
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018
659

PAPER

Efficient Parallel Join Processing Exploiting SIMD in Multi-Thread
Environments∗

Gilseok HONG†a), Seonghyeon KANG†b), Chang soo KIM††c), Nonmembers, and Jun-Ki MIN†d), Member

SUMMARY In this paper, we study parallel join processing to improve
the performance of the merge phase of sort-merge join by integrating all
parallelism provided by mainstream CPUs. Modern CPUs support SIMD
instruction sets with wider SIMD registers which allows to process multi-
ple data items per each instruction. Thus, we devise an efficient parallel
join algorithm, called Parallel Merge Join with SIMD instructions (PMJS).
In our proposed algorithm, we utilize data parallelism by exploiting SIMD
instructions. And we also accelerate the performance by avoiding the us-
age of conditional branch instructions. Furthermore, to take advantage of
the multiple cores, our proposed algorithm is threaded in multi-thread en-
vironments. In our multi-thread algorithm, to distribute workload evenly to
each thread, we devise an efficient workload balancing algorithm based on
the kernel density estimator which allows to estimate the workload of each
thread accurately.
key words: sort-merge join, SIMD, kernel density estimator, multi-thread

1. Introduction

For the past decades, the technology of microprocessors
has been progressed tremendously. Of particular, the
single-instruction-multiple-data (SIMD) technology was in-
troduced [7]. On this technology, by using comprehensive
SIMD instruction sets, the computational performance of a
system can be improved since SIMD instructions with wider
CPU registers, called SIMD registers, process more data
items per an instruction in parallel.

The advent of such microprocessor technologies is
making a profound impact on software development. To-
day’s microprocessors provide three sources of parallelism:
thread parallelism, instruction level parallelism and data
parallelism [22]. Thread parallelism is achieved by execut-
ing multiple threads on CPUs. The pipeline architecture [16]
provides instruction level parallelism in which an instruc-
tion is divided into several stages and multiple instructions
with different stages each other are executed simultaneously.
Data parallelism is achieved by adapting SIMD instructions
to the basic operations of a system. Note that, for utiliz-

Manuscript received September 21, 2017.
Manuscript publicized December 14, 2017.
†The authors are with Korea Univ. of Tech. & Edu., Korea.
††The author is with ETRI, Korea.
∗This work was supported by Institute for Information & com-

munications Technology Promotion (IITP) grant funded by the
Korea goverment (MSIT) (No. R0113-15-005, Development of an
Unified Data Engineering Technology for Large-scale Transaction
Processing and Real-time Complex Analytics).

a) E-mail: remocon33@koreatech.ac.kr
b) E-mail: overs2002@koreatech.ac.kr
c) E-mail: cskim7@etri.re.kr
d) E-mail: jkmin@koreatech.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2017EDP7300

ing all parallelism to achieve the optimal performance, the
traditional algorithms should be tailored to the processing
devices. That is a non-trivial and challenging task.

In this work, we study parallel join processing to im-
prove the performance of a join operation by integrating
all parallelism. Modern database queries and data mining
applications are very data-intensive and thus demand high
computing power due to the rapid growth of data volume.
Among diverse operations in database systems such as se-
lection, projection and aggregation, join is an expensive and
key operation that facilitates the combination of two rela-
tions based on a pair of join attributes. Thus, an efficient
implementation of a join operation will improve the per-
formance of database systems and its diverse applications.
In [15], the authors showed that sort-merge join benefits
greatly by exploiting the SIMD technology and its perfor-
mance will continue to improve with the trend of wider
SIMD registers. We thus devise an efficient parallel join
algorithm, called Parallel Merge Join with SIMD instruc-
tions (abbreviated by PMJS), based on the sort-merge join
algorithm.

The sort-merge join algorithm consists of sort phase
and merge phase. In the sort phase, the tuples of each re-
lation participated in a join operation are sorted according
to their join attribute. In the merge phase, every pair of tu-
ples, each of which is coming from each relation, satisfying
a join condition is generated as a join result. In this work, we
only focus on parallel processing of the merge phase of the
sort-merge join algorithm since, although there are several
effective sorting algorithms [10], [14], [23] by using SIMD
instructions, there is still room for the performance improve-
ments in the merge phase. The contributions of our work are
summarized as follows:

Integrating all parallelism: In our proposed algorithm,
we utilize data parallelism by exploiting SIMD instruc-
tions handling up to 256-bit sized SIMD registers. On the
pipeline architecture providing instruction level parallelism,
conditional branch instructions are problematic since, if the
branch prediction is wrong, the instruction pipeline should
be flushed and various bookkeepings are required to ensure
consistent operations [28]. Thus, this misprediction seri-
ously degrades the overall performance of the merge phase.
We thus accelerate the performance of the merge phase by
avoiding the usage of conditional branch instructions. Fur-
thermore, to take advantage of the multiple cores, our pro-
posed algorithm is threaded in multi-thread environments.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

660
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Effective Workload Balancing: Skewed workload distri-
bution can reduce parallelism in some naive approaches.
Thus, for the best performance, we devise the workload bal-
ancing algorithm to make the workloads of all threads to
be similar. Since our workload balancing problem is the
same as the multiprocessor scheduling problem [13] which
is known as NP-Hard, we devise an effective approximation
algorithm. In addition, we use the kernal density estima-
tor [26] to estimate the workload of each thread.

Extensive Performance Study: To demonstrate the effi-
ciency of our PMJS, we implemented PMJS, its variants and
scalar merge-join algorithm as well as conducted extensive
performance study. Our experimental results confirm that
PMJS is very efficient compared to the others.

