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PAPER

Detecting Malware-Infected Devices Using the HTTP Header
Patterns∗

Sho MIZUNO†a), Nonmember, Mitsuhiro HATADA†,††b), Tatsuya MORI†c), and Shigeki GOTO†d), Members

SUMMARY Damage caused by malware has become a serious prob-
lem. The recent rise in the spread of evasive malware has made it difficult
to detect it at the pre-infection timing. Malware detection at post-infection
timing is a promising approach that fulfills this gap. Given this back-
ground, this work aims to identify likely malware-infected devices from the
measurement of Internet traffic. The advantage of the traffic-measurement-
based approach is that it enables us to monitor a large number of endhosts.
If we find an endhost as a source of malicious traffic, the endhost is likely
a malware-infected device. Since the majority of malware today makes use
of the web as a means to communicate with the C&C servers that reside
on the external network, we leverage information recorded in the HTTP
headers to discriminate between malicious and benign traffic. To make
our approach scalable and robust, we develop the automatic template gen-
eration scheme that drastically reduces the amount of information to be
kept while achieving the high accuracy of classification; since it does not
make use of any domain knowledge, the approach should be robust against
changes of malware. We apply several classifiers, which include machine
learning algorithms, to the extracted templates and classify traffic into two
categories: malicious and benign. Our extensive experiments demonstrate
that our approach discriminates between malicious and benign traffic with
up to 97.1% precision while maintaining the false positive rate below 1.0%.
key words: botnet detection, malicious traffic, HTTP header, automatic
template generation

1. Introduction

As the targets of malware have been diversified, any operat-
ing systems and devices can become infected by new mal-
ware. For instance, while the common malware has been
aimed at Windows OSes, Ref. [2] reported that the num-
ber of malware samples for Mac OS X has increased to
approximately about 460,000 in 2016. ESET predicts that
Internet-of-Things (IoT) devices will become increasingly
attacked in 2016 [3]. Nearly 25,000 security cameras in-
stalled in bots throughout 105 countries have been subjected
to springboard attack [4].
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These observations indicate that today, any devices
could become infected with new malware, which cannot be
detected with the existing solutions; i.e., the malware de-
tection at the pre-infection timing has become infeasible to
some extent. Also, the recent rise in the spread of evasive
malware has also made it difficult to detect malware at the
pre-infection timing [5]. Therefore, malware detection at
post-infection timing is a promising approach that can fulfill
this gap.

The goal of this study is detecting malware-infected
devices as early as possible. Since the malware-infected
devices start to communicate with external Command and
Control (C&C) servers, we make a hypothesis that Internet
traffic monitoring is a useful approach to finding malware-
infected devices. The advantage of the traffic-measurement-
based approach is that it enables us to monitor a large num-
ber of endhosts. If we find an endhost as a source of ma-
licious/suspicious traffic, the endhost is likely a malware-
infected device.

To validate our hypothesis, we build the system called
BotDetector, which takes the following approaches. First,
we make use of the HTTP packets originated from devices
because the majority of malware today uses HTTP proto-
col as a means to communicate with the C&C servers that
reside in the external network [6]. Second, we leverage ma-
chine learning techniques to classify traffic into two cate-
gories: malicious and benign. One key technical challenge
is to make our approach scalable. Since the values that
can be recorded in the HTTP headers have a high degree
of freedom, they could include roughly 10K of distinct fea-
ture vectors which we confirmed. To reduce the amount of
information to be kept while achieving the high accuracy of
classification, we develop the automatic template genera-
tion scheme that aggregates similar features with the statis-
tical technique. We note that this automation enables us to
make our system robust to change in the malware traffic be-
cause it does not rely on the domain knowledge in selecting
useful features. Through the extensive experiments using a
large-scale traffic dataset, we demonstrate the BotDetector
can detect malware-infected devices accurately in a scalable
manner.

The remainder of this paper is organized as follows.
Section 2 describes the overview of the BotDetector sys-
tem. Section 3 presents the dataset we used to evaluate the
performance of the BotDetector. Section 4 shows the re-
sults. In Sect. 5, we discuss limitations and practical aspects
of our approach. Section 6 summarizes the related works,
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Fig. 1 Overview of BotDetector.

