Cyclic Vertex Connectivity of Trivalent Cayley Graphs

Jenn-Yang KE ${ }^{\dagger \text { a) }}$, Member

Abstract

SUMMARY A vertex subset $F \subseteq V(G)$ is called a cyclic vertex-cut set of a connected graph G if $G-F$ is disconnected such that at least two components in $G-F$ contain cycles. The cyclic vertex connectivity is the cardinality of a minimum cyclic vertex-cut set. In this paper, we show that the cyclic vertex connectivity of the trivalent Cayley graphs $T G_{n}$ is equal to eight for $n \geq 4$.

key words: interconnection network, trivalent Cayley graphs, faulttolerance, conditional connectivity, cyclic vertex connectivity

1. Introduction

Let $G=(V(G), E(G))$ be a simple connected graph, where $V(G)$ and $E(G)$ are the vertex set and edge set, respectively. A vertex subset $F \subseteq V(G)$ (edge subset $F \subseteq E(G)$) is called a cyclic vertex-cut set (cyclic edge-cut set) if $G-F$ has at least two connected components containing cycles. The cyclic vertex-cut set may not exist. The cyclic vertex connectivity $\kappa_{c}(G)$ (cyclic edge connectivity $\lambda_{c}(G)$) is defined as the minimum cardinality over all cyclic vertex-cut sets (cyclic edge-cut sets) of G if G has a cyclic vertex-cut set (cyclic edge-cut set). The cyclic vertex (cyclic edge) connectivity has been studied in [1]-[5], [7], [8], [10]-[14].

Connectivity is a measurement for the fault-tolerance capability of interconnection network. Call the vertices in cyclic vertex-cut set F as faulty and vertices in $G-F$ as good. The cyclic vertex connectivity is an important measure for supporting the execution of parallel algorithms on cycles in a faulty and disconnected interconnection network. The cyclic vertex connectivity is determined for the following interconnection networks: star graphs [1], [11], bubble sort graphs [1], hierarchical cubic networks [2], complete cubic networks [3], and balanced hypercubes [14].

Cyclic vertex connectivity is related to a kind of conditional connectivity. In [6], the authors define the conditional connectivity as follows: for a connected graph G, a vertex subset $F \subseteq V(G)$ is called a R^{k}-vertex-cut set if $G-F$ is disconnected and each vertex in $G-F$ has at least k neighbors in $G-F$. The R^{k}-vertex-connectivity $\kappa^{k}(G)$ is the cardinality of a minimum R^{k}-vertex-cut set of G. Since every graph with minimum degree at least two has a cycle, we have $\kappa_{c}(G) \leq \kappa^{2}(G)$ if both $\kappa_{c}(G)$ and $\kappa^{2}(G)$ exist. In [11],

[^0]the authors gave an example which shows that the strict inequality may hold and the gap between $\kappa_{c}(G)$ and $\kappa^{2}(G)$ can be arbitrarily large.

Trivalent Cayley graphs proposed in [9] are fixed vertex degree interconnection network which are suitable for VLSI implementation. In [9], the graphs are shown to have nice network properties such as regular, logarithmic diameter, and maximal fault tolerant. As fixed vertex degree graphs, trivalent Cayley graphs have the advantage to form a parallel architecture with large number of computing nodes. In this paper, we determine the cyclic vertex connectivity of the trivalent Cayley graphs.

The rest of the paper is organized as follows. Section 2 recalls and derives some structure properties of trivalent Cayley graphs. Section 3 derives some properties about shortest cycles in trivalent Cayley graphs. Section 4 determines the value of cyclic vertex connectivity of trivalent Cayley graph $T G_{n}$ for $n \geq 4$. Section 5 provides concluding remarks.

2. Preliminaries

We use the following notations in this paper. Let v be a vertex of a graph $G . N_{G}(v)$ is the set of vertices adjacent to v in G. For a vertex subset V of the graph $G, N_{G}(V)=$ $\left(\bigcup_{v \in V} N_{G}(v)\right)-V$. Sometimes, we use a graph to represent its vertex set. For example, $N_{G}\left(G_{1}\right)$ represents $N_{G}\left(V\left(G_{1}\right)\right)$ where G_{1} is a subgraph of G.

The structure of the trivalent Cayley graphs $T G_{n}$ is stated in this section. Each vertex in the graph $T G_{n}$ corresponds to a circular permutation of n symbols in lexicographic order where each symbol may be in either uncomplement or complement form. Let $t_{k}, 1 \leq k \leq n$, denote the k-th symbol in the set of those n symbols. Denote t_{i}^{*} as either t_{i} or \bar{t}_{i}. Denote $u=a_{1} a_{2} \cdots a_{n}$ to represent vertex u with label $a_{1} a_{2} \cdots a_{n}$. If $a_{1}=t_{k}^{*}$, then, for $2 \leq i \leq n, a_{i}=t_{(k+i-1)}^{*}$ if $k+i-1 \leq n$, otherwise, $a_{i}=t_{(k+i-1) \bmod n}^{*}$. The edges of the graph $T G_{n}$ are defined by three generators as follows:

$$
\begin{aligned}
& f\left(a_{1} a_{2} \cdots a_{n}\right)=a_{2} a_{3} \cdots \bar{a}_{1} \\
& f^{-1}\left(a_{1} a_{2} \cdots a_{n}\right)=\bar{a}_{n} a_{1} \cdots a_{n-1} \\
& g\left(a_{1} a_{2} \cdots a_{n}\right)=a_{1} a_{2} \cdots \bar{a}_{n} .
\end{aligned}
$$

Notice that $f^{-1} f=f f^{-1}=e$ and $g g=e$, where e is the identity mapping. The edges between u and $f(u)$ or $f^{-1}(u)$ are called a f-edge or f^{-1}-edge, respectively. Observe that a f-edge is also a f^{-1}-edge. An edge between u and $g(u)$
is called a g-edge. We classify the g-edges as follows. Let $u=a_{1} a_{2} \cdots a_{n}$. The g-edge incident on u is called a g_{i}-edge if a_{n} is symbol t_{i}^{*}. Clearly, each vertex has two f-edges and one g-edge incident on it. Every vertex in $T G_{n}$ for $n \geq 2$ has vertex degree 3, see [9]. Any cycle in $T G_{n}$ consists of f-edges is called a f-cycle. The following results can be found in [9].

Lemma 2.1: (See [9]) All of the vertices of $T G_{n}$ are partitioned into vertex disjoint f-cycles of length $2 n$; number of f-cycles in $T G_{n}$ is 2^{n-1}.

The complement of any vertex $u=u_{1} u_{2} \cdots u_{n}$ in $T G_{n}$ is the vertex \bar{u} obtained by complementing the symbols in u, i.e., $\bar{u}=\bar{u}_{1} \bar{u}_{2} \cdots \bar{u}_{n}$.

Lemma 2.2: (See [9]) For an arbitrary pair of vertices u and v in $T G_{n}$ such that $g(u)=v$, the complement vertices satisfy the same relation, i.e., $g(\bar{u})=\bar{v}$.

Lemma 2.3: (See [9]) For any vertex u in $T G_{n}$, both the u and \bar{u} belong to the same f-cycles.