2. Related Work

Over the past few decades, significant efforts have been
made to develop efficient join algorithms [8], [18], [19] since
join is an important but expensive operation in databases.
Among the diverse join algorithms, sort-merge join [4] and
hash join [6] are the representative algorithms for computing
equi-join for a pair of relations. For a long time, choosing
one of them has been a point of discussion in a database
field.

In early relational database systems, the sort-merge
join algorithm was dominantly used [20]. Later, the inven-
tion of the hash join algorithm changed the balance since
hash join outperforms sort-merge join in many situations.
With regards to the choice of a join algorithm, Graefe et
al. [12] compared sort-merge join and hash join and recom-
mended that both algorithms be included in a DBMS and
be chosen by a query optimizer based on the statistics of re-
lations. The hash join algorithm is a natural choice when
the size of two relations differ markedly. They also showed
that the skewed data distribution degrades the performance
of hash join.

Progression of microprocessor, memory and network
technologies as well as the rapid growth of data volume have
prompted researchers to debate the sort or hash question
again over the years [2], [21]. Schneider et al. [25] compared
the performances of both algorithms in distributed environ-
ments and concluded that the hash join algorithm is superior
unless memory was limited. Hash join was also the main
choice in most of the early parallel database systems [9].
In addition, as the capacity of main memory has increased
over the years, researchers have focused on main-memory
join operations [3], [5]. Recently, researchers have explored
new architectures to improve join performance. Gedik et
al. [11] proposed a join algorithm running on the Cell pro-
cessors. The above work tries to exploit the parallel nature
of these devices with associated high compute density and
bandwidth as well as shows significant performance benefits
over optimized CPU-based counterparts.

Current trend in general purpose CPUs is in the direc-
tion of increasing parallelism, both in terms of the number
of cores on a chip and the width of SIMD registers on each

core. In [15], parallel hash join and sort-merge join exploit-
ing both SIMD instructions and multiple threads were eval-
uated. They concluded that wider SIMD registers will soon
make sort-merge join a better choice. However, in [15], ef-
ficient sorting with SIMD instructions and multi-threading
are only considered in sort-merge join. In other words, ef-
ficient merge join and workload balancing techniques for
each thread are not introduced in [15].

To compute an intersection of two sorted sets, some
parallel algorithms utilizing SIMD instructions were pro-
posed in [17], [24]. The authors in [24] insist that the pro-
posed algorithms can be applied to a join operation. As a re-
sult of a join operation, each pair of tuples (or a pair of tuple
id) satisfying a join condition should be generated. How-
ever, since each value appeared in both sets is generated as
a result of intersection, the above algorithms cannot be used
directly for a join operation. Moreover, since the set type
does not allow duplications, we cannot use the above algo-
rithms for the general join operation in which join attribute
values of each relation could be duplicated.

The most related work of ours is P-MPSM [1] in which
the authors showed that sort-merge join is faster than hash
join in multi-core processors. In P-MPSM, to perform a
join of relations R and S, relation S is split into equi-sized
t chunks S 1, . . . , S t where t is the number of threads and
each chunk is sorted locally. For workload balancing, equi-
sized chunk of R is also distributed to each thread and each
thread builds a histogram from its assigned chunk. Then, by
merging all generated histograms into a single histogram,
the distribution of relation R can be identified. With re-
spect to the consolidated histogram, P-MPSM computes dis-
joint t ranges of join attribute such that every workload of
each thread becomes similar each other. According to the
computed join attribute ranges, P-MPSM partitions the re-
lation R into R1, . . . ,Rt as well as splits each chunk S i into
S i1, . . . , S it according to the same key ranges for workload
balancing. Subsequently, each partition Rj of R is broadcast
to every thread and each thread Ti performs the merge join
of Rj and S i j. Since every tuple in Rj is compared with that
of S i j rather than that of S i, the performance merge join can
be improved. However, in P-MPSM, to generate join results,
each thread has to receive all partitions of R and retrieve ev-
ery tuple in R. Furthermore, in the work of P-MPSM, data
parallelism and instruction level parallelism are not consid-
ered. In contrast, we integrate all parallelism as mentioned
in Introduction as well as each thread of our proposed al-
gorithms requires a pair of disjoint partitions from R and S,
respectively, to generate join results.

3. Preliminary

Our algorithm PMJS is based on the sort-merge join algo-
rithm and extensively uses SIMD instructions to achieve
data parallelism. Thus, in this section, we briefly explain
the sort-merge join algorithm and SIMD technology.

HONG et al.: EFFICIENT PARALLEL JOIN PROCESSING EXPLOITING SIMD IN MULTI-THREAD ENVIRONMENTS
661

Fig. 1 A scalar sort-merge join algorithm

3.1 Scalar Sort-Merge Join

The basic idea of the sort-merge join algorithm is sorting
the relations subjected to a join with respect to their join
attributes and then merging the sorted relations by scan-
ning them sequentially to generate qualified tuples. Figure 1
shows the pseudo-code of a scalar sort-merge join algorithm
which takes a pair of relations R and S where the join at-
tributes of R and S are a and b, respectively. The sort-merge
join consists of two phases: sort phase and merge phase.

In the sort phase, scalar sort-merge join sorts R and S
according to the join attributes R.a and S .b if they are not
sorted (lines 1–2). In the merge phase, by sequential scan-
ning the relation R and S (lines 3–15), every pair of tuples
having the same join attribute value is generated. To do so,
if the join attribute value of R’s i-th tuple is equal to that of
S ’s j-th tuple (line 5), the scalar sort-merge join algorithm
bookmarks j as j j (line 6) since there may exist the tuples
having the same join attribute value of the j-th tuple in the
rest of relation S . Then, the pair of R’s i-th tuple and S ’s
j j-th tuple are generated by increasing j j until the join con-
dition is satisfied (lines 7–10) and i is increased by one. If
the join attribute value of R’s i-th tuple is greater than that
of S ’s j-th tuple, we increase j by one (lines 12–13). Other-
wise, i is increased by one (line 14).

As shown in Fig. 1, the scalar sort-merge join algorithm
contains several conditional statements. Such conditional
statements lead to performance degradation resulting from
pipeline stall by misprediction. Thus, we propose an effi-
cient merge join algorithm by using SIMD instructions min-
imizing misprediction.

3.2 SIMD (Single Instruction Multiple Data)

Data parallelism is achieved by utilizing SIMD instructions
each of which operates multiple data items at the same
time. Most modern microprocessors provide SIMD instruc-
tion sets such as MMX, SSE 1/2/3/4.1/4.2, AVX 1/2/-512 in
Intel CPUs and 3D Now, Enhanced 3D Now in AMD CPUs.
By SIMD instructions, several data items are vectorized into

Fig. 2 A typical behavior of SIMD instructions

a SIMD register. The size of SIMD registers becomes larger
(e.g., 64 bits on MMX, 128 bits on SSE 1/2/3/4.1/4.2, 256
bits on AVX 1/2, and 512 bits on AVX-512 in Intel CPUs).
Thus, more data items can be handled simultaneously by
only one instruction. For instance, four 32-bit values can
be loaded on a 128-bit SIMD register whereas eight 32-bit
values can be loaded on a 256-bit SIMD register.

To process the input operands efficiently, SIMD in-
structions contains sufficient operations such as arithmetic
operations (e.g., add, sum), comparison operations (e.g.,
less, string comparison), logic operations (e.g., and, or,
shift), data movement (e.g., load, store) and miscellaneous
operations (e.g., shuffling, type conversion). We illustrate a
typical behavior of SIMD instructions in Fig. 2. Let us as-
sume that a SIMD register can keep four data values. Then,
a SIMD instruction takes two SIMD registers src1 and src2
as input, conducts element-wise operation OP in parallel
and writes the results into an output register dest.

A direct way to use SIMD instructions is to inline as-
sembly code. But, this way is tedious and error-prone. An-
other way is utilizing features of compilers which can par-
tially transform scalar instructions to SIMD instructions.
However, utilizing SIMD instructions fully is difficult for
a compiler. The other approach is using SIMD intrinsics
which allow us to use the syntax of C functions taking SIMD
registers as inputs. In general, although direct implementa-
tion with assembly code outperforms that with SIMD intrin-
sics, we utilize SIMD intrinsics due to its convenience.

4. PMJS

In this section, we present our proposed join algorithm
PMJS which utilizes SIMD instruction and multi-thread.
In our implementation, we use conditional branches mini-
mally to improve the performance of our algorithm. Fur-
thermore, to maximize the performance of our algorithm in
multi-thread environments, we devise the workload balanc-
ing technique which distributes the workload evenly to each
thread. To estimate the workload assigned to each thread,
we adopt the kernel density estimator [26].

4.1 Merge Join with SIMD

In our work, since we only focus on the merge phase in sort-
merge join, we assume that a pair of relations R and S sub-
ject to a join operation are sorted with respect to their join
attributes, respectively. In the scalar sort-merge join algo-
rithm presented in Sect. 3, the join attribute value of R’s i-th

662
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 3 The behavior of PMJS

tuple and that of S ’s j-th tuple are evaluated iteratively. On
the contrary, by utilizing SIMD instructions, we can eval-
uate multiple pairs of join attribute values to generate join
results in parallel.

Let R A and S B be the sorted lists of the join attribute
values of R and S , respectively, as well as R RID and S RID
be the lists of R’s record ids and S ’s record ids whose orders
are followed by R A and S B, respectively. We denote the
i-th entry of a list L as L[i]. Assume that a CPU provides
SIMD registers which can contain � data values as well as
the i-th entry of R A (i.e., R A[i]) and j-th entry of S B
(i.e., S B[j]) will be evaluated. To identify the same val-
ues for R A[i] among S B’s j-th to (j+ �−1)-th entries (i.e.,
S B[j..(j+�−1)]) simultaneously, we keep R A[i] in a SIMD
register r�simd by duplicating � times and S B[j..(j + � − 1)]
in another SIMD register ssimd. We next evaluate the value
pairs of SIMD registers r�simd and ssimd. To find the pairs of
the same values, we use a comparison SIMD instruction. If
the value pair of the p-th lane with 0 ≤ p ≤ � are the same,
the SIMD instruction sets 1 in the p-th bit in a register mask.
Otherwise, the p-th bit of mask is set to 0 by the SIMD in-
struction.

By using the register mask, now we can generate the
pairs of record ids in R RID and S RID as join results
whose corresponding tuples have the same join attribute
values. However, if we access R RID and S RID directly
to extract the record id pairs, we have to use conditional
branches. To minimize the usage of conditional branch, we
need a SIMD instruction that shuffles the data values in a
register using lane indexes from another register. Fortu-
nately, such a shuffle instruction is provided by all SIMD
instruction sets. Moreover, to use a shuffle instruction, we
need the permutation mask whose i-th value x indicates that
the (x + 1)-th value of a SIMD register moves to i-th lane
of another register. Similar to the work in [27], we build a
table shuffle lookup to get the permutation mask for each bit
sequence of mask. The table shuffle lookup consists of mul-
tiple entries each of which has four digits as a permutation
mask. To find the entry of shuffle lookup with respect to
the result of the comparison SIMD instruction (i.e., mask)
quickly, we use the value of the register mask as an index
of shuffle lookup. By regarding the bit sequence of mask
as an integer value k, we get shuffle lookup[k] as a permu-
tation mask. According to the obtained permutation mask,
we can extract the record ids from r ridsimd and s ridsimd

as join results without conditional branches and store them

in R Result and S Result, respectively. Figure 3 illustrates
the behavior of PMJS. Let us assume that � be 4 as well as
R A[i] be 2 and S B[j..(j + 3)] be 1, 2, 2, 5. Then, the re-
sult of the comparison SIMD instruction SIMD EQ is 0110.
We next get shuffle lookup[6 = 0110] (= [1, 2,−1,−1]) as
a permutation mask where −1 means do nothing. By utiliz-
ing the permutation mask, we store r ridi, r ridi in R Result
and s rid j+1, s rid j+2 in S Result which denote that (r ridi,
s rid j+1) and (r ridi, s rid j+2) are the join results.

After evaluating S B[j..(j+ �− 1)] with the SIMD reg-
ister ssimd, we check whether the last lanes of ssimd and r�simd
are the same. If it is true (i.e., S B[j+�−1] = R A[i]), there
may exist an entry in S B[(j + �)..(j + � · 2 − 1)] which is
equal to R A[i]. Thus, if both values of last lanes of ssimd

and r�simd are the same (i.e., the last bit of mask is 1), we let
m be 2 and load S B[(j+ � · (m− 1))..(j+ � ·m− 1)] to ssimd

and S RID[(j+ � · (m−1))..(j+ � ·m−1)] to s ridsimd. Then,
we conduct the above steps to generate the join results with
i-th tuple of R and (j + � · (m − 1))-th to (j + � · m − 1)-th
tuples of S . We repeat this by increasing m by 1 until the
last lanes of ssimd and r�simd are the same. When the last en-
tries of ssimd and r�simd are different (i.e., the last bit of mask
is 0), we check whether R A[i] is less than S B[j+ �− 1]. If
R A[i] < S B[j + � − 1], we increase i by 1. Otherwise, j is
increased by �. We repeat the above process until all entries
of R A or S B are evaluated.

We present the pseudo-code of our proposed algorithm
PMJS with intrinsic functions provided by Intel† in Fig. 4.
The procedure PMJS takes R A, S B, R RID, S RID as in-
puts where R A and S B are the sorted lists of join attributes
of the relations subject to a join operation as well as R RID
and S RID keep the record ids of the relations. As the re-
sults of PMJS, we generate R Result and S Result which
store the record ids of R RID and S RID, respectively. A
pair of record ids with the same location in R Result and
S Result represents a join result. Since we already present
the overview of PMJS, we now explain the behavior of
PMJS based on the Intel intrinsic functions presented in the
pseudo-code as shown in Fig. 4 briefly. Note that, since we
use AVX 2 instructions with 256-bit SIMD registers in the
pseudo-code of PMJS, eight 32-bit values can be loaded in
a 256-bit SIMD register (i.e., � is 8).

By scanning R A and S B, we find every pair of the
join attribute values in R A and S B as well as generate

†https://software.intel.com/sites/landingpage/IntrinsicsGuide/

HONG et al.: EFFICIENT PARALLEL JOIN PROCESSING EXPLOITING SIMD IN MULTI-THREAD ENVIRONMENTS
663

Fig. 4 The pseudo-code of PMJS

every pair of the record ids whose corresponding tuples
in relation R and S , respectively, have the same join at-
tribute value (lines 2–22). To load R A[i] and R RID[i]
to r�simd and r ridsimd by duplicating 8 times since � is
8, we use the SIMD intrinsic function mm256 set1 epi32
(lines 3–4). Since we have to find the entries of S B
from j having the same join attribute value with R A[i],
we first set j j to j (line 5). We next use the SIMD intrin-
sic function mm256 load si256 to load S B[j j..(j j + 7)]
and S RID[j j..(j j + 7)] into ssimd and s ridsimd, respec-
tively (lines 7–8). By using the SIMD intrinsic function
mm256 cmpeq epi32, we can evaluate whether each value

pair of the each lane of r�simd and ssimd is the same and gen-
erate a SIMD register res v in which the p-th 32-bit in-
teger value is −1 (or 0) if the pair of p-th lane of r�simd
and ssimd are the same (are different) (line 9). To gener-
ate a sequence of 8 bits mask, we use a type conversion
function mm256 castsi256 ps and a bit extraction function
mm256 movemask ps (lines 10–11). When the value of

mask is 0, there is no join result in S RID[j j..(j j+7)]. In this
case, we code a conditional branch (line 12) to skip the re-
maining steps in the do-while loop. Note that, although our
algorithm works correctly without this conditional branch,
we use the conditional branch for efficiency since we find
that the benefit of using the conditional branch to avoid in-
voking useless instructions is greater than the loss resulting
from pipeline stall by misprediction.

With the permutation mask in the shuffle lookup ta-
ble accessed with mask, we shuffle s ridsimd to locate the
join results in s ridsimd to the front of a SIMD register p r
by invoking mm256 shuffle epi8 (line 13). Then, we sim-
ply copy eight values in p r and r ridsimd, respectively, to
the main memory whose address starting from S Result +
pos and R Result + pos by executing mm256 storeu si256
(lines 14–15) where pos keeps the position of S Result
and R Result to be stored next. We next update pos

with increasing by the number of 1s in mask obtained by
mm popcnt u32 since the number of 1s in mask is the num-

ber of the join pairs of R RID[i] and S RID[j j..(j j + 7)]
(line 16). We next increase j j by 8 if R A[i] and S B[j j+7]
are the same since there may be the same values of R A[i]
in S B[(j j + 8)..(j j + 15)] and we set j j to |S B| otherwise
(line 17). If j j is equal to |S B|, we can evaluate the next
pairs (line 18). When R A[i] is greater than S B[j + 7], we
increase j by 8, otherwise we increase i by 1 (lines 19–21).

4.2 Exploiting Thread Parallelism

In this section, we present how to apply PMJS to multi-
thread environments in order to exploit thread level paral-
lelism. We refer to PMJS running in multi-thread environ-
ments as PMJS M whereas PMJS with a single thread as
PMJS S. One key issue of PMJS M is to achieve good load-
balancing since the execution time of PMJS M mainly de-
termined by the longest execution time of threads.

Without loss of generality, we assume that the domains
of join attributes of both relations R and S are the same
and there are t threads T1, T2, . . . , Tt. To evenly distribute
the workload to each thread, we first split the domain of a
join attribute [s, e] into k disjoint partitions p1 = [s1, e1],
p2 = [s2, e2], . . . , pk = [sk, ek] where, for each partition
pi, ei − si = (e − s)/k and, for every pair of partitions pi

and p j, ei ≤ s j with 1 ≤ i < j ≤ k. We next assign
partitions to each thread. Suppose that a set of partitions
Pi = {pi1 , pi2 , . . . , pi|Pi | } be assigned to the i-th thread Ti. Let
the workload of a thread Ti be J(Ti) and the number of tu-
ples of both relations R and S whose join attribute value is in
a partition p j be n(p j). Then, we have J(Ti) =

∑
p j∈Pi

n(p j)
since the merge phase of sort-merge join with a pair of rela-
tion R and S runs in O(|R| + |S |) on the average.

Our goal is that the longest workload of threads is min-
imize. This is equivalent to the well known multiprocessor
scheduling problem [13]. Since the multiprocessor schedul-
ing problem is NP-hard, we devise a greedy algorithm BF
(Best-Fit) whose time complexity is O(log t · k). In the al-
gorithm BF, the initial workload of each thread is zero and
we assign each partition iteratively to the thread with the
smallest workload. Due to its simplicity, we can efficiently
distribute the workload to each thread. The other advantage
of BF is that we do need to re-sort the join attribute values
(and record ids) assigned to each thread when we evaluate
partitions p j with increasing j one by one.

To utilize the algorithm BF in PMJS, the number of tu-
ples n(p) associated with each partition p is required. To
calculate n(p), we utilize the kernal density estimator [26]
since it effectively approximates an unknown data distribu-
tion. The kernel density estimator is a generalized form of
sampling, whose initial step is to produce a uniform ran-
dom sample. In kernel estimation, each point distributes its
weight in the space around it. A kernel function K(x) de-
scribes the form of this weight distribution, generally dis-
tributing most of the weight in the area near the point. Sum-
ming up all the kernel functions, we obtain a density func-

664
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 5 The behavior of PMJS M

tion for the dataset. Suppose that we samples a set of values
S from a relation R’s attribute. We can approximate the dis-
tribution of the attribute values using the distribution func-
tion f (x) as follows:

f (x) =
1
|S |
∑

xi∈S
K(x − xi) (1)

Then, the number of values within a range [si, ei] can be
calculated as

∫
[si,ei]

f (x). The selection of the kernel function
does not significantly affect the accuracy of the approxima-
tion [26]. Thus, we use the Gaussian kernel function since
it does not need to normalize the input range into [−1, 1]
which causes additional cost:

K(x) =
1
B

(1
2π

e−
1
2 (x

B)2)
(2)

where B is the bandwidth of the kernel function K(x).
According to scott’s rule [26], B is set to as follows:

B =
(4σ̂5

3|S |
) 1

5 ≈ 1.06σ̂|S |− 1
5 (3)

where σ̂ is the standard derivation of the sample S .
We now estimate the number of tuples n(pj) associated

with a partition p j. Let ˆnRj and ˆnS j be the number of tuples
of relations R and S whose join attribute values belong to the
partition p j, respectively, calculated by Eqs. (1), (2) and (3).
Then, we get the estimate value ˆn(p j) of n(p j) as ˆnRj + ˆnS j .
We thus calculate the workload J(Ti) of each thread Ti using
every ˆn(p j).

Figure 5 shows the behavior of PMJS M when the
number of threads t is 2 and the number of partitions k is
4. Suppose that the partitions p1 = [1, 2] and p3 = [5, 6]
are assigned to the thread T1 as well as p2 = [3, 4] and
p4 = [7, 8] to T2 by the workload balancing algorithm BF.
Then, the join attribute values and record ids are allocated
to proper threads with respect to the partition assignment to
threads. Finally, the procedure PMJS presented in Sect. 4.1
is performed in each thread independently with its own join
attribute values and record ids. Note that, since all par-
titions of join attribute domain, we do not need to com-
pare the values allocated to a thread with those of the other
threads. After each thread Ti generates its results on its
own buffer called R ResultTi and S ResultS i as illustrated

Table 1 Implemented sort-merge join algorithms

Algorithms Description

scalar S The traditional sort-merge join algorithm
PMJS S128 PMJS S with 128-bit SIMD registers
PMJS S256 PMJS S with 256-bit SIMD registers
scalar M The multi-thread version of the scalar S
PMJS M128 PMJS M with 128-bit SIMD registers
PMJS M256 PMJS M with 256-bit SIMD registers
P-MPSM The range Partitioned Massively Parallel Sort-Merge join [1]

Table 2 Parameters
Parameter Default Range

No. of tuples (n) 8 × 108 2 × 108 ∼ 8 × 108

No. of threads (t) 16 1 ∼ 128
No. of partitions (k) 512 16 ∼ 4096
Data distribution normal uniform, normal, zipf

in Fig. 5, PMJS merges the results generated by all threads
into a list.

5. Performance Study

5.1 Experimental Setup

All experiments were conducted on a machine with AMD
RYZEN 7 1700 8-core 3.00GHz CPU supporting AVX 1
and AVX 2 instruction sets with 128-bit and 256-bit SIMD
registers, respectively, and 16GB of DDR4 main memory
running MS Windows 10. Note that, AMD RYZEN 7 1700
CPU can activate 16 thread contexts concurrently by SMT
(Simultaneous MultiThreading). The implementations of all
algorithms in Table 1 written in C/C++ were compiled by
Intel icc 17.0 compiler with the highest optimization option
-O3. In our experiments, we only measured the performance
of the merge phase of each implemented algorithm includ-
ing P-MPSM since our work only focuses on parallel pro-
cessing of the merge phase.

Datasets: We empirically evaluated the performance
of the implemented algorithms on the synthetic and real-life
data sets. The synthetic data sets were generated following
the uniform distribution, normal distribution and zipf distri-
bution within the domain of data values [0, 231 − 1]. In the
zipf distribution, the skewness factor is 0.5. In our experi-
ments, we set the sample size to 128 in order to build the
kernel density estimator. The parameters used in our exper-
iments are summarized in Table 2. To measure the perfor-

HONG et al.: EFFICIENT PARALLEL JOIN PROCESSING EXPLOITING SIMD IN MULTI-THREAD ENVIRONMENTS
665

Fig. 6 Varying n

mance of the algorithms in diverse environments, we varied
the number of tuples n, the number of threads t and the num-
ber of partitions k.

As a real-life data set, we obtained Stack Overflow
from Google BigQuery† which contains contents of an
online community for programmers to learn, share their
knowledge, and advance their careers. The real-life data
set Stack Overflow consists of 16 relations. As the rela-
tions subjected to the join operation, we used post history
and posts answers each of which contains 93,449,204 and
22,046,899 tuples, respectively. As a join attribute, we se-
lected post id which is a common attribute of both relations.
To show the scalability of our algorithm with the real-life
data set, we randomly selected 10, 20, 40, 60 and 80 million
tuples from relation post history whereas we used whole tu-
ples in relation posts answers.

5.2 Experimental Results

The execution time of each algorithm is the average execu-
tion time measured by executing five times.

Varying the data size (n): In this experiment, we var-
ied the number of tuples of both relations subjected to the
join operation. The execution time of each algorithm on the
data sets generated by uniform, normal and zipf distribu-
tions as well as real-life data set, respectively, is plotted in
Fig. 6 (a), (b), (c) and (d), respectively.

As shown in Fig. 6, the performance of every algorithm
gradually degrades as the number of tuples n increases. In
general, as shown in Fig. 6 (a), (b), (c) and (d), the algo-
rithms on multi-thread (i.e. P-MPSM, scalar M, PMJS M128

and PMJS M256) are faster than the single thread algorithm
scalar S over all data sets. It indicates that thread paral-
lelism affects the performance of each algorithm larger than
the other parallelism. P-MPSM is 7.41 times faster than
scalar S due to its workload balancing feature and thread
parallelism. However, due to the limitation of P-MPSM
such that each thread has to retrieve every tuple of a rela-
tion participating in a join operation as mentioned in Sect. 2,
P-MPSM is slower than scalar M exploiting our workload
balancing technique. In contrast to P-MPSM, by exploit-

†https://bigquery.cloud.google.com/dataset

Fig. 7 Varying t

ing our workload balancing algorithm BF, both relations
subjected to a join operation are split into disjoint parti-
tions and each partition pair is allocated to each individ-
ual thread to generate join results. Thus, whole tuples of
one of both relations are not required in each thread in
scalar M and PMJS M. Therefore, scalar M is at most 8.42
times faster than scalar S due to its thread parallelism and
1.2 times faster than P-MPSM owing to our workload bal-
ancing algorithm. Among the algorithms on multi-thread,
the performances of the algorithms with SIMD registers
(i.e., PMJS M128 and PMJS M256) are better than that of
scalar M due to instruction level parallelism and data par-
allelism. Furthermore, PMJS M256 shows the best perfor-
mance over all data sets, as we expected, owing to wider
SIMD registers. Meanwhile, regardless of varying n, the
traditional sort-merge join algorithm scalar S is the worst
performer since it does not exploit any parallelism. When
n is 2 × 107 with synthetic data sets, PMJS M256 executes
a join operation 8.1 times faster than scalar S on the aver-
age. Furthermore, when n is 10 × 107, PMJS M256 executes
a join operation 12.62 times faster than scalar S on the aver-
age. As shown in Fig. 6 (d), the experimental result with the
real-life data set Stack Overflow confirms that PMJS M256 is
the best performer among implemented algorithms thanks to
thread parallelism by multiple threads, instruction level par-
allelism utilizing minimal conditional branch and data par-
allelism exploiting wider SIMD registers.

