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Cyclic Vertex Connectivity of Trivalent Cayley Graphs

Jenn-Yang KE†a), Member

SUMMARY A vertex subset F ⊆ V(G) is called a cyclic vertex-cut
set of a connected graph G if G − F is disconnected such that at least two
components in G − F contain cycles. The cyclic vertex connectivity is the
cardinality of a minimum cyclic vertex-cut set. In this paper, we show that
the cyclic vertex connectivity of the trivalent Cayley graphs TGn is equal
to eight for n ≥ 4.
key words: interconnection network, trivalent Cayley graphs, fault-
tolerance, conditional connectivity, cyclic vertex connectivity

1. Introduction

Let G = (V(G), E(G)) be a simple connected graph, where
V(G) and E(G) are the vertex set and edge set, respectively.
A vertex subset F ⊆ V(G) (edge subset F ⊆ E(G)) is called
a cyclic vertex-cut set (cyclic edge-cut set) if G − F has
at least two connected components containing cycles. The
cyclic vertex-cut set may not exist. The cyclic vertex con-
nectivity κc(G) (cyclic edge connectivity λc(G)) is defined
as the minimum cardinality over all cyclic vertex-cut sets
(cyclic edge-cut sets) of G if G has a cyclic vertex-cut set
(cyclic edge-cut set). The cyclic vertex (cyclic edge) con-
nectivity has been studied in [1]–[5], [7], [8], [10]–[14].

Connectivity is a measurement for the fault-tolerance
capability of interconnection network. Call the vertices in
cyclic vertex-cut set F as faulty and vertices in G − F as
good. The cyclic vertex connectivity is an important mea-
sure for supporting the execution of parallel algorithms on
cycles in a faulty and disconnected interconnection network.
The cyclic vertex connectivity is determined for the follow-
ing interconnection networks: star graphs [1], [11], bubble
sort graphs [1], hierarchical cubic networks [2], complete
cubic networks [3], and balanced hypercubes [14].

Cyclic vertex connectivity is related to a kind of condi-
tional connectivity. In [6], the authors define the conditional
connectivity as follows: for a connected graph G, a vertex
subset F ⊆ V(G) is called a Rk-vertex-cut set if G − F is
disconnected and each vertex in G − F has at least k neigh-
bors in G − F. The Rk-vertex-connectivity κk(G) is the car-
dinality of a minimum Rk-vertex-cut set of G. Since every
graph with minimum degree at least two has a cycle, we
have κc(G) ≤ κ2(G) if both κc(G) and κ2(G) exist. In [11],
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the authors gave an example which shows that the strict in-
equality may hold and the gap between κc(G) and κ2(G) can
be arbitrarily large.

Trivalent Cayley graphs proposed in [9] are fixed ver-
tex degree interconnection network which are suitable for
VLSI implementation. In [9], the graphs are shown to have
nice network properties such as regular, logarithmic diam-
eter, and maximal fault tolerant. As fixed vertex degree
graphs, trivalent Cayley graphs have the advantage to form a
parallel architecture with large number of computing nodes.
In this paper, we determine the cyclic vertex connectivity of
the trivalent Cayley graphs.

The rest of the paper is organized as follows. Sec-
tion 2 recalls and derives some structure properties of triva-
lent Cayley graphs. Section 3 derives some properties about
shortest cycles in trivalent Cayley graphs. Section 4 de-
termines the value of cyclic vertex connectivity of trivalent
Cayley graph TGn for n ≥ 4. Section 5 provides concluding
remarks.

2. Preliminaries

We use the following notations in this paper. Let v be a
vertex of a graph G. NG(v) is the set of vertices adjacent
to v in G. For a vertex subset V of the graph G, NG(V) =
(
⋃
v∈V NG(v)) − V . Sometimes, we use a graph to represent

its vertex set. For example, NG(G1) represents NG(V(G1))
where G1 is a subgraph of G.