For each f-cycle in $T G_{n}$, the unique vertex with label starting with t_{1} is called the leader vertex. Let $t_{1} t_{2}^{*} \cdots t_{n}^{*}$ be the leader vertex of some f-cycle. The leader vertex is mapped into a $(n-1)$-bit binary number $b_{2} b_{3} \cdots b_{n}$ by assigning bit b_{i} to 1 if $t_{i}^{*}=t_{i}$ and 0 if $t_{i}^{*}=\bar{t}_{i}$. The f-cycle is assigned with the binary number associated with it's leader vertex. We denote f-cycle with $(n-1)$-bit binary number $b_{2} b_{3} \cdots b_{n}$ as $f_{b_{2} b_{3} \cdots b_{n}}$. For brevity, we also denote f-cycle as f_{i} for integer number i. Cycles f_{i} and f_{j} are said to be adjacent if there exists a vertex $u \in f_{i}$ and a vertex $v \in f_{j}$ such that $u=g(v)$ or $v=g(u)$. We reformulate the following result given in [9] for our need in this paper.

Lemma 2.4: (See [9]) Each $f_{b_{2} b_{3} \cdots b_{n}}$-cycle in $T G_{n}$ is adjacent to the following n different f-cycles:
$f_{\bar{b}_{2} \bar{b}_{3} \cdots \bar{b}_{n}}$ by g_{1}-edge, $f_{\bar{b}_{2} b_{3} \cdots b_{n}}$ by g_{2}-edge,
$f_{b_{2} \bar{b}_{3} \cdots b_{n}}$ by g_{3}-edge, $\cdots, f_{b_{2} b_{3} \cdots \bar{b}_{n}}$ by g_{n}-edge.
From this lemma, we see that the binary numbers associated with any two adjacent f-cycles must have one bit different or all different.

By Lemmas 2.1, 2.2, 2.3, and 2.4, we see that adjacent f-cycles are connected by exactly two g_{i}-edges for some i, $1 \leq i \leq n$. Furthermore, there are exactly two g_{i}-edges, $1 \leq i \leq n$, incident on the vertices of the f-cycle.

Lemma 2.5: Let f_{i} and f_{j} be two distinct f-cycles in the trivalent Cayley graphs $T G_{n}$. Then, $N_{T G_{n}}\left(f_{i}\right) \cap N_{T G_{n}}\left(f_{j}\right)=\emptyset$.
Proof: Let vertex $w \in N_{T G_{n}}\left(f_{i}\right) \cap N_{T G_{n}}\left(f_{j}\right)$. Then, there exist two distinct vertices $u \in f_{i}$ and $v \in f_{j}$ such that $g(u)=w$ and $g(v)=w$. By the definition of generator g, we have $u=v$. Since $u \neq v$, this is a contradiction.

A $T G_{n}$ can be represented as a reduced graph $R G_{n-1}$ as follows: condense each f-cycle into a single vertex and label that vertex with the $(n-1)$-bit binary number of the f-cycle; connect two vertices of $R G_{n-1}$ if and only if the
corresponding f-cycles are adjacent in $T G_{n}$. We have the following lemma.

Lemma 2.6: No cycle of length three in $R G_{n-1}$ for $n \geq 4$.
Proof: Assume that $R G_{n-1}$ has a cycle of length three. This implies that there are three f-cycles such that one of f-cycle f_{i} is adjacent to the other two f-cycles f_{j} and f_{k}. And, f_{j} and f_{k} must be adjacent f-cycles. Since f_{i} is adjacent to both of f_{j} and f_{k}, by Lemma 2.4, the labels of f_{j} and f_{k} have two or $n-2$ different bits. Since f_{j} is adjacent to f_{k}, by Lemma 2.4, the labels of f_{j} and f_{k} have one or $n-1$ different bits. Since $n-1 \neq 2$ and $n-2 \neq 1$ for $n \geq 4$, we see that f_{j} and f_{k} are not adjacent in $T G_{n}$. Therefore, there is no cycle of length three in $R G_{n-1}$.

The following result in [9] is useful in deriving our result.

Lemma 2.7: (See [9]) The vertex connectivity of $R G_{n-1}$ corresponding to $T G_{n}$ is n, i.e., for any two given source and destination vertices in $R G_{n-1}$, there are n vertex disjoint paths connecting the source and the destination.

Define the composition of generators as $\left(h_{1} \cdot h_{2}\right)(u)=$ $h_{1}\left(h_{2}(u)\right)$. Let u be the leader vertex of a f-cycle. The $2 n$ vertices in a f-cycle can be denoted by $f^{k}(u)$ for $1 \leq k \leq 2 n$. Let $a=k \bmod n$. Then, the g-edge incident on the vertex $f^{k}(u)$ is g_{a}-edge if $a \neq 0$ and g_{n}-edge, otherwise. We have the following lemma.
Lemma 2.8: Let g_{a}-edge and g_{b}-edge be the g-edges incident on distinct vertices $f^{k_{1}}(u)$ and $f^{k_{2}}(u)$ of a f-cycle with leader vertex u, respectively. Let l be the number of f-edges in the f-cycle connecting the g_{a} and g_{b}. Then, $l=\left|k_{1}-k_{2}\right|$ or $2 n-\left|k_{1}-k_{2}\right|$. Furthermore, $l=n$ if $a=b$.

Proof: Since f-cycle is a cycle consisting of f-edges, there are two paths connecting the g_{a} and g_{b}. Without loss of generality, let $k_{1}<k_{2}$. Then, one of the paths must consist of $\left|k_{1}-k_{2}\right| f$-edges. By Lemma 2.1, the length of a f-cycle is $2 n$. Thus, the other path consists of $2 n-\left|k_{1}-k_{2}\right| f$-edges. Therefore, $l=\left|k_{1}-k_{2}\right|$ or $2 n-\left|k_{1}-k_{2}\right|$.

If $a=b$, we must have $k_{2}=k_{1}+n$. Then, both of the paths consists of $n f$-edges. Thus, $l=n$.

Let cycle C contains a sequence of g-edges. Let a and b be integers in the range from 1 to n. We call g_{a}-edge and g_{b}-edge adjacent in C if edges in C between g_{a}-edge and g_{b}-edge are all f-edges. Since f-cycles are vertex disjoint cycles by Lemmas 2.1, the edges between any two adjacent g_{a}-edge and g_{b}-edge are in the same f-cycle.

Lemma 2.9: Let C be a cycle with at least two g-edges in $T G_{n}$. Let l be the number of f-edges in C between any two adjacent g_{a}-edge and g_{b}-edge. Then

$$
l=\left\{\begin{array}{cl}
|b-a| \text { or } 2 n-|b-a| \text { or } n-|b-a| \text { or } n+|b-a| & \text { if } b \neq a \\
n & \text { if } b=a
\end{array}\right.
$$

Proof: Since the edges in C between any two adjacent $g_{a^{-}}$ edge and g_{b}-edge are in the same f-cycle, there are two possible g_{a}-edges and two possible g_{b}-edges incident on the
vertices of the f-cycle.
Let u be the leader vertex of the f-cycle. Let g_{a}-edge and g_{b}-edge be incident on vertices $f^{k 1}(u)$ and $f^{k 2}(u)$, respectively. Now, we have that $k_{1}=a$ or $a+n, k_{2}=b$ or $b+n$. Case 1: $k_{1}=a$ and $k_{2}=b$. By Lemma 2.8, $l=|b-a|$ or $2 n-|b-a|$ if $b \neq a$. Otherwise, $l=n$. Case 2: $k_{1}=a$ and $k_{2}=b+n$. By Lemma 2.8, $l=n+|b-a|$ or $n-|b-a|$ if $b \neq a$. Otherwise, $l=n$. Case 3: $k_{1}=a+n$ and $k_{2}=b$. By Lemma 2.8, $l=n+|b-a|$ or $n-|b-a|$ if $b \neq a$. Otherwise, $l=n$. Case 4: $k_{1}=a+n$ and $k_{2}=b+n$. By Lemma 2.8, $l=|b-a|$ or $2 n-|b-a|$ if $b \neq a$. Otherwise, $l=n$. This completes the proof.

Notice that $1 \leq|b-a| \leq n-1$ since $a, b \in\{1, \cdots, n\}$.
Lemma 2.10: Let $P=u_{1} u_{2} \cdots u_{n+1}$ be a path of length n in a f-cycle of $T G_{n}$. Then,

1. u_{1} and u_{n+1} are incident on g_{a}-edges where $1 \leq a \leq n$
2. vertices other than u_{1} and u_{n+1} are incident on $n-1$ different g_{i}-edges where $i \neq a$.

Proof: Let u be the leader vertex of the f-cycle. Let vertex $u_{1}=f^{k}(u)$ where $1 \leq k \leq 2 n$. Notice that $u_{i}=f^{k+i-1}(u)$ for $1 \leq i \leq n+1$. By the definition of generator f, the last symbols of the vertex labels on u_{1} and u_{n+1} are the same symbol, say t_{a}^{*}, where $1 \leq a \leq n$. Thus, u_{1} and u_{n+1} are incident on g_{a}-edges. By the definition of generator f, the last symbols of the vertex labels on $u_{i}, 1 \leq i \leq n$, are all different. Thus, the g-edges incident on those vertices u_{i} are all different. Therefore, vertices other than u_{1} and u_{n+1} are incident on $n-1$ different g_{i}-edges where $i \neq a$.

For any f-cycle f and any vertex $u \in V(f), u$ has exactly one neighbor outside of f, namely the vertex $g(u)$. Denote u^{\prime} as the outside neighbor of u.
Lemma 2.11: Let path $P=u_{1} u_{2} \cdots u_{n-1}$ of length $n-2$ in a f-cycle of $T G_{n}$, the outside neighbors $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n-1}^{\prime}$ are in $n-1$ different f-cycles.

Proof: By Lemma 2.10, the g_{i}-edges incident on vertices u_{i} of path P are all different. By Lemma 2.4, the outside neighbors $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n-1}^{\prime}$ are in $n-1$ different f-cycles.

We call $Y=\left\{u_{k}^{\prime} \mid u_{k}^{\prime}\right.$ is the outside neighbor of vertex u_{k} in path P \}, the outside neighbor set of path P. Clearly, $Y \subseteq$ $N_{T G_{n}}(f)$ if path P is in f-cycle f. The following two lemmas are useful in deriving the value of cyclic vertex connectivity $\kappa_{c}\left(T G_{n}\right), n \geq 4$.

Lemma 2.12: Let f_{i} and f_{j} be two different f-cycles in $T G_{n}, n \geq 4$. Let G be the subgraph induced by $V\left(f_{i}\right) \cup V\left(f_{j}\right)$. Let C be a cycle in G such that $V(C) \cap V\left(f_{i}\right) \neq \emptyset$ and $V(C) \cap V\left(f_{j}\right) \neq \emptyset$. Then, there are two paths $P 1$ and $P 2$ in C of length $n-2$ such that $P 1$ is in f_{i} and $P 2$ is in f_{j}. Furthermore, the outside neighbor sets $Y 1$ of $P 1$ and $Y 2$ of $P 2$ satisfy $Y 1 \cap Y 2=\emptyset$.

Proof: Since C is a cycle in G such that $V(C) \cap V\left(f_{i}\right) \neq \emptyset$ and $V(C) \cap V\left(f_{j}\right) \neq \emptyset, f_{i}$ and f_{j} must be adjacent f-cycles connected by two g_{a}-edges for some $a \in\{1,2, \cdots, n\}$. By Lemma 2.9, there is a path in C of length n in each f-cycle.

The cycle can be constructed as follows. Let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be the two g_{a}-edges. Without loss of generality, let u_{1} and u_{2} be in f_{i}, while v_{1} and v_{2} in f_{j}. Then, cycle C contains a path in f_{i} from u_{1} to u_{2}, a g_{a}-edge $\left(u_{2}, v_{2}\right)$, a path in f_{j} from v_{2} to v_{1}, and another g_{a}-edge $\left(v_{1}, u_{1}\right)$.

Since there are two possible paths of length n connecting the two g_{a}-edges in each f-cycle, we have four possible constructions of cycle C. Clearly, there is a path in C of length $n-2$ in each f-cycle, say $P 1$ in f_{i} and $P 2$ in f_{j}. Clearly, $Y 1 \subseteq N_{T G_{n}}\left(f_{i}\right)$ and $Y 2 \subseteq N_{T G_{n}}\left(f_{j}\right)$. By Lemma 2.5, $Y 1 \cap Y 2=\emptyset$.

Lemma 2.13: Let f_{i}, f_{j} and f_{k} be three different f-cycles in $T G_{n}, n \geq 4$. Let G be the subgraph induced by $V\left(f_{i}\right) \cup V\left(f_{j}\right) \cup$ $V\left(f_{k}\right)$. Let C be a cycle in G such that $V(C) \cap V\left(f_{i}\right) \neq \emptyset$, $V(C) \cap V\left(f_{j}\right) \neq \emptyset$, and $V(C) \cap V\left(f_{k}\right) \neq \emptyset$. Then, there are two nonadjacent f-cycles, say f_{i} and f_{j}, among those three f cycles such that two paths $P 1$ and $P 2$ in C of length $n-2$ are in f_{i} and f_{j}, respectively. Furthermore, the outside neighbor sets $Y 1$ of $P 1$ and $Y 2$ of $P 2$ satisfy $Y 1 \cap Y 2=\emptyset$.

Proof: Since C is a cycle in G such that $V(C) \cap V\left(f_{i}\right) \neq \emptyset$, $V(C) \cap V\left(f_{j}\right) \neq \emptyset$ and $V(C) \cap V\left(f_{k}\right) \neq \emptyset, R G_{n-1}$ contains a corresponding cycle of length 3 or a corresponding path of length 2 that connects those three f-cycles. By Lemma 2.6, no cycle of length 3 in $R G_{n-1}$ for $n \geq 4$. Thus, $R G_{n-1}$ has a corresponding path of length 2 . Without loss of generality, we assume that f_{i} and f_{j} are not adjacent, and f_{k} is adjacent to both of f_{i} and f_{j}. Let f_{k} and f_{i} be connected by two distinct g_{a}-edges and f_{k} and f_{j} be connected by two distinct g_{b}-edges, where $a \neq b$ and $a, b \in\{1,2, \cdots, n\}$. By Lemma 2.9, each of f_{i} and f_{j} has a path in C of length n.