Varying the number of threads (t): To observe the
effect of the number of threads (t), we varied t from 1 to
128 and plotted the performance of each algorithm in Fig. 7.
As shown in Fig. 7 (a) and (b), our proposed algorithm with

666
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 8 Varying k

Table 3 Effect of workload balancing

Alg. n 2 × 107 4 × 107 8 × 107

scalar M BF 1.504 4.89 13.95
NONE 3.48 10.12 35.93

PMJS M128 BF 1.75 4.68 13.65
NONE 3.84 11.27 39.78

PMJS M256 BF 1.37 3.51 10.22
NONE 3.27 9.02 30.388

wider SIMD registers PMJS M256 is the best performer re-
gardless of changing t. Since each algorithm does not fully
utilize the cores of CPU, each algorithm does not show the
best performance when t is less than the number of con-
currently activated thread contexts (i.e., 16). When t is
greater than or equal to 16, the performance of each multi-
thread algorithm becomes stable since the resources of the
CPU cores are fully utilized and the overhead of executing
multiple threads in a core is very low. Furthermore, since
each thread has disjoint workloads, the performance of each
multi-thread algorithm with more than 16 threads is not de-
graded and not improved as shown in Fig. 7.

Varying the number of partitions (k): To distribute
the workload evenly to each thread, we first split the domain
of a join attribute into k partitions by utilizing the workload
balancing algorithm BF as presented in Sect. 4.2. In this ex-
periment, we show the effect of k in our algorithms. Since
P-MPSM splits the domain of a join attribute into t parti-
tions where t is the number of threads, we do not report the
performance of P-MPSM in this experiment. As shown in
Fig. 8, when k is extremely small (i.e., k = 16), each al-
gorithm takes the longest execution time since each thread
is assigned to the equi-width partition and thus the work-
load cannot be distributed evenly. As k becomes larger, the
performance of each algorithm becomes improved. When k
is 512, each algorithm shows the best performance. Mean-
while, when k becomes greater than 512, the execution times
of our algorithms are not reduced but very slightly increase
since the benefit of small sized partitions for workload bal-
ancing becomes marginal but the overhead of allocating
large number of partitions to threads a little bit increases.

Effects of workload balancing: To show the effect
of our workload balancing technique, we reported the ex-
ecution time of each algorithm on multi-thread utilizing the
workload balancing algorithm BF and that without work-
load balancing (NONE) in Table 3. When n is very small,
the gap of execution times between BF and NONE is very

Fig. 9 The performance breakdown of PMJS M256

small since all algorithms are terminated within a few sec-
onds. However, as n increases, the algorithms with BF are
superior to those without BF.

To show the overheads of our workload balancing al-
gorithm BF exploiting the kernel density estimator and that
of P-MPSM, we present the execution times of workload
balancing and merge join in Fig. 9 (a) and (b). As shown in
Fig. 9 (a) and (b), as n increases, both overheads of work-
load balancing and merge join increase. However, while the
overhead of merge join rapidly increases with increasing n,
that of workload balancing gradually increases. As shown
in Fig. 9 (a) and (b), since the workload balancing technique
of P-MPSM scans a table in parallel to build a histogram,
the execution time of the workload balancing of P-MPSM is
longer than BF which utilizes a random sample to calculate
a kernel density estimator. Furthermore, as reported in Ta-
ble 3, the algorithms utilizing BF based on kernel density es-
timation show the better performance than those without BF.
It is indicated that our proposed workload balancing algo-
rithm is effective. Consequently, since PMJS M distributes
the workload evenly to each thread utilizing workload bal-
ancing algorithm and exploits all parallelism, it is faster than
the other algorithms.

6. Conclusion

In this paper, we presented an efficient merge join algo-
rithm PMJS with SIMD instructions. The existing scalar
sort-merge join algorithm includes conditional branches that
degrade the performance in the merge phase. To solve this
problem, we carefully design our algorithm minimizing the
use of conditional branches. In addition, in order to fully
utilize the multi-core architecture of modern microproces-
sors, we extend PMJS to multi-thread environments. More-
over, we develop an effective workload balancing algorithm
in which we adopt the kernel density estimator to estimate
accurately the workload assigning to each tread. In our ex-
periments, we shows the superiority of our algorithm PMJS
over diverse environments.

References

[1] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively paral-
lel sort-merge joins in main memory multi-core database systems,”
PVLDB, vol.5, no.10, pp.1064–1075, 2012.

[2] C. Balkesen, G. Alonso, J. Teubner, and M.T. Özsu, “Multi-core,

http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.14778/2732219.2732227

HONG et al.: EFFICIENT PARALLEL JOIN PROCESSING EXPLOITING SIMD IN MULTI-THREAD ENVIRONMENTS
667

main-memory joins: Sort vs. hash revisited,” PVLDB, vol.7, no.1,
pp.85–96, 2013.

[3] C. Balkesen, J. Teubner, G. Alonso, and M.T. Özsu, “Main-memory
hash joins on multi-core cpus: Tuning to the underlying hardware,”
In IEEE ICDE, pp.362–373, 2013.

[4] M.W. Blasgen and K.P. Eswaran, “Storage and access in relational
data bases,” IBM Syst. J., vol.16, no.4, pp.363–377, 1977.

[5] P.A. Boncz, S. Manegold, M.L. Kersten, et al., “Database architec-
ture optimized for the new bottleneck: Memory access,” VLDB,
pp.54–65, 1999.

[6] K. Bratbergsengen, “Hashing methods and relational algebra opera-
tions,” VLDB, pp.323–333, 1984.

[7] R. Cypher and J.L. Sanz, The SIMD model of parallel computation,
Springer Science & Business Media, 2012.

[8] D.J. DeWitt and R. Gerber, “Multiprocessor hash-based join algo-
rithms,” VLDB, pp.151–164, 1985.

[9] D.J. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M.
Muralikrishna, “A High Performance Dataflow Database Machine,”
Computer Science Department, University of Wisconsin, 1986.

[10] B. Gedik, R.R. Bordawekar, and P.S. Yu, “Cellsort: high perfor-
mance sorting on the cell processor,” VLDB, pp.1286–1297, 2007.