The structure of the trivalent Cayley graphs TGn is
stated in this section. Each vertex in the graph TGn cor-
responds to a circular permutation of n symbols in lexico-
graphic order where each symbol may be in either uncom-
plement or complement form. Let tk, 1 ≤ k ≤ n, denote the
k-th symbol in the set of those n symbols. Denote t∗i as ei-
ther ti or t̄i. Denote u = a1a2 · · · an to represent vertex u with
label a1a2 · · · an. If a1 = t∗k , then, for 2 ≤ i ≤ n, ai = t∗(k+i−1)
if k + i − 1 ≤ n, otherwise, ai = t∗(k+i−1) mod n. The edges of
the graph TGn are defined by three generators as follows:

f (a1a2 · · · an) = a2a3 · · · ā1,

f −1(a1a2 · · · an) = āna1 · · · an−1,

g(a1a2 · · · an) = a1a2 · · · ān.

Notice that f −1 f = f f −1 = e and gg = e, where e is the
identity mapping. The edges between u and f (u) or f −1(u)
are called a f -edge or f −1-edge, respectively. Observe that
a f -edge is also a f −1-edge. An edge between u and g(u)
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is called a g-edge. We classify the g-edges as follows. Let
u = a1a2 · · · an. The g-edge incident on u is called a gi-edge
if an is symbol t∗i . Clearly, each vertex has two f -edges and
one g-edge incident on it. Every vertex in TGn for n ≥ 2
has vertex degree 3, see [9]. Any cycle in TGn consists of
f -edges is called a f -cycle. The following results can be
found in [9].

Lemma 2.1: (See [9]) All of the vertices of TGn are parti-
tioned into vertex disjoint f -cycles of length 2n; number of
f -cycles in TGn is 2n−1.

The complement of any vertex u = u1u2 · · · un in TGn

is the vertex u obtained by complementing the symbols in u,
i.e., ū = ū1ū2 · · · ūn.

Lemma 2.2: (See [9]) For an arbitrary pair of vertices u
and v in TGn such that g(u) = v, the complement vertices
satisfy the same relation, i.e., g(ū) = v̄.

Lemma 2.3: (See [9]) For any vertex u in TGn, both the u
and u belong to the same f -cycles.

For each f -cycle in TGn, the unique vertex with la-
bel starting with t1 is called the leader vertex. Let t1t∗2 · · · t∗n
be the leader vertex of some f -cycle. The leader vertex is
mapped into a (n − 1)-bit binary number b2b3 · · · bn by as-
signing bit bi to 1 if t∗i = ti and 0 if t∗i = t̄i. The f -cycle is
assigned with the binary number associated with it’s leader
vertex. We denote f -cycle with (n − 1)-bit binary number
b2b3 · · · bn as fb2b3···bn . For brevity, we also denote f -cycle
as fi for integer number i. Cycles fi and f j are said to be
adjacent if there exists a vertex u ∈ fi and a vertex v ∈ f j

such that u = g(v) or v = g(u). We reformulate the following
result given in [9] for our need in this paper.

Lemma 2.4: (See [9]) Each fb2b3···bn -cycle in TGn is adja-
cent to the following n different f -cycles:

fb̄2b̄3···b̄n
by g1-edge, fb̄2b3···bn

by g2-edge,

fb2b̄3···bn
by g3-edge, · · · , fb2b3···b̄n

by gn-edge.

From this lemma, we see that the binary numbers as-
sociated with any two adjacent f -cycles must have one bit
different or all different.

By Lemmas 2.1, 2.2, 2.3, and 2.4, we see that adjacent
f -cycles are connected by exactly two gi-edges for some i,
1 ≤ i ≤ n. Furthermore, there are exactly two gi-edges,
1 ≤ i ≤ n, incident on the vertices of the f -cycle.

Lemma 2.5: Let fi and f j be two distinct f -cycles in the
trivalent Cayley graphs TGn. Then, NTGn ( fi)∩NTGn ( f j) = ∅.
Proof : Let vertex w ∈ NTGn ( fi)∩NTGn ( f j). Then, there exist
two distinct vertices u ∈ fi and v ∈ f j such that g(u) = w and
g(v) = w. By the definition of generator g, we have u = v.
Since u � v, this is a contradiction. �

A TGn can be represented as a reduced graph RGn−1

as follows: condense each f -cycle into a single vertex and
label that vertex with the (n − 1)-bit binary number of the
f -cycle; connect two vertices of RGn−1 if and only if the

corresponding f -cycles are adjacent in TGn. We have the
following lemma.