The cycle C can be constructed as follows. Let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be the two g_{a}-edges where u_{1} and u_{2} are in f_{i}, while v_{1} and v_{2} are in f_{k}. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the two g_{b}-edges where x_{1} and x_{2} are in f_{k}, while y_{1} and y_{2} are in f_{j}. Then, C contains a path of length n in f_{i} from u_{1} to u_{2}, a g_{a}-edge (u_{2}, v_{2}), a path in f_{k} connecting a g_{a}-edge and a $g_{b^{-}}$ edge, say from v_{2} to x_{2}, a g_{b}-edge (x_{2}, y_{2}), a path of length n in f_{j} from y_{2} to y_{1}, another g_{b}-edge (y_{1}, x_{1}), a path in f_{k} connecting a g_{b}-edge and a g_{a}-edge, say from x_{1} to v_{1}, and another g_{a}-edge $\left(v_{1}, u_{1}\right)$.

In cycle C, vertices v_{1} and v_{2} are incident on g_{a}-edges in f_{k}, while vertices x_{1} and x_{2} on g_{b}-edges. By Lemma 2.9, there is a path P_{1} of length n in f_{k} from v_{1} to v_{2}, or P_{2} from v_{2} to v_{1}. By Lemma 2.10, there exists exactly one vertex, say x_{1} in P_{1}, and another vertex, say x_{2} in P_{2}, incident on g_{b}-edge. Thus, f_{k} is divided into four paths where each path is connecting between a g_{a}-edge and g_{b}-edge. Thus, there exist two vertex disjoint paths in f_{k} connecting between a g_{a}-edge and a g_{b}-edge in C.

Since there are two possible paths in each f-cycle for each path of C in f_{i} and f_{j} and two possible choices of paths connecting between a g_{a}-edge and a g_{b}-edge in f_{k}, we have eight possible constructions of cycle C. Clearly, there is a path in C of length $n-2$ in each f-cycle, say $P 1$ in f_{i} and $P 2$ in f_{j}. Clearly, $Y 1 \subseteq N_{T G_{n}}\left(f_{i}\right)$ and $Y 2 \subseteq N_{T G_{n}}\left(f_{j}\right)$. By Lemma 2.5, $Y 1 \cap Y 2=\emptyset$.

3. Shortest Cycles of Trivalent Cayley Graphs

In this section, we characterize the shortest cycles in trivalent Cayley graphs.

Lemma 3.1: Let C be a cycle with $m \leq 3 g$-edges in $T G_{n}$ for $n \geq 4$. Then, m is equal to 0 or 2 . Furthermore,

1. C is a f-cycle of length $2 n$ if $m=0$.
2. C is a cycle of length $2 n+2$ and is contained in two adjacent f-cycles if $m=2$.
Proof: Observe that each f-cycle connected in C must have even number of g-edges in C incident on its vertices. This implies that the cycle C in $T G_{n}$ will correspond to an isolated vertex if $m=0$, a path of length one if $m=2$, or a cycle of length three if $m=3$ in $R G_{n-1}$.

An isolated vertex in $R G_{n-1}$ is a f-cycle in $T G_{n}$. By Lemma 2.1, the length of C is $2 n$. A path of length one in $R G_{n-1}$ corresponds to a cycle connecting two adjacent f cycles in $T G_{n}$. Since adjacent f-cycles are connected by exactly two g_{i}-edges for some $i, 1 \leq i \leq n$. By Lemma 2.9 , the number of f-edges between the two adjacent g_{a}-edges is n. Therefore, C is of length $2 n+2$. Since cycle of length three does not exist in $R G_{n-1}$ for $n \geq 4$ by Lemma 2.6, cycle with three g-edges does not exist.

The following lemma determines the structure of shortest cycles.

Lemma 3.2: Let cycle C be a shortest cycle in $T G_{n}$ for $n \geq 4$. Cycle C is of length 8 . Furthermore,

1. Cycle C is a f-cycle for $n=4$ if C does not contain g-edges.
2. Cycle C contains four distinct g-edges and four distinct f-edges. Edges in C are f-edge and g-edge alternating.

Proof: The shortest cycle can be a cycle with or without g edges. First, we consider the cycles without g-edges. Let cycle C^{\prime} be such a cycle. Clearly, C^{\prime} is a f-cycle. By Lemma $2.1, C^{\prime}$ is of length $2 n$. Since $n \geq 4$, the shortest cycles without g-edges have length 8 for $n=4$.

Now, we consider the cycles with g-edges. Let cycle C^{\prime} has $m g$-edges. Let l be the length of cycle C^{\prime}. By Lemma 2.9, we see that the minimum number of f-edges between any two adjacent g-edges is equal to one. Therefore, $l \geq 2 m$. Clearly, $l \geq 8$ for $m \geq 4$. To show that the shortest cycle with g-edges has length $l=8$, we need the following two claims.

Claim 1: The cycles with $m g$-edges where $0<m<4$ have length $l>8$.

Claim 2: There exists a cycle with four g-edges of length $l=8$.

Proof of Claim 1: By Lemma 3.1, we only need to consider the case that $m=2$. In this case, the cycle has two g-edges and has length $l=2 n+2$. Since $n \geq 4$, we have $l>8$.

Proof of Claim 2: Since cycle C^{\prime} with $m g$-edges has length $l \geq 2 m$, the shortest cycle has length $l=8$ if $m=4$.

This implies that the shortest cycle C with g-edges must have four distinct g-edges and the number of f-edges between adjacent g-edges is equal to one. Thus, edges in C are f-edge and g-edge alternating. Now, we show that such cycle C exists in $T G_{n}$ for $n \geq 4$. Consider the following cases.

Case 1: The cycle C uses g_{a}-edge, g_{b}-edge, g_{c}-edge, and g_{d}-edge for four distinct integers $a, b, c, d \in\{1, \cdots, n\}$. Let C first go through g_{a}-edge, then g_{b}-edge, then g_{c}-edge, finally g_{d}-edge. By Lemma 2.9 , the values of a, b, c, and d must satisfy the following equations.

$$
\begin{array}{lll}
|a-b|=1 & \text { or } & n-1 \\
|b-c|=1 & \text { or } & n-1 \\
|c-d|=1 & \text { or } & n-1 \\
|d-a|=1 & \text { or } & n-1
\end{array}
$$

Now, we show that if the equations have solutions then $n=4$.

Case 1.1: The solution contains both of 1 and n. Without loss of generality, let $a=1$ and $b=n$. Since values of a, b, c, and d are four distinct integers, we have two possible choices of values of c and d. For the choice that $d=2$ and $c=3$. From the equations, we must have $|b-c|=|n-3|=1$ or $n-1$. Another choice is that $c=n-1$ and $d=n-2$. From the equations, we must have $|d-a|=|(n-2)-1|=1$ or $n-1$. For both choices of values c and d, we must have $n=4$.

Case 1.2: The solution does not contain both of 1 and n. This implies that the solution must contain four consecutive integers. Without loss of generality, let a be the value of the smallest of the four consecutive integers. From the equations, we have $b=a+1, c=b+1, d=c+1$, and $|d-a|=|(a+3)-a|=1$ or $n-1$. This implies that $n=4$.

Since $n=4$, we may assume that $a=1, b=2, c=3$, and $d=4$. Now, C first go through g_{1}-edge, then g_{2}-edge, then g_{3}-edge, finally g_{4}-edge. Let C start at f-cycle $f_{b_{2} b_{3} b_{4}}$ where $b_{2} b_{3} b_{4}$ is the binary number associated with the f cycle. By Lemma 2.4 and going through the g_{1}-edge, C reaches f-cycle $f_{\bar{b}_{2} \bar{b}_{3} \bar{b}_{4}}$. Then, C reaches f-cycle $f_{b_{2} \bar{b}_{3} \bar{b}_{4}}$ after passing through the g_{2}-edge. After passing through the $g_{3^{-}}$ edge and g_{4}-edge, C reaches the starting f-cycle.

Now, we construct cycle C as follows. Let $t_{1}^{*} t_{2}^{*} t_{3}^{*} t_{4}^{*}$ be the label of vertex u. The cycle C starting with vertex u is given below:

$$
\begin{array}{ll}
u=t_{1}^{*} t_{2}^{*} t_{3}^{*} t_{4}^{*} & \xrightarrow{f} t_{2}^{*} t_{3}^{*} t_{4}^{*} t_{1}^{*} \\
\xrightarrow{g_{1}} t_{2}^{*} t_{3}^{*} t_{4}^{*} t_{1}^{*} & \xrightarrow{f} t_{3}^{*} t_{4}^{*} t_{1}^{*} t_{2}^{*} \\
\xrightarrow{g_{2}} t_{3}^{*} t_{4}^{*} t_{1}^{*} t_{2}^{*} & \xrightarrow{f} t_{4}^{*} t_{1}^{*} t_{2}^{*} t_{3}^{*} \\
\xrightarrow{g_{3}} t_{4}^{*} t_{1}^{*} t_{2}^{*} t_{3}^{*} & \xrightarrow{f} t_{1}^{*} t_{2}^{*} t_{3}^{*} t_{4}^{*} \\
\xrightarrow{g_{4}} t_{1}^{*} t_{2}^{*} t_{3}^{*} t_{4}^{*}=u
\end{array}
$$

It is easy to check that the vertices in the cycle are all distinct.

Case 2: The cycle C uses g_{a}-edge, g_{b}-edge, and g_{c} edge for three distinct integers $a, b, c \in\{1, \cdots, n\}$. Assume that the cycle C has two g_{b}-edges. By Lemma 2.9, the number of f-edges between two distinct and adjacent g_{b}-edges is equal to n, where $n \geq 4$. Since the number of f-edges between adjacent g-edges must be equal to one in cycle C, the two g_{b}-edges can not be adjacent in cycle C. This implies that g_{a}-edge and g_{b}-edge are adjacent g-edges. And, g_{b}-edge and g_{c}-edge are adjacent g-edges. Without loss of generality, let C first go through g_{a}-edge, then g_{b}-edge, then g_{c}-edge, finally another g_{b}-edge. By Lemma 2.9 , the values of a, b, and c must satisfy the following equations.

$$
\begin{array}{lll}
|a-b|=1 & \text { or } & n-1 \\
|b-c|=1 & \text { or } & n-1
\end{array}
$$

Clearly, the solution of the equations contains any three cyclic consecutive integers of the set $\{1, \cdots, n\}$.

Now, we show that any solution of the equations can not have a corresponding cycle in $T G_{n}$. Let C start at f cycle $f_{b_{2} b_{3} \cdots b_{n}}$ where $b_{2} b_{3} \cdots b_{n}$ is the binary number associated with the f-cycle. By Lemma 2.4 and passing through the four g-edges, C reaches f-cycle $f_{b_{2} \cdots \bar{b}_{a} b_{b} \bar{b}_{c} \cdots b_{n}}$ if $a \neq 1$, $b \neq 1$, and $c \neq 1$. Or, C reaches f-cycle such that its associated binary number has the bit b_{a} and bit b_{c} complemented if $b=1$. Or, C reaches f-cycle such that its associated binary number has each bit $b_{i}, 2 \leq i \leq n$, complemented except the bit b_{c} or bit b_{a} if $a=1$ or $c=1$, respectively. Clearly, the reached f-cycle is not the same as the starting f-cycle with each corresponding solution. Thus, this choice of g-edges has no corresponding cycle in $T G_{n}$.

Case 3: The cycle C uses g_{a}-edge and g_{b}-edge for two distinct integers $a, b \in\{1, \cdots, n\}$. Clearly, adjacent g-edges must be g_{a}-edge and g_{b}-edge and $|b-a|=1$ or $n-1$ for $n \geq 4$ by Lemma 2.9. Without loss of generality, the values of a and b can be chosen as follows. For $|b-a|=n-1$, let $a=n$ and $b=1$. For $|b-a|=1$, let $b=a+1$ for $1 \leq a<n$. By Lemma 2.4 and passing through even number of g_{a}-edges and even number of g_{b}-edges, C reaches the starting f-cycle.

Now, we construct cycle C as follows. For $|b-a|=1$, let t_{a} be the symbol corresponding to g_{a}-edge. Then, the symbol corresponding to g_{b}-edge is t_{a+1}. Let $t_{a+1}^{*} \cdots t_{n}^{*}$ $t_{1}^{*} \cdots t_{a}^{*}$ be the label of vertex u. The cycle C starting with vertex u is given below:

$$
\begin{aligned}
& u=t_{a+1}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots t_{a}^{*} \quad \xrightarrow{f} t_{a+2}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots t_{a}^{*} \bar{t}_{a+1}^{*} \\
& \xrightarrow{g_{b}} t_{a+2}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots t_{a}^{*} t_{a+1}^{*} \xrightarrow{f^{-1}} \bar{t}_{a+1}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots t_{a}^{*} \\
& \xrightarrow{g_{a}} \bar{t}_{a+1}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots \bar{t}_{a}^{*} \quad \xrightarrow{f} t_{a+2}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots \bar{t}_{a}^{*} t_{a+1}^{*} \\
& \xrightarrow{g_{b}} t_{a+2}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots \bar{t}_{a}^{*} \bar{t}_{a+1}^{*} \xrightarrow{f^{-1}} t_{a+1}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots \bar{t}_{a}^{*} \\
& \xrightarrow{g_{a}} t_{a+1}^{*} \cdots t_{n}^{*} t_{1}^{*} \cdots t_{a}^{*}=u
\end{aligned}
$$

It is easy to check that the vertices in the cycle are all distinct. Similarly, the cycle C can be constructed for the case that $|b-a|=n-1$.

Case 4: The cycle C uses four g_{a}-edges for $a \in$
$\{1, \cdots, n\}$. Since adjacent f-cycles are connected by exactly two g_{i}-edges, cycle C does not exist in $T G_{n}$.

This completes the proof.

4. Cyclic Vertex Connectivity of Trivalent Cayley Graphs

This section determines the value of $\kappa_{c}\left(T G_{n}\right)$ where $n \geq 4$.
Lemma 4.1: Let C be a shortest cycle in $T G_{n}, n \geq 4$. Then $N_{T G_{n}}(C)$ is a cyclic vertex-cut set of $T G_{n}$.
Proof: Clearly, $T G_{n}-N_{T G_{n}}(C)$ is disconnected with C as a component. To prove the lemma, we must show that subgraph $G^{\prime}=T G_{n}-N_{T G_{n}}(C)-C$ has a cycle. Since graph with every vertex degree at least 2 has a cycle, we prove that the degree of each vertex in G^{\prime} is at least 2.

Assume that there exists a vertex $u \in G^{\prime}$ such that $\operatorname{deg}(u) \leq 1$. This implies that u has at least two neighbors in $N_{T G_{n}}(C)$. Let $v_{1} \in N_{T G_{n}}(C)$ and $v_{2} \in N_{T G_{n}}(C)$ be two distinct neighbors of u. Also, let x_{1} and x_{2} be the vertices in C adjacent to vertices v_{1} and v_{2}, respectively. Notice that x_{1} and x_{2} must be two distinct vertices. Otherwise, we have a cycle $C_{4}=x_{1} v_{1} u v_{2}$ of length 4 which is impossible by Lemma 3.2. Then, there is a cycle C^{\prime} consisting of path $x_{1} v_{1} u v_{2} x_{2}$ of length 4 and a path in C between x_{1} and x_{2}. Let l be the length of the path in C between x_{1} and x_{2}. Since C is a cycle, there are two paths between x_{1} and x_{2} in C. If one of the paths has length l, then the other path has length $8-l$. Since the shortest cycle is of length 8 by Lemma 3.2, we must have $l=4$. Thus, there are two possible C^{\prime} cycles such that each cycle is of length 8 and contains a path in C of length 4 .

Now, we show that cycle C^{\prime} does not exist. Since cycle C^{\prime} is of length 8 , it must have the structure of shortest cycles in $T G_{n}$. By Lemma 3.2, we have two cases. Case 1: C is a f-cycle and $n=4$. This implies that edges $\left(x_{1}, v_{1}\right)$ and $\left(x_{2}, v_{2}\right)$, which are the edges between C and $N_{T G_{n}}(C)$, must be g-edges. Case 2: C contains four distinct g-edges and four distinct f-edges. By Lemma 3.2, the edges in C are f edge and g-edge alternating. This implies that edges $\left(x_{1}, v_{1}\right)$ and $\left(x_{2}, v_{2}\right)$, which are the edges between C and $N_{T G_{n}}(C)$, must be f-edges. Then, C^{\prime} has two consecutive f-edges incident on either x_{1} or x_{2}. In both cases, cycle C^{\prime} is not a cycle with edges that are all f-edges or that are with f-edge and g-edge alternating. By Lemma 3.2, cycle C^{\prime} does not exist. From this, we conclude that the degree of each vertex in G^{\prime} is at least 2.
Theorem 4.2: For any integer $n \geq 4, \kappa_{c}\left(T G_{n}\right)=8$.
Proof: By Lemma 4.1, $N_{T G_{n}}(C)$ is a cyclic vertex-cut set for a shortest cycle C of length 8 . So, we have $\kappa_{c}\left(T G_{n}\right) \leq$ $\left|N_{T G_{n}}(C)\right|$. Since C is the shortest cycle of trivalent Cayley graph $T G_{n}$ for $n \geq 4$, no two vertices on C have a common neighbor in $N_{T G_{n}}(C)$. Thus, $\left|N_{T G_{n}}(C)\right|=8$ since every vertex in $T G_{n}$ for $n \geq 2$ has fixed vertex degree 3. This implies that $\kappa_{c}\left(T G_{n}\right) \leq 8$.

Now, we show that no minimum cyclic vertex-cut set F
such that $|F| \leq 7$. Suppose that we have a minimum cyclic vertex-cut set F such that $|F| \leq 7$. Let $F_{i}=F \cap f_{i}$ where f_{i} is a f-cycle associated with number $i, i \in\left\{0,1, \cdots, 2^{n-1}-1\right\}$. Define $I=\left\{i| | F_{i} \mid \geq 2\right\}$.

Claim 1: Let $G 1$ be the subgraph of $T G_{n}$ induced by $\bigcup_{i \notin I} V\left(f_{i}-F_{i}\right)$. Then $G 1$ is connected.

Proof of Claim 1: Let $u \in V\left(f_{i}-F_{i}\right)$ and $v \in V\left(f_{j}-F_{j}\right)$ with $\left|F_{i}\right| \leq 1$ and $\left|F_{j}\right| \leq 1$ for some i and j, where i and j may be the same. To prove the claim, we have to show that there is a path between vertices u and v.

Case 1: $i=j$. Since $\left|F_{i}\right| \leq 1$, subgraph induced by $f_{i}-F_{i}$ is connected. Thus, there is a path connecting u and v.

Case 2: $i \neq j$. Observed that the two g-edges between adjacent f-cycles corresponding to an edge in $R G_{n-1}$. To delete an edge in $R G_{n-1}$, each g-edge must have one vertex deleted. Thus, deleting an edge in $R G_{n-1}$ requires deleting at least two vertices in $T G_{n}$. Since every vertex in $T G_{n}$ is incident on exactly one g-edge, vertices in $T G_{n}$ incident on different g-edge are different vertices. Thus, at most one incident edge of vertex f_{i} in $R G_{n-1}$ is deleted. Similarly, at most one incident edge of vertex f_{j} in $R G_{n-1}$ is deleted. Since $|F| \leq 7$, at most three edges in $R G_{n-1}$ are deleted. Since $|F| \leq 7, R G_{n-1}$ has at most three vertices (f-cycles) f_{k} such that $k \in I$. Since $k \in I, f_{k} \notin G 1$. By Lemma 2.7 and $n \geq 4$, there is a path P in $R G_{n-1}$ connecting f_{i} and f_{j} such that at most one vertex f_{s} where $s \neq i$ and $s \neq j$ in P has $\left|F_{s}\right|=1$ and other vertices f_{l} where $l \neq i$ and $l \neq j$ in P have $\left|F_{l}\right|=0$. Since $\left|F_{s}\right| \leq 1$, subgraph induced by $f_{s}-F_{s}$ is connected. Since $\left|F_{i}\right| \leq 1$ and $\left|F_{j}\right| \leq 1$, induced subgraphs $f_{i}-F_{i}$ and $f_{j}-F_{j}$ are connected. Thus, there exists a path connecting u and v in $G 1$. This completes the proof of the Claim 1.

By Claim 1, if $|I|=0$, then subgraph induced by $V\left(T G_{n}-F\right)$ is $G 1$ which is a connected graph, contradicting that F is a vertex-cut set. Therefore, we have $|I|>0$. Since $|F| \leq 7, R G_{n-1}$ has at most three vertices (f-cycle) f_{k} such that $k \in I$. Thus, $1 \leq|I| \leq 3$. Let $G 2$ be the subgraph of $T G_{n}$ induced by $\bigcup_{i \in I} V\left(f_{i}-F_{i}\right)$.

Claim 2: Let T be a connected component of $G 2$ containing at least a cycle. Then, T is connected to $G 1$.

Proof of Claim 2: We prove the claim by contradiction. Assume that T is not connected to $G 1$. First, we show that $N_{T G_{n}}(T) \subseteq F$. Clearly, $N_{T G_{n}}(T) \bigcap V\left(f_{i}\right) \subseteq F_{i}$ for $i \in I$ since T is a component of $G 2$. Let $v \in N_{T G_{n}}(T) \bigcap V\left(f_{i}\right)$ for some $i \notin I$. Since $\left|F_{i}\right| \leq 1$ for $i \notin I, f_{i}-F_{i}$ is connected. If $v \notin F_{i}$, then $v \in G 1$. This implies that T is connected to $G 1$. So, we must have $v \in F_{i}$. Thus, $N_{T G_{n}}(T) \cap V\left(f_{i}\right) \subseteq F_{i}$ for $i \notin I$. Therefore, $N_{T G_{n}}(T) \subseteq F$. Since $|F| \leq 7$, we have the following condition:

$$
\left|N_{T G_{n}}(T)\right| \leq 7
$$

In the following, we derive a contradiction that this condition can not be hold.

Let C be a cycle in T. Since $1 \leq|I| \leq 3$, we have the following three cases.

Case 1: C is a cycle in subgraph G induced by $V\left(f_{i}\right)$ for some $i \in I$. Since $\left|F_{i}\right| \geq 2$, the subgraph induced by
$V\left(f_{i}-F_{i}\right)$ consists of paths or isolated vertices. Thus, T contains isolated vertex or paths in G. This implies that C can not be a cycle in G.

Case 2: Let G be the subgraph induced by $V\left(f_{i}\right) \cup V\left(f_{j}\right)$ for some $i \in I, j \in I$, and $i \neq j$. C is a cycle in G such that $V(C) \cap V\left(f_{i}\right) \neq \emptyset$ and $V(C) \cap V\left(f_{j}\right) \neq \emptyset$.

This implies that C is a cycle connecting two adjacent f-cycles. Since adjacent f-cycles are connected by exactly two g_{a}-edges for $1 \leq a \leq n$, the number of f-edges between the two adjacent g_{a}-edges is n by Lemma 2.9. By Lemma 2.12, C contains two paths of length $n-2$ where one of the paths is in f_{i} and the other one is in f_{j}. By Lemma 2.10, we can choose a path $P 1=u_{1} u_{2} \cdots u_{n-1}$ in f_{i} such that the g-edge incident on $u_{s}, 1 \leq s \leq n-1$, is not a g_{a}-edge. By Lemma 2.11, the outside neighbors $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n-1}^{\prime}$ are in $n-1$ different f-cycles. Let $Y 1=$ $\left\{u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n-1}^{\prime}\right\}$ be the outside neighbor set of $P 1$. Let $u_{s}^{\prime} \in Y 1$. Since the g-edge incident on u_{s} is not a g_{a}-edge, we have $u_{s}^{\prime} \notin V\left(f_{j}\right)$. Clearly, outside neighbor $u_{s}^{\prime} \notin V\left(f_{i}\right)$. We have $Y 1 \cap\left(f_{i} \cup f_{j}\right)=\emptyset$.

Now, we count the number of vertices in $Y 1$ that belong to $N_{T G_{n}}(T)$. Let outside neighbor $u_{s}^{\prime} \in Y 1$. Let outside neighbor $u_{s}^{\prime} \in V\left(f_{k}\right)$ for some $k \notin I$. Clearly, $u_{s}^{\prime} \in N_{T G_{n}}(T)$. Let $u_{s}^{\prime} \in V\left(f_{k}\right)$ for some $k \in I$ where $k \neq i$ and $k \neq j$. By Lemma 2.11 and $|I| \leq 3$, at most one of the outside neighbors, say u_{s}^{\prime}, belongs to $V(G 2)$. Thus, at least $|Y 1|-1=n-2$ outside neighbors are in $N_{T G_{n}}(T)$.

Similarly, let $P 2=v_{1} v_{2} \cdots v_{n-1}$ be the path in f_{j} such that the g-edge incident on $v_{s}, 1 \leq s \leq n-1$, is not a g_{a}-edge. Let $Y 2=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n-1}^{\prime}\right\}$ be the outside neighbor set of $P 2$. By the same argument on path $P 1$, we have $Y 2 \cap\left(f_{i} \cup f_{j}\right)=\emptyset$ and at least $|Y 2|-1=n-2$ outside neighbors are in $N_{T G_{n}}(T)$. By Lemma 2.12, $Y 1 \cap Y 2=\emptyset$.

By Lemma 2.6, no f-cycle can be adjacent to both f_{i} and f_{j} since f_{i} and f_{j} are adjacent f-cycles. Thus, $Y 1 \cup Y 2$ contains at most one vertex in f_{k} for $k \in I$ where $k \neq i$ and $k \neq j$. Thus, we have at least $|Y 1|+|Y 2|-1=2 n-3$ outside neighbors in $N_{T G_{n}}(T)$.

Observed that subgraph $G F$ induced by $V\left(f_{i}-F_{i}\right)$ with $\left|F_{i}\right| \geq 2$ consists of paths or isolated vertices. Since T contains a path or an isolated vertex of $G F, N_{f_{i}}(T) \subseteq F_{i}$ and $N_{f_{i}}(T) \geq 2$. By the same argument, $N_{f_{j}}(T) \subseteq F_{j}$ and $N_{f_{j}}(T) \geq 2$. Notice that $F_{i} \cap F_{j}=\emptyset$. Now, we have

$$
\begin{aligned}
& \left|N_{T G_{n}}(T)\right| \\
& \geq|Y 1|+|Y 2|-1+\left|N_{f_{i}}(T)\right|+\left|N_{f_{j}}(T)\right| \\
& \geq 2 n-3+2+2=2 n+1 .
\end{aligned}
$$

From this, we have $\left|N_{T G_{n}}(T)\right| \geq 2 n+1 \geq 9$ for $n \geq 4$. Since $\left|N_{T G_{n}}(T)\right| \leq 7$ by the assumption, this is a contradiction.

Case 3: Let G be the subgraph induced by $V\left(f_{i}\right) \cup$ $V\left(f_{j}\right) \cup V\left(f_{k}\right)$ where f_{i}, f_{j}, and f_{k} are three distinct f cycles and $i, j, k \in I$. Let C be a cycle in G such that $V(C) \cap V\left(f_{i}\right) \neq \emptyset, V(C) \cap V\left(f_{j}\right) \neq \emptyset$, and $V(C) \cap V\left(f_{k}\right) \neq \emptyset$. By Lemma 2.6, no cycle of length 3 in $R G_{n-1}$ for $n \geq 4$. So, using the construction of C in the proof of Lemma 2.13, f_{i}
and f_{j} are not adjacent f-cycles, f_{i} and f_{k} are connected by two g_{a}-edges, and f_{j} and f_{k} are connected by two g_{b}-edges, where $a \neq b$ and $a, b \in\{1,2, \cdots, n\}$. By Lemma 2.10, we can choose a path $P 1=u_{1} u_{2} \cdots u_{n-1}$ in f_{i} such that the g edge incident on $u_{s}, 1 \leq s \leq n-1$, is not a g_{a}-edge. By Lemma 2.11, the outside neighbors $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n-1}^{\prime}$ are in $n-1$ different f-cycles. Let $Y 1=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n-1}^{\prime}\right\}$ be the outside neighbor set of $P 1$. Let $u_{s}^{\prime} \in Y 1$. Since the g-edge incident on u_{s} is not a g_{a}-edge, we have $u_{s}^{\prime} \notin V\left(f_{k}\right)$. Clearly, outside neighbor $u_{s}^{\prime} \notin V\left(f_{i}\right)$. Since f_{i} and f_{j} are not adjacent f-cycles, $u_{s}^{\prime} \notin V\left(f_{j}\right)$. We have $Y 1 \cap\left(f_{i} \cup f_{j} \cup f_{k}\right)=\emptyset$.

Now, we count the number of vertices in $Y 1$ that belong to $N_{T G_{n}}(T)$. Let $u_{s}^{\prime} \in Y 1$. Since $Y 1 \cap\left(f_{i} \cup f_{j} \cup f_{k}\right)=\emptyset$, $u_{s}^{\prime} \notin G 2$. By the same argument in Case $2, u_{s}^{\prime} \in N_{T G_{n}}(T)$ if $u_{s}^{\prime} \in V\left(f_{l}\right)$ for $l \notin I$. Thus, all $|Y 1|=n-1$ outside neighbors u_{s}^{\prime} are in $N_{T G_{n}}(T)$.