[11] B. Gedik, P.S. Yu, and R.R. Bordawekar, “Executing stream joins on
the cell processor,” VLDB, pp.363–374, 2007.

[12] G. Graefe, A. Linville, and L.D. Shapiro, “Sort vs. hash revisited,”
IEEE Trans. Knowl. Data Eng., vol.6, no.6, pp.934–944, 1994.

[13] R.L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM journal on Applied Mathematics, vol.17, no.2, pp.416–429,
1969.

[14] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani, “AA-sort: A
new parallel sorting algorithm for multi-core SIMD processors,” In
IEEE International Conference on Parallel Architecture and Compi-
lation Techniques, pp.189–198, 2007.

[15] C. Kim, T. Kaldewey, V.W. Lee, E. Sedlar, A.D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. hash revisited: fast
join implementation on modern multi-core cpus,” PVLDB, vol.2,
no.2, pp.1378–1389, 2009.

[16] P.M. Kogge, The architecture of pipelined computers, CRC Press,
1981.

[17] D. Lemire, L. Boytsov, and N. Kurz, Simd compression and the in-
tersection of sorted integers, arXiv, 2014.

[18] H. Lu, K.-L. Tan, and M.-C. Shan, “Hash-based join algorithms for
multiprocessor computers,” VLDB, pp.198–209, 1990.

[19] R. Martin, A vectorized hash-join, unpublished course report, Uni-
versity of California at Berkeley, May, 1996.

[20] T.H. Merrett, “Why sort-merge gives the best implementation of the
natural join,” ACM SIGMOD Record, vol.13, no.2, pp.39–51, 1983.

[21] N. Mirzadeh, O. Kocberber, B. Falsafi, and B. Grot, Sort vs. hash
join revisited for near-memory execution, ASBD, 2015.

[22] O. Polychroniou, A. Raghavan, and K.A. Ross, “Rethinking
simd vectorization for in-memory databases,” In ACM SIGMOD,
pp.1493–1508, 2015.

[23] N. Satish, C. Kim, J. Chhugani, A.D. Nguyen, V.W. Lee, D. Kim,
and P. Dubey, “Fast sort on CPUs and GPUs: a case for bandwidth
oblivious SIMD sort,” In ACM SIGMOD, pp.351–362, 2010.

[24] B. Schlegel, T. Willhalm, and W. Lehner, “Fast sorted-set intersec-
tion using simd instructions,” ADMS@ VLDB, pp.1–8, 2011.

[25] D.A. Schneider and D.J. DeWitt, “A performance evaluation of four
parallel join algorithms in a shared-nothing multiprocessor environ-
ment,” In ACM SIGMOD, vol.18, no.2, pp.110–121, 1989.

[26] D.W. Scott, Multivariate density estimation: theory, practice, and
visualization, John Wiley & Sons, 2015.

[27] A.A. Stepanov, A.R. Gangolli, D.E. Rose, R.J. Ernst, and
P.S. Oberoi, “Simd-based decoding of posting lists,” In CIKM,
pp.317–326, ACM, 2011.

[28] J. Zhou and K.A. Ross, “Implementing database operations using
simd instructions,” In ACM SIGMOD, pp.145–156, 2002.

Gilseok Hong was born in 1992. He is
currently pursuing the M.S. degree in computer
science and engineering from Korea University
of Technology and Education, Republic of ko-
rea. He received the bachelor’s degree from the
School of Computer Science and Engineering,
Korea University of Technology and Education,
in 2016. His main research interests include
database, parallel processing and data mining.

Seonghyeon Kang was born in 1992. He is
currently pursuing the M.S. degree in computer
science and engineering from Korea University
of Technology and Education, Republic of ko-
rea. He received the bachelor’s degree from the
School of Computer Science and Engineering,
Korea University of Technology and Education,
in 2016. His main research interests include
database, parallel processing and data mining.

Chang soo Kim received his M.S. degree
in computer science from Sogang University,
Seoul, Republic of Korea, in 1995 and his Ph.D.
degree in information and communication en-
gineering from Chungbuk National University,
Cheongju, Republic of Korea, in 2006. He is a
principal researcher working at the Software Re-
search Laboratory, Electronics and Telecommu-
nications Research Institute, Daejeon, Republic
of Korea. His research interests include big data
management and processing systems, database

systems, cloud computing and storage systems.

Jun-Ki Min was born in 1972. He is a
Professor with the School of Computer Science
and Engineering, Korea University of Technol-
ogy and Education, Republic of Korea. He re-
ceived the Ph.D. degree from KAIST, Repub-
lic of Korea, in 2002. Then, he continued his
research work as a Post-Doctoral Researcher
with the School of Computing, KAIST, from
2003 to 2004. In 2004, he worked as a Senior
Researcher in ETRI, Republic of Korea. His
main research interests include XML, spatial-

temporal DB, stream data, sensor data, Big data, and MapReduce.

http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.1109/icde.2013.6544839
http://dx.doi.org/10.1147/sj.164.0363
http://dx.doi.org/10.1007/978-1-4612-2612-3
http://dx.doi.org/10.1109/69.334883
http://dx.doi.org/10.1137/0117039
http://dx.doi.org/10.1109/pact.2007.4336211
http://dx.doi.org/10.14778/1687553.1687564
http://dx.doi.org/10.1145/984523.984526
http://dx.doi.org/10.1145/2723372.2747645
http://dx.doi.org/10.1145/1807167.1807207
http://dx.doi.org/10.1145/66926.66937
http://dx.doi.org/10.1002/9781118575574
http://dx.doi.org/10.1145/2063576.2063627
http://dx.doi.org/10.1145/564691.564709