Fig. 2 The process of extracting HTTP header fields.

and Sect. 7 concludes our work.

2. BotDetector Framework

In this section, we present the high-level overview of our
system – BotDetector. Figure 1 shows the summary of
the BotDetector system. The goal of the system is to find
malware-infected devices by discriminating benign from
malicious traffic. The system composes of the three steps:
Step1: extraction of HTTP header fields (Sect. 2.1), Step2:
automatic template generation (Sect. 2.2), and Step3: traffic
classification (Sect. 2.3). In the following, we describe the
details of each step.

2.1 Step1: Extraction of HTTP Header Fields

As we mentioned earlier, the mainstream malware uses the
HTTP protocol when it is installed or communicates with
the C&C server [6]. The BotDetector exploits the informa-
tion listed in the HTTP headers. Figure 2 illustrates the pro-
cess of extracting HTTP header fields. We first extract the
keys and corresponding values from the HTTP header fields.
While the URI information is not strictly the HTTP header
fields, we also extract the URI information, which composes
of path and query information. For the URI information, we
use “URI” as their key.

To make our analysis fair, we intentionally eliminate

several values that could depend on the data collection envi-
ronment, e.g., date or language of the devices. After several
trials, we found that these values are not useful. So, we de-
cided to remove these values from our analysis. Namely, we
remove the following keys/values.

• Accept-Language
• Date
• Expires
• If-Modified-Since
• Last-Modified

We also disposed of HTTP header fields appearing less
than ten times in all training data, and fields which are added
when the data packets pass through middleboxes such as
proxy servers. We empirically determine the threshold. If
we did not use the threshold, the cost of analysis increases
as we need to use all the observed fields. On the other hand,
if we increase the threshold, the accuracy will be sacrificed
as the information we can use for learning also decreases,
We tried to make a balance between the cost and accuracy
and found our threshold hit the good trade-off. Rarefields
are non-versatile, and fields passing through middleboxes
depend on the particular environment, so their inclusion is
not useful.

2.2 Step2: Automatic Template Generation

The number of distinct HTTP header fields extracted from
our dataset could be roughly 10K. Moreover, the presence of
many unnecessary features risks overfitting in the machine
learning. Therefore, we focus on the variability of words
constituting the HTTP header fields and aim to compress
their information. We make use of the template generation
technique [7] based on the DBSCAN algorithm [8].

2.2.1 Scoring

We first present the scoring method. Using all the HTTP
header fields in training data, for each field, we assign scores
to the words within the field. Note that each field is di-
vided into the words using the following separator: space,
“/”, “=” and “,”. We then calculate the conditional probabil-
ity of each word as the score. For a word, w, in a given field,
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Table 1 Example of creating HTTP templates from HTTP header fields.

original HTTP header fields automatically generated templates

Accept: text json Accept: text *
Accept-Encoding: gzip deflate Accept-Encoding: gzip *
Connection: Keep-Alive Connection: *
User-Agent: Mozilla 4.0 (compatible; MSIE 6.0; Windows NT 5.1) User-Agent: Mozilla * (compatible; MSIE * Windows NT *

Fig. 3 The process of creating templates. There are three User-Agent
fields, δ = 10−1, and β = 0.5 in this case. The templates are created from
each field, and duplications are removed.

F, the score of the word, S (w; F), is given by the following
conditional probability:

S (w; F) = P(w | pos(w, F), len(F))

=
n(w, pos(w, F), len(F))

n(pos(w, F), len(F))

where pos(w, F) is the position of the word in the given field,
F, and len(F) is the number of words in the field, F, respec-
tively. If F = {foo, bar, baz, qux} and w = bar, pos(w, F) = 2
and len(F) = 4. n(X) is the number of occurrences of the
variate X over the entire fields.

2.2.2 DBSCAN

DBSCAN [8] is one of the clustering algorithms that do not
require a predefined number of clusters and its algorithm ex-
tracts clusters with any shape. The thresholds for the min-
imum distance and the minimum number of elements in a
cluster are denoted ε and m, respectively. Given a certain
data, D, and two elements p and q, we define a set Nε(p) as
follows

Nε(p) = {q ∈ D | d(p, q) ≤ ε},
where d(x, y) is the Euclidian distance between x and y.
Nε(p) is a set of points that are within the distance of ε from
a given point p. If p and q satisfy the following conditions,
they are grouped into the same cluster.

p ∈ Nε(q),

|Nε(q)| ≥ m.

2.2.3 Clustering

Finally, we describe the algorithm that combines the scor-
ing method and DBSCAN. Table 1 and Fig. 3 present the

overview of the automatic template generation. We intro-
duce two thresholds δ (δ ≥ 0) and β (0 < β < 1). The
thresholds will be empirically determined later. Note that δ
is the threshold that determines the minimum distance be-
tween clusters. The clustering process composes of the fol-
lowing steps.

Sort each word:
We sort each word in descending order of its score.

Cluster generation:
Using the DBSCAN algorithm, we cluster the words.
When the score of the next word differs from the mean
score of a cluster by less than δ, we add the next word
to the current cluster. Otherwise, we assign the next
word to a new current cluster. We repeat the process
until all words are assigned to either cluster.

Output template:
Using the cluster results, we obtain a template by
choosing the top clusters so that the number of words is
greater than β × len(F). For the rest of clusters that did
not exceed the thresholds, we replace the words with
the wildcard character ‘*’ as shown in Fig. 3.

2.3 Step3: Traffic Classification

In this step, we detect malicious traffic using the best clas-
sifier. We test several classifiers and evaluate their perfor-
mance. As features, we use the HTTP templates created
in the last step. In this work, we test the following clas-
sifiers: Simple Template Matching (STM), Support Vec-
tor Machine (SVM), Random Forest (RF), and Deep Neu-
ral Network (DNN). These algorithms are selected because
it is known that these models give a good performance.
Of the classifiers, STM is not a machine learning algo-
rithm. However, we added it as a baseline for the perfor-
mance evaluation. STM is a quite simple algorithm that if
templates used in only malicious traffic of training data is
used in packets of the test data even once, the packets are
judged to be malicious. To implement SVM, RF, and DNN,
we use libsvm [9], scikit-learn [10], and TensorFlow [11],
respectively.

Using the training set, we determined the most suitable
models of the SVM algorithm and RF algorithm using the
grid search approach, respectively. For each parameter, we
applied the 5-fold cross-validation tests and computed the
mean accuracy. We then picked up the best parameter that
maximizes the mean accuracy. The DNN model consists of
four layers: an input layer, two hidden layers, and an out-
put layer. We use Adaptive Moment Estimation to optimize
the classifier. The error and activated functions are based on
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Table 2 Collected malware samples overview.

# of collected samples Malware type (Kaspersky)

Training data 24,260 not-a-virus:AdWare (39%), not-a-virus:HEUR:AdWare (29%), Undetectable (8.3%),
not-a-virus:Downloader (7.9%), Trojan (5.2%), Trojan-Downloader (3.6%), HEUR:Trojan (2.3%),

not-a-virus:WebToolbar (1.3%), not-a-virus:HEUR:Downloader (1.0%), Others (2.4%)

Test data 15,000 Undetectable (24%), not-a-virus:HEUR:WebToolbar (15%), HEUR:Trojan (12%),
Trojan (8.0%), not-a-virus:AdWare (4.7%), P2P-Worm (4.0%), not-a-virus:Downloader (3.7%),

Worm (3.0%), Trojan-Ransom (3.0%), Others (23%)

Table 3 Only malware samples using HTTP traffic overview.

# of samples using HTTP Malware type (Kaspersky)

Training data 18,164 not-a-virus:HEUR:AdWare (37%), not-a-virus:AdWare (33%), Undetectable (10%),
not-a-virus:Downloader (9.5%), Trojan-Downloader (3.9%), HEUR:Trojan (2.3%),

not-a-virus:WebToolbar (1.7%), Others (2.6%)

Test data 3,593 not-a-virus:HEUR:WebToolbar (34%), Undetectable (22%), HEUR:Trojan (11%),
not-a-virus:AdWare (5.4%), Trojan-Ransom (4.0%), not-a-virus:HEUR:AdWare (3.6%),

Trojan (3.1%), Others (17%)

cross-entropy and Rectified Linear Unit, respectively. We
set the learning rate as 0.0001, the batch size as 200, and the
number of training sessions as 9,000. The numbers of nodes
in each layer (from the input layer) were X, 500, 50, and 2,
respectively where we change the parameter X as the num-
ber of nodes in the input layer depends on the number of
templates. Further details will be given in Sect. 4. To evade
overfitting, we used the Dropout [12] technique, which in-
validates the nodes that are randomly set at a specified ratio
to mimic ensemble learning. Here, we configure the ratio
to 50%, which was previously reported as the most efficient
ratio [13].

3. Dataset

We prepared two data sets for the detection model; a train-
ing data (Table 4) and a test data (Table 5). Section 3.1
and Sect. 3.2 explain the training data and test data in detail.
We note that to demonstrate the robustness of the approach,
the training and test data are collected independently. We
also note that malware samples were collected from differ-
ent sources and there were no duplications among the train-
ing set and test set. Table 2 summarizes the overview of
the malware samples we collected. For the types of mal-
ware samples, we adopted the notation used by Kaspersky,
which established the highest detection rate. Of the mal-
ware samples shown in Table 2, we picked up the samples
that generated HTTP communication. Table 3 summarizes
the results. As shown in the table, the breakdown of mal-
ware samples used for training and test are quite different
from those used for training. This difference reflects the fact
that we collected samples using different sources as we will
explain later. We note that as we shall see later, our ap-
proach works well despite the differences of malware break-
down. We also note that for test set, the fraction of malware
samples that use HTTP communication is smaller than that
for training set. We conjecture that the difference comes
from the fact that we used Cuckoo Sandbox for test data. As
Cuckoo Sandbox is an open source software, it is possible

Table 4 Details of training data.

# of samples # of HTTP requests collection periods

malicious 18,164 117,407 Dec 2014 - Sep 2015
benign - 130,619 Aug 2016

Table 5 Details of test data.

# of samples # of HTTP requests collection periods

malicious 3,593 77,110 Jun 2016
benign - 79,751 Sep 2016

that some malware samples we collected for test success-
fully employed anti-sandbox techniques to evade from the
dynamic analysis.

3.1 Training Data

3.1.1 malicious traffic

The training data for malicious traffic detection were com-
piled from 24,260 malware samples and their HTTP traf-
fic data. Each malware sample was detected as mali-
cious by using two antivirus softwares, TrendMicro [14] and
Kaspersky [15]. No overlap exists among the samples.
These malware samples were collected using the server-type
honeypot system, which is proposed in [16] and the client-
type honeypot system, which is proposed in [17], respec-
tively. The malware samples were collected from December
2014 to September 2015. All the collected malware samples
were analyzed using a commercial sandbox system that can
perform dynamic malware analysis with the controlled In-
ternet access. The system starts a guest Windows machine
and executes each malware sample within a maximum of 5
minutes. In order to avoid any damages to our system and
other hosts, these honeypots do not allow executing malware
and reverting to initial state of a virtual machine. Several ac-
cess controls are applied to the outgoing traffic that is often
used to send spam e-mail and infect other host, e.g., SMTP
and Net-BIOS, for possible efforts not to cause any damage
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to other hosts. From the monitored packet data, we extracted
the sequence of HTTP headers.

3.1.2 benign traffic

As the training data of benign traffic, we used the data col-
lected at a campus network, which has the network prefix
of /16. As the network is used by more than 30K of peo-
ple regularly, we believe that the data represents an example
of benign traffic. These data, of type pcap, were collected
at the gateway in August 2016 using tcpdump. The num-
ber of concurrent unique IP addresses observed at the time
of measurement was 1,110. We eliminated packets access-
ing the URLs that are registered to publicly available URL
blocklists such as MalwareDomainBlocklist [18]. From the
remaining packet data, we extracted the sequence of HTTP
headers. Although not all of the devices connected to the
campus network are guaranteed malware-free, the propor-
tion of malicious traffic is expected to be extremely small so
that we can assume these data as benign traffic.

3.2 Test Data

3.2.1 malicious traffic

The test data of malicious traffic was compiled from 15,000
malware samples and their traffic data. To avoid bias among
samples, we collected 5,000 samples each from Malwr [19],
MalShare [20], and VirusShare [21] in June 2016. We note
that these malware data were randomly sampled from each
site. All the sampled malware were registered to each site
within one year from the date of our data collection; i.e.,
the sampled malware samples were fairly new at the time of
our experiments. We also note that all the sampled malware
were detected as malware by at least one anti-virus checker
included in VirusTotal [22]. We note that there were no over-
laps between the training and test data. The traffic data of
the malware samples were collected over the same period as
the malware collection using Cuckoo Sandbox [23] that is
open source dynamic malware analysis system. The sand-
box system is also connected to the Internet and analyzes on
Windows machine to execute malware samples for 90 sec-
onds. We extracted the sequence of HTTP headers from the
monitored packet data.

3.2.2 benign traffic

The benign traffic as test data were collected at the same
vantage point in September 2016. Again, by using publicly
available URL blocklists, We eliminated all the packets that
are likely associated with malicious activities, and extracted
the sequence of HTTP headers from the remaining packet
data.

4. Results

In this section, we first present how we determined the

Fig. 4 The change in the number of templates given the different thresh-
olds.

Fig. 5 The ratio of templates inserted wildcard characters.

threshold used for the automatic template generation. We
then show the primary results, the accuracy of the classifi-
cation models. Finally, we demonstrate the effectiveness of
the automatic template generation.

4.1 Automatic Template Generation

We first present how we set the threshold β used in the au-
tomatic template generation. Figure 4 shows how the num-
ber of templates depends on the threshold, β. δ = 100 cor-
responds to the case where no templates are created. The
smaller the δ and β, the effect of reducing HTTP header
fields is great. Also, according to Fig. 5, it is shown that the
ratio of the templates with wildcard characters also increase
with a similar tendency, and these occupy a maximum of
about 35%, which shows that automatic template generation
is very effective. In either case, the change in the number of
templates is especially remarkable at β = 0.5.

Figure 6 shows the CDFs of len(F). As shown in the
graph, roughly 50% of the fields had len(F) = 2. This result
indicates that templates of these fields are created when β is
less than 0.5. Given these observations, we set β = 0.5 as
the most suitable threshold.
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4.2 Classification Results

We compared the result of STM, SVM, RF, and DNN for
test data. The ACC (Accuracy)s, FPR (False Positive Rate)s,
FNR (False Negative Rate)s, and prediction times at various
values of the threshold δ are listed in Table 6. Each result
is averaged from five results, and prediction times are per-
formed with the Ubuntu 13.10 (CPU: Intel Xeon CPU E5-
2620 v2 @ 2.10 GHz, Memory: 64 GB). The ACC, FPR,
and FNR are respectively calculated as follows:

ACC =
T P + T N

T P + T N + FP + FN

FPR =
FP

FP + T N

FNR =
FN

FN + T P

TP and FP denote true positive and false positive,

Fig. 6 CDFs of the number of words in the fields (len(F)). The left panel
is the full-size view, and the right panel is the enlarged view.

Table 6 Performance of each model. ACC, FPR, and FNR stand for accuracy, false positive rate, and
false negative rate, respectively.

δ # of features model ACC (mean/std) FPR (mean/std) FNR (mean/std) prediction time (mean/std) [s]

100 2,405 STM 0.856/0.000 0.006/0.000 0.361/0.000 0.234/0.005

100 8,155 SVM 0.923/0.000 0.004/0.000 0.152/0.000 310.7/12.67

100 8,155 RF 0.772/0.006 0.004/0.000 0.460/0.012 120.7/2.853

100 8,155 DNN 0.930/0.002 0.005/0.001 0.137/0.006 196.0/0.215

10−1 616 STM 0.842/0.000 0.006/0.000 0.314/0.000 0.210/0.013

10−1 3,662 SVM 0.962/0.000 0.007/0.000 0.070/0.000 134.4/3.591

10−1 3,662 RF 0.824/0.095 0.007/0.000 0.350/0.193 47.54/1.527

10−1 3,662 DNN 0.971/0.000 0.007/0.000 0.052/0.000 88.38/0.182

10−2 413 STM 0.605/0.000 0.006/0.000 0.797/0.000 0.208/0.007

10−2 2,745 SVM 0.960/0.000 0.008/0.000 0.074/0.000 108.5/3.192

10−2 2,745 RF 0.706/0.013 0.008/0.002 0.589/0.026 39.12/1.589

10−2 2,745 DNN 0.876/0.080 0.011/0.003 0.240/0.165 65.12/0.093

10−3 366 STM 0.605/0.000 0.009/0.000 0.794/0.000 0.210/0.000

10−3 2,382 SVM 0.959/0.000 0.008/0.000 0.074/0.000 99.26/2.470

10−3 2,382 RF 0.711/0.012 0.007/0.000 0.581/0.025 34.77/1.545

10−3 2,382 DNN 0.894/0.060 0.012/0.003 0.204/0.124 56.52/0.179

respectively. Similarly, TN and FN are true negative and
false negative, respectively. Setting δ is 10−1 increases the
ACC. The highest ACC 97.1% is achieved by DNN, closely
followed by SVM. Although the DNN and SVM yield al-
most the same ACC, the prediction time of SVM is approx-
imately 1.5 times that of DNN. As expected, the STM al-
gorithm gives the best prediction time. However, its ACC
is not high. RF also improves the prediction time at the ex-
pense of the ACC. From these results, we judged DNN to be
the best model.

4.3 Effectiveness of Automatic Template Generation

We study how the automatic template generation algorithm
affects our results. For all the templates extracted with
δ = 10−1 and β = 0.5, we calculated the mutual informa-
tion (MI), which is one of the metrics that can tell you the
contribution of a given feature to the classification. MI is
formulated as follows:

MI(X; Y) =
m∑

i=1

n∑

j=1

p(xi, y j) log2

p(xi, y j)

p(xi)p(y j)
,

where p(xi) refers to probability of xi in random variable
X = {x1, x2, . . . , xm}, p(y j) refers to probability of y j in ran-
dom variable Y = {y1, y2, . . . , yn}, and p(xi, y j) expresses the
simultaneous occurrence probability of xi and y j.

Table 7 shows the top-10 templates that had the largest
MI. As we see from the table, the templates with the wild-
card characters inserted had high MI. This result indicates
that automatic template generation was effective not only in
reducing the number of templates but in extracting useful
features that contributed to the classification.

Figure 7 shows the keys that had the highest numbers of
occurrences. The left panel shows the top-10 keys without
applying the template generation and the right panel shows
the top-10 keys after applying the template generation. We
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Table 7 The top-10 templates with the highest MI. We truncated the long templates.

HTTP templates MI

User-Agent: Mozilla 4.0 (compatible; MSIE * Windows NT 5.1; Trident 4.0; .NET4.0C; .NET4.0E; .NET CLR 2.0.50727; . . . 0.1523
User-Agent: Mozilla 4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident 4.0; .NET4.0C; .NET4.0E; .NET CLR 2.0.50727; . . . 0.1371
Cache-Control: * 0 0.1298
Cache-Control: max-stale 0 0.1177
Accept-Encoding: gzip deflate * 0.1067
Accept-Encoding: gzip deflate sdch 0.1055
Pragma: * 0.0995
Pragma: no-cache 0.0993
Connection: * 0.0843
Content-length: * 0.0786

Fig. 7 The effect of template generation. Top-10 keys in the features.
The left panel shows the result when β is set to 0.5 and δ is set to 1.0 (no
template created). The right panel shows the result when β is set to 0.5 and
δ is set to 0.1.

see that many of Host fields and Content-Length fields are
removed from the keys by applying the template genera-
tion algorithm. This observation demonstrates that the tem-
plate generation approach works reducing feature vectors.
We also see that the template generation does not remove
other fields such as Referer field, Cookie field, URI field
and User-Agent field. Referer field and Cookie field are the
fields when a client host accesses to a web server via a web
browser; it implies that their existence is important while
their values are less important. URI field and User-Agent
field are known to be useful features as previous studies
demonstrated [24]–[27]. Thus, the template generation al-
gorithm can reduce less meaningful features while keeping
important features.