Similarly, let $P 2=v_{1} v_{2} \cdots v_{n-1}$ be the path in f_{j} such that the g-edge incident on $u_{s}, 1 \leq s \leq n-1$, is not a $g_{b^{-}}$ edge. Let $Y 2=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n-1}^{\prime}\right\}$ be the outside neighbor set of $P 2$. By the same argument on path $P 1$ in this case, we have $Y 2 \cap\left(f_{i} \cup f_{j} \cup f_{k}\right)=\emptyset$ and all $|Y 2|=n-1$ outside neighbors u_{s}^{\prime} are in $N_{T G_{n}}(T)$.

Notice that F_{i}, F_{j}, and F_{k} are pairwise disjoint and $\left|F_{s}\right| \geq 2$ for $s \in I$. By the same argument in Case 2, we have $N_{f_{s}}(T) \subseteq F_{s}$ and $N_{f_{s}}(T) \geq 2$ for $s \in I$. By Lemma 2.13, we have $Y 1 \cap Y 2=\emptyset$. Now, we have

$$
\begin{aligned}
& \left|N_{T G_{n}}(T)\right| \\
& \geq|Y 1|+|Y 2|+\left|N_{f_{i}}(T)\right|+\left|N_{f_{j}}(T)\right|+\left|N_{f_{k}}(T)\right| \\
& \geq 2(n-1)+6=2 n+4 .
\end{aligned}
$$

From this, we have $\left|N_{T G_{n}}(T)\right| \geq 2 n+4 \geq 12$ for $n \geq 4$. Since $\left|N_{T G_{n}}(T)\right| \leq 7$ by the assumption, this is a contradiction.

This complete the proof of Claim 2.
Let $\widetilde{G 1}$ be the connected component containing $G 1$. From Claim 2, every connected component in $G 2$ which has a cycle is connected to $G 1$. Thus, every such connected component in $G 2$ is in $\widetilde{G 1}$. Therefore, $T G_{n}-F-\widetilde{G 1}$ consists of acyclic connected components, contradicting to F is a cyclic vertex-cut set. This completes the proof.

By considering all possible vertex subsets F and distributing of the vertices in F to the f-cycles, we can determine the values of the cyclic vertex connectivity $\kappa_{c}\left(T G_{2}\right)$ and $\kappa_{c}\left(T G_{3}\right)$ of $T G_{2}$ and $T G_{3}$, respectively.

The $T G_{2}$ has two f-cycles and eight vertices. It is easy to check that the cyclic vertex connectivity $\kappa_{c}\left(T G_{2}\right)$ does not exist.

The $T G_{3}$ has four f-cycles. The shortest cycle C of $T G_{3}$ is of length 6. The $N_{T G_{3}}(C)$ can be checked as a cyclic vertex-cut set of $T G_{3}$. Since $\left|N_{T G_{3}}(C)\right|=6$ and any vertex subset F such that $1 \leq|F| \leq 5$ can not be checked as a cyclic vertex-cut set, the cyclic vertex connectivity $\kappa_{c}\left(T G_{3}\right)=6$

5. Concluding Remarks

In this paper, the value of the cyclic vertex connectivity
$\kappa_{c}\left(T G_{n}\right)$ for the trivalent Cayley graphs $T G_{n}$ for $n \geq 4$ is determined and is a constant.

Without a proof, we also determine the values of the cyclic vertex connectivity $\kappa_{c}\left(T G_{2}\right)$ and $\kappa_{c}\left(T G_{3}\right)$ for $T G_{2}$ and $T G_{3}$, respectively.

References

[1] E. Cheng, L. Lipták, K. Qiu, and Z. Shen, "Cyclic vertexconnectivity of Cayley graphs generated by transposition trees," Graphs and Combin., vol.29, no.4, pp.835-841, 2013.
[2] E. Cheng, K. Qiu, and Z. Shen, "Connectivity results of hierarchical cubic networks as associated with linearly many faults," IEEE Conf. Computational Science and Engineering (CSE), pp.1213-1220, 2014.
[3] E. Cheng, K. Qiu, and Z. Shen, "Connectivity results of complete cubic networks as associated with linearly many faults," J. Interconnection Networks, vol.15, 1550007, 2015.
[4] D. Huang and Z. Zhang, "On cyclic vertex-connectivity of cartesian product digraphs," J. Combin. Optim., vol.24, no.3, pp.379-388, 2012.
[5] H. Jiang, J. Meng, and Y. Tian, "Super cyclically edge connected half vertex transitive graphs," Appl. Math., vol.4, no.2, pp.348-351, 2013.
[6] S. Latifi, M. Hegde, and M. Naraghi-Pour, "Conditional connectivity measures for large multiprocessor systems," IEEE Trans. Comput., vol.43, no.2, pp.218-222, 1994.
[7] D. Lou and D.A. Holton, "Lower bound of cyclic edge connectivity for n-extendability of regular graphs," Discrete Math., vol.112, no.1-3, pp.139-150, 1993.
[8] M.D. Plummer, "On the cyclic connectivity of planar graphs," Graph Theory and Applications, Y. Alavi, D.R. Lick, and A.T. White, eds., Lecture Notes in Mathematics, vol.303, pp.235-242, Springer-Verlag, Berlin, 1972.
[9] P. Vadapalli and P.K. Srimani, "Trivalent Cayley graphs for interconnection networks," Inform. Process. Lett., vol.54, no.6, pp.329-335, 1995.
[10] B. Wang and Z. Zhang, "On cyclic edge-connectivity of transitive graphs," Discrete Math., vol.309, no.13, pp.4555-4563, 2009.
[11] Z. Yu, Q. Liu, and Z. Zhang, "Cyclic vertex connectivity of star graphs," Combinatorial Optimization and Applications, W. Wu and O. Daescu, eds., Lecture Notes in Computer Science, vol.6508, pp.212-221, Springer Berlin Heidelberg, New York, 2010.
[12] Z. Zhang and B. Wang, "Super cyclically edge connected transitive graphs," J. Combin. Optim., vol.22, no.4, pp.549-562, 2011.
[13] J.X. Zhou and Y.T. Li, "Super cyclically edge-connected vertex-transitive graphs of girth at least 5," Acta Math. Sin. (Engl. Ser.). vol.29, no.8, pp.1569-1580, 2013.
[14] J.-X. Zhou, Z.-L. Wu, S.-C. Yang, and K.-W, Yuan, "Symmetric property and reliability of balanced hypercube," IEEE Trans. Comput., vol.64, no.3, pp.876-881, 2015.

Jenn-Yang Ke received the Ph.D. degree in Computer Science and Information Engineering from National Chiao Tung University, Taiwan, Republic of China, in 1997. He was with the Department of Applied Mathematics, Tatung University from 1997 to 2013. He joined the Department of Computer Science and Engineering, Tatung University, Taiwan, Republic of China, in 2013. His main research areas are parallel computation, GPU programming, and interconnection networks.

[^0]: Manuscript received October 9, 2017.
 Manuscript revised February 11, 2018.
 Manuscript publicized March 30, 2018.
 ${ }^{\dagger}$ The author is with the Department of Computer Science and Engineering, Tatung University, Taipei, 10452, Taiwan.
 a) E-mail: jyke@ttu.edu.tw (Corresponding author)

 DOI: 10.1587/transinf.2017EDP7334