Lemma 2.6: No cycle of length three in RGn−1 for n ≥ 4.

Proof : Assume that RGn−1 has a cycle of length three. This
implies that there are three f -cycles such that one of f -cycle
fi is adjacent to the other two f -cycles f j and fk. And, f j and
fk must be adjacent f -cycles. Since fi is adjacent to both of
f j and fk, by Lemma 2.4, the labels of f j and fk have two or
n−2 different bits. Since f j is adjacent to fk, by Lemma 2.4,
the labels of f j and fk have one or n − 1 different bits. Since
n − 1 � 2 and n − 2 � 1 for n ≥ 4, we see that f j and fk are
not adjacent in TGn. Therefore, there is no cycle of length
three in RGn−1. �

The following result in [9] is useful in deriving our re-
sult.

Lemma 2.7: (See [9]) The vertex connectivity of RGn−1

corresponding to TGn is n, i.e., for any two given source
and destination vertices in RGn−1, there are n vertex disjoint
paths connecting the source and the destination.

Define the composition of generators as (h1 · h2)(u) =
h1(h2(u)). Let u be the leader vertex of a f -cycle. The 2n
vertices in a f -cycle can be denoted by f k(u) for 1 ≤ k ≤ 2n.
Let a = k mod n. Then, the g-edge incident on the vertex
f k(u) is ga-edge if a � 0 and gn-edge, otherwise. We have
the following lemma.

Lemma 2.8: Let ga-edge and gb-edge be the g-edges inci-
dent on distinct vertices f k1 (u) and f k2 (u) of a f -cycle with
leader vertex u, respectively. Let l be the number of f -edges
in the f -cycle connecting the ga and gb. Then, l = |k1 − k2|
or 2n − |k1 − k2|. Furthermore, l = n if a = b.

Proof : Since f -cycle is a cycle consisting of f -edges, there
are two paths connecting the ga and gb. Without loss of
generality, let k1 < k2. Then, one of the paths must consist
of |k1 − k2| f -edges. By Lemma 2.1, the length of a f -cycle
is 2n. Thus, the other path consists of 2n− |k1 − k2| f -edges.
Therefore, l = |k1 − k2| or 2n − |k1 − k2|.

If a = b, we must have k2 = k1 + n. Then, both of the
paths consists of n f -edges. Thus, l = n. �

Let cycle C contains a sequence of g-edges. Let a and
b be integers in the range from 1 to n. We call ga-edge and
gb-edge adjacent in C if edges in C between ga-edge and
gb-edge are all f -edges. Since f -cycles are vertex disjoint
cycles by Lemmas 2.1, the edges between any two adjacent
ga-edge and gb-edge are in the same f -cycle.

Lemma 2.9: Let C be a cycle with at least two g-edges in
TGn. Let l be the number of f -edges in C between any two
adjacent ga-edge and gb-edge. Then

l =

{|b−a| or 2n−|b−a| or n−|b−a| or n+|b−a| if b�a

n if b=a

Proof : Since the edges in C between any two adjacent ga-
edge and gb-edge are in the same f -cycle, there are two
possible ga-edges and two possible gb-edges incident on the
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vertices of the f -cycle.
Let u be the leader vertex of the f -cycle. Let ga-edge

and gb-edge be incident on vertices f k1(u) and f k2(u), re-
spectively. Now, we have that k1 = a or a + n, k2 = b or
b + n. Case 1: k1 = a and k2 = b. By Lemma 2.8, l = |b − a|
or 2n− |b− a| if b � a. Otherwise, l = n. Case 2: k1 = a and
k2 = b + n. By Lemma 2.8, l = n + |b − a| or n − |b − a| if
b � a. Otherwise, l = n. Case 3: k1 = a + n and k2 = b. By
Lemma 2.8, l = n+ |b− a| or n− |b− a| if b � a. Otherwise,
l = n. Case 4: k1 = a + n and k2 = b + n. By Lemma 2.8,
l = |b − a| or 2n − |b − a| if b � a. Otherwise, l = n. This
completes the proof. �

Notice that 1 ≤ |b − a| ≤ n − 1 since a, b ∈ {1, · · · , n}.
Lemma 2.10: Let P = u1u2 · · · un+1 be a path of length n
in a f -cycle of TGn. Then,

1. u1 and un+1 are incident on ga-edges where 1 ≤ a ≤ n
2. vertices other than u1 and un+1 are incident on n − 1

different gi-edges where i � a.

Proof : Let u be the leader vertex of the f -cycle. Let vertex
u1 = f k(u) where 1 ≤ k ≤ 2n. Notice that ui = f k+i−1(u)
for 1 ≤ i ≤ n + 1. By the definition of generator f , the
last symbols of the vertex labels on u1 and un+1 are the same
symbol, say t∗a, where 1 ≤ a ≤ n. Thus, u1 and un+1 are
incident on ga-edges. By the definition of generator f , the
last symbols of the vertex labels on ui, 1 ≤ i ≤ n, are all
different. Thus, the g-edges incident on those vertices ui are
all different. Therefore, vertices other than u1 and un+1 are
incident on n − 1 different gi-edges where i � a. �

For any f -cycle f and any vertex u ∈ V( f ), u has ex-
actly one neighbor outside of f , namely the vertex g(u). De-
note u

′
as the outside neighbor of u.

Lemma 2.11: Let path P = u1u2 · · · un−1 of length n − 2 in
a f -cycle of TGn, the outside neighbors u

′
1, u

′
2, · · · , u

′
n−1 are

in n − 1 different f -cycles.

Proof : By Lemma 2.10, the gi-edges incident on vertices
ui of path P are all different. By Lemma 2.4, the outside
neighbors u

′
1, u

′
2, · · · , u

′
n−1 are in n−1 different f -cycles. �

We call Y = {u′k |u
′
k is the outside neighbor of vertex uk

in path P}, the outside neighbor set of path P. Clearly, Y ⊆
NTGn ( f ) if path P is in f -cycle f . The following two lemmas
are useful in deriving the value of cyclic vertex connectivity
κc(TGn), n ≥ 4.

Lemma 2.12: Let fi and f j be two different f -cycles in
TGn, n ≥ 4. Let G be the subgraph induced by V( fi)∪V( f j).
Let C be a cycle in G such that V(C) ∩ V( fi) � ∅ and
V(C) ∩ V( f j) � ∅. Then, there are two paths P1 and P2
in C of length n − 2 such that P1 is in fi and P2 is in f j.
Furthermore, the outside neighbor sets Y1 of P1 and Y2 of
P2 satisfy Y1 ∩ Y2 = ∅.
Proof : Since C is a cycle in G such that V(C) ∩ V( fi) � ∅
and V(C) ∩ V( f j) � ∅, fi and f j must be adjacent f -cycles
connected by two ga-edges for some a ∈ {1, 2, · · · , n}. By
Lemma 2.9, there is a path in C of length n in each f -cycle.

The cycle can be constructed as follows. Let (u1, v1)
and (u2, v2) be the two ga-edges. Without loss of generality,
let u1 and u2 be in fi, while v1 and v2 in f j. Then, cycle C
contains a path in fi from u1 to u2, a ga-edge (u2, v2), a path
in f j from v2 to v1, and another ga-edge (v1, u1).

Since there are two possible paths of length n connect-
ing the two ga-edges in each f -cycle, we have four possi-
ble constructions of cycle C. Clearly, there is a path in C
of length n − 2 in each f -cycle, say P1 in fi and P2 in f j.
Clearly, Y1 ⊆ NTGn ( fi) and Y2 ⊆ NTGn ( f j). By Lemma 2.5,
Y1 ∩ Y2 = ∅. �

Lemma 2.13: Let fi, f j and fk be three different f -cycles in
TGn, n ≥ 4. Let G be the subgraph induced by V( fi)∪V( f j)∪
V( fk). Let C be a cycle in G such that V(C) ∩ V( fi) � ∅,
V(C)∩V( f j) � ∅, and V(C)∩V( fk) � ∅. Then, there are two
nonadjacent f -cycles, say fi and f j, among those three f -
cycles such that two paths P1 and P2 in C of length n−2 are
in fi and f j, respectively. Furthermore, the outside neighbor
sets Y1 of P1 and Y2 of P2 satisfy Y1 ∩ Y2 = ∅.
Proof : Since C is a cycle in G such that V(C) ∩ V( fi) � ∅,
V(C) ∩ V( f j) � ∅ and V(C) ∩ V( fk) � ∅, RGn−1 contains a
corresponding cycle of length 3 or a corresponding path of
length 2 that connects those three f -cycles. By Lemma 2.6,
no cycle of length 3 in RGn−1 for n ≥ 4. Thus, RGn−1 has
a corresponding path of length 2. Without loss of gener-
ality, we assume that fi and f j are not adjacent, and fk is
adjacent to both of fi and f j. Let fk and fi be connected
by two distinct ga-edges and fk and f j be connected by two
distinct gb-edges, where a � b and a, b ∈ {1, 2, · · · , n}. By
Lemma 2.9, each of fi and f j has a path in C of length n.

The cycle C can be constructed as follows. Let (u1, v1)
and (u2, v2) be the two ga-edges where u1 and u2 are in fi,
while v1 and v2 are in fk. Let (x1, y1) and (x2, y2) be the two
gb-edges where x1 and x2 are in fk, while y1 and y2 are in
f j. Then, C contains a path of length n in fi from u1 to u2, a
ga-edge (u2, v2), a path in fk connecting a ga-edge and a gb-
edge, say from v2 to x2, a gb-edge (x2, y2), a path of length
n in f j from y2 to y1, another gb-edge (y1, x1), a path in fk
connecting a gb-edge and a ga-edge, say from x1 to v1, and
another ga-edge (v1, u1).

In cycle C, vertices v1 and v2 are incident on ga-edges
in fk, while vertices x1 and x2 on gb-edges. By Lemma 2.9,
there is a path P1 of length n in fk from v1 to v2, or P2 from
v2 to v1. By Lemma 2.10, there exists exactly one vertex,
say x1 in P1, and another vertex, say x2 in P2, incident on
gb-edge. Thus, fk is divided into four paths where each path
is connecting between a ga-edge and gb-edge. Thus, there
exist two vertex disjoint paths in fk connecting between a
ga-edge and a gb-edge in C.

Since there are two possible paths in each f -cycle for
each path of C in fi and f j and two possible choices of paths
connecting between a ga-edge and a gb-edge in fk, we have
eight possible constructions of cycle C. Clearly, there is a
path in C of length n − 2 in each f -cycle, say P1 in fi and
P2 in f j. Clearly, Y1 ⊆ NTGn ( fi) and Y2 ⊆ NTGn ( f j). By
Lemma 2.5, Y1 ∩ Y2 = ∅. �
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3. Shortest Cycles of Trivalent Cayley Graphs

In this section, we characterize the shortest cycles in triva-
lent Cayley graphs.

Lemma 3.1: Let C be a cycle with m ≤ 3 g-edges in TGn

for n ≥ 4. Then, m is equal to 0 or 2. Furthermore,

1. C is a f -cycle of length 2n if m = 0.
2. C is a cycle of length 2n + 2 and is contained in two

adjacent f -cycles if m = 2.

Proof : Observe that each f -cycle connected in C must have
even number of g-edges in C incident on its vertices. This
implies that the cycle C in TGn will correspond to an iso-
lated vertex if m = 0, a path of length one if m = 2, or a
cycle of length three if m = 3 in RGn−1.

An isolated vertex in RGn−1 is a f -cycle in TGn. By
Lemma 2.1, the length of C is 2n. A path of length one
in RGn−1 corresponds to a cycle connