-
pression during the painful procedure. The LBP-based
histogram is gray scale invariant and rotation invari-
ant, therefore, the facial features could tolerate the light
condition to a degree. However, the accurate recogni-
tion for low intensity of pain facial expression is still
challenge.

3.3 Correlation of Facial Features to Pain

The contributions of diverse facial descriptors were ana-
lyzed for temporal geometric features and temporal appear-
ance features. The influence scores were calculated from
the eigenvectors of the optimization problem in SLPP for
the joint feature of (DGDisFace + DGDisPose + DALBPTOP),
which could reflect the contributions of each facial descrip-
tor for the best discriminant directions. The optical eigen-
vector could be obtained by solving the minimization prob-
lem expressed by Eq. (1). The eigenvector with the max-
imum eigenvalue is corresponding to the weight for each
facial descriptor parameter. The scores for the same facial
descriptor were grouped by summing up the values of all the
parameters, and the left side and right side facial descrip-
tors were grouped into one score. The feature contribution
scores for temporal geometric feature were shown in Fig. 4.

The figure depicted that some of the facial descrip-
tors of DGDisFace were negatively correlated with pain, such
as the eyebrow-to-eye distance (debl/r), upper-to-lower eye-
lid distance (del/r), eyebrow-to-mouth distance (dmbl/r), and
eye-to-mouth distance (deml/r); the other facial descriptors
were positively correlated with pain, such as nose-to-mouth
distance (dnm), mouth width (dmw) and mouth height (dmh).
The most influenced geometric facial descriptors were eye
blinking related parameter del/r and mouth stretch related
parameter dmh and dmw. This is consistent with the observa-
tion that the infants are awake during the pain experience,
and the eye squeeze and mouth move significantly as they

Fig. 4 Contribution scores of temporal geometric facial descriptors.

Fig. 5 Visualization of landmark patches importance for DALBPTOP.

usually cry when feeling pain. Other eye and mouth (debl/r,
dmbl/r, and deml/r) related distances reflect similar informa-
tion instead of providing a new clue for pain measurement,
therefore low contribution scores are assigned for these fa-
cial descriptors.

The head pose descriptors provided supplemental in-
formation for pain assessment. Figure 4 demonstrated
that distances between eyebrow/mouth and face boundary
played an important role in pain classification, since head
movement was very commonly happened during pain ex-
perience. The recognition accuracies obtained by using
DGDisFace or DGDisPose were 87.1% and 85.6% respectively,
which evidenced the high contribution of head pose descrip-
tors.

The importance of landmark patches for the facial de-
scriptors DALBPTOP was visualized in Fig. 5. The contri-
bution scores of patches were illustrated by different col-
ors. The warmer the color is, the more important the land-
mark patch is. The illustration depicted that the landmark
patches around eyes and mouth were more important than
the patches around eyebrow and face boundary. It is consis-
tent with the description of NFCS. The top three important
facial descriptors of DALBPTOP came from patch 21 (eye lid),
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31 (mouth lip), and 23 (eye lid). It indicated that the texture
changes of eye area and mouth area could more effectively
reflect the pain facial reaction.

3.4 Comparison with State-of-Art

We compared our proposed dynamic facial representation to
state-of-art researches for infants’ pain assessment based on
video processing. Our dataset is the same as that exploited
in [23] and [22] with increasing number of infants. The pre-
vious studies utilized optical flow method to spot and rec-
ognize pain facial expression for infants. In [23], an over-
all accuracy of 96% was obtained for 9 acute pain infants
videos with KNN, and the ten-folds cross validation was uti-
lized for evaluation. Comparing to the overall accuracy of
95.6% of our proposed method, the evaluation performance
is not significantly improved due to the following two as-
pects: firstly, the leave-one-subject-out cross-evaluation is
more challenging as it is subject independent, and it can
lead to lower classification accuracy [33]; secondly, there
are more infants videos adopted in our experience, which
increase the subject variation and lead to a capability degen-
eration of the automatic pain recognition system.

The study in [22] is the latest research for infants’ pain
assessment, on the basis of the same infants video dataset,
the recognition accuracy of our scheme was promoted more
than 7% comparing to the evaluation accuracy of 88% (fa-
cial expression only) reported in [22], which also utilized the
leave-one-subject-out cross-evaluation. Therefore, the su-
periority of the multi-feature fusion for infants’ pain assess-
ment strategy is obvious, since the temporal appearance fea-
tures and temporal geometric features provide various clues
for depicting infants pain facial expression characteristics,
and the fusion scheme could promote the evaluation accu-
racy significantly.

4. Conclusion

In this paper, we presented a new set of dynamic pain fa-
cial representations by jointly utilizing temporal geometric
facial features and temporal appearance facial features. The
facial geometric configuration descriptors and head pose de-
scriptors were yielded from the time series of frame-level
features. The temporal texture descriptor LBP-TOP was uti-
lized to describe the facial changes over time. Both feature
fusion and decision fusion schemes were applied for infants’
pain assessment. Experiments were carried out on the video
acquired from NICU infants, and the best accuracy of the
automatic pain assessment system achieved 95.6% by merg-
ing all three types of features. Moreover, we found that al-
though decision fusion did not perform better than that of
feature fusion, the FNR of decision fusion (6.2%) was much
lower than that of feature fusion (25%). Due to different re-
quirements in clinic application, it is not suitable to conclude
which fusion scheme is the best. If the sensitivity of pain
assessment is more important for infants’ pain monitoring,
decision fusion is more suitable for clinic application, even

if there may be a degree of misclassification for non-pain
state, and vice versa. Besides, although our dataset size is
larger than the state-of-art researches, it is still a limited in-
fants pain dataset. Next step more feature selection methods
will be employed to further identify the influential features.
Moreover, we will keep recording the NICU infants facial
reaction videos, and apply the multi-feature fusion system
to a larger infants pain dataset.
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