4.4 Summary

Finally, we summarize our findings. The results shown in
the previous subsections indicate that our methodology is
robust and scalable. For instance, as shown in Table 7, we
can see that wildcard character represents the variations of
version information for “MSIE”. The result indicates that
the template can also express newer versions of “MSIE” that
may emerge in the future. Also, since our training data and
test data were collected from different vantage points, the
high accuracy of 97% indicates that our scheme is robust
against the data variations. We note that the processing time

required for the machine learning algorithms is short. For
instance, for DNN, which is the most accurate model, it took
88 seconds to process 156,861 HTTP requests, i.e., process-
ing rate is 1,783 requests/s, which is fast enough to cope
with Internet backbone traffic.

5. Discussion

In this section, we first discuss the results of each model
and causes of errors. We then discuss several limitations
of our approach. Finally, we discuss the deployment of the
BotDetector.

5.1 Results of Each Model

We review the results of each model shown in Table 6. By
generating templates, only the STM accuracy is gradually
decreasing. Templates that have successfully inserted wild-
card characters are more handy features, so it is reasonable
to suppose that the accuracy of this model which depends
on only malicious features decreases. We first notice that
RF did not result in the good accuracy for our dataset. Other
two Machine Learning (ML) algorithms established fairly
good accuracies. SVM is one of the most popular machine
learning algorithms. It showed the second highest accuracy
after DNN in this experiment. DNN achieved the highest
accuracy among the algorithms we used. The disadvantage
of DNN is the cost for training, which can be shortened by
using GPU.

5.2 Causes of Errors

Although the accuracy of our approach was high, the predic-
tion errors are not zero. Namely, for DNN, FPR and FNR
are 0.7% and 5.2% when β = 0.5 and δ = 10−1, respec-
tively. We found that many of false positives are associated
with the number of HTTP header fields in a packet. Figure 8
shows the CDFs of the number of HTTP header fields in
each packet. Malicious traffic tends to comprise of a small
number of fields. We can interpret the result that benign
traffic originated from a browser, which may utilize many
options; malicious traffic is originated from a program, but
not browsers. Due to this nature, if a benign packet con-
tains a small number of HTTP header fields, it could be
falsely detected as malicious. One way to fix this problem
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Fig. 8 The CDF of the number of HTTP header fields in HTTP request
packets.

is not to make our decision when we do not have enough
information. We also found that false negatives are asso-
ciated with the malware that likely communicates through
real web browsers. As we mentioned earlier, the majority
of benign web traffic is originated from web browsers. We
discuss this issue in the next subsection. We note that sim-
ply using the information about browser/non-browser is not
useful to distinguish between benign and malicious traffic.
That is, benign traffic includes not only browser traffic, but
also traffic generated by dedicated software such as online
storage sync tool. Likewise, malicious traffic includes not
only non-browser traffic, but also traffic generated by us-
ing a web browser or a software that uses HTTP User-agent
mimicking a real browser as shown in Table 7.

5.3 Limitations

BotDetector makes use of the HTTP header fields; hence,
the system cannot react when traffic is encrypted, i.e., when
communication is made with HTTPS. In addition, although
the HTTP protocol is one of the most popular protocols
used by malware, the current system cannot detect malware-
infected traffic based on other protocols. For instance, UDP-
based protocols may not be able to be captured with our
approach. We note that the scope of our work does not
cover certain types of malware samples such as those used
for spear-phishing email attack. As we have shown, our ap-
proach successfully detected malware samples uch as Ad-
ware, Trojan, Worm, Downloader, Ransomware, etc., which
all make use of HTTP as a means of communication. We
believe our approach works in a wide range as HTTP is
a common way of communication widely used for vari-
ous malware families. Another limitation of BotDetector
is that malware developers can change the HTTP headers to
evade detection; i.e., the traffic originated from malware can
mimic the traffic originated from a browser. Although the
case has not been major so far, such evasion could become
standard in the future, at which point, we need to change the
feature extraction and classification model. We also note
that our targets were limited to Windows malware. As the

analysis of HTTP headers is independent from the system
architecture, our approach should work for malware of other
platforms. Verification of our approach using malware sam-
ples of other platforms is left for future study.

Despite of these limitations, we believe that the funda-
mental idea behind this work – finding useful features au-
tomatically – remains beneficial to discover invariants that
could be used to detect malicious activities.

5.4 Deployment

Given the features of the BotDetector, we suggest that this
system is deployed as a part of security appliance sys-
tem, which provides a set of functionalities to protect users
from malicious traffic. The most suitable place to install
BotDetector is the backbone network link where many cus-
tomer traffic is aggregated. As we validate the high scalabil-
ity of our approach, it can handle a huge volume of incom-
ing/outgoing HTTP request packets. Another possible im-
plementation form is to install the BotDetector functionality
into web proxy servers where HTTP header information for
many end-users can be monitored. We leave the actual field
test for our future study.

6. Related Works

In this section, we review several studies that used HTTP in-
formation for detecting malware [24]–[30]. We also discuss
how our approach is different from these past studies.

Zhang et al. [24] made use of the User-Agent field as
the useful feature for detecting malware. They demon-
strated that regular expression could be used to character-
ize HTTP headers. They also confirmed that a fake User-
Agent could be identified together with the information ex-
tracted with the OS fingerprinting technique. Grill et al. [25]
also used the User-Agent field to detect malware communi-
cation. They found that User-Agent can be classified into
the five patterns: Legitimate users browser, Empty, Specific,
Spoofed, and Discrepant. According to their findings, some
malware uses User-Agent of the web browser utilized by the
actual owner of the device; in such a case, it’s hard to de-
tect malware communication simply from the User-Agent
information. Nelms et al. [26] proposed a system called
ExecScent, which is the closest work to ours. It aims to
detect bot using the entire HTTP header fields. They man-
ually created templates using the domain knowledge, i.e.,
URL path, query, User-Agent, etc. They characterize the
templates with a regular expression. We note that our ap-
proach automated the template generation scheme; thus, we
do not need to employ manual inspection to create the useful
templates.

Chiba et al. [27] developed a system called BotProfiler.
BotProfiler is a system that aimed to improve the perfor-
mance of ExecScent by using URL path, URL query, and
User-Agent information. Like the ExecScent system, the
BotProfiler system also requires building manually crafted
templates. Xie et al. [28] proposed the system called
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AutoRE which generates regular expression signatures from
URL structure to detect botnet-based spam emails and bot-
net membership. Zallas et al. [29] also proposed the idea of
generating templates, which are the name-value pairs of the
HTTP headers. The generated templates can be used to de-
tect HTTP-based malware. While these prior studies gener-
ated templates using several domain-specific heuristics, our
method makes use of the statistical approach, which enables
us to construct the templates without requiring any domain-
knowledge in advance. Thus, our approach is more generic
and tolerant to the changes of HTTP header patterns.

Perdisci et al. [30] proposed a system that performs the
clustering of network-level malware behavior. Using the
clusters, they generated signatures that can be used to detect
malware. As their approach makes use of both the HTTP
request and response packets, it cannot handle a case where
a C2 server has changed its IP address; i.e., a request packet
originated from a client will not reach to the server and no
response packets will be observed. Such cases are common
when malware samples are executed. In contrast, our ap-
proach works by just using HTTP request packets; thus, it
can handle the case where a client does not receive a re-
sponse packet from a server-side. We also note that our
approach establishes high accuracy despite the fact that we
only used the request packets.

While all these past studies heavily rely on the domain
knowledge when they extract useful features to detect mal-
ware, our approach aimed to automate the feature extraction
process by making use of the automatic template generation
algorithm. We also note that DNN enables us to perform
the feature learning; i.e., it automatically expresses useful
features with the neural network. We believe that our ap-
proach has an advantage over the strategies used in the past
studies because ours is robust to the change in the features
of malware communication.

7. Conclusion

We proposed a system called BotDetector for detecting
malicious traffic, thereby searching for malware-infected
devices. The key ideas of our research were to create
“templates” automatically for gathering information of each
HTTP header field and using machine learning technique
for detection. As a result of the extensive experiments us-
ing large-scale datasets, we demonstrated that BotDetector
successfully detected malicious traffic with up to 97.1% pre-
cision and a low false detection rate below 1.0%. One note-
worthy technical contribution of this work is that introduc-
tion of the automatic template generation algorithm, which
contributes not only to reduce the amount of information to
be kept but also to extract useful features. We believe that
the key ideas and approaches used in this paper are useful
for other studies that attempt to classify malicious activities
given a large number of features.
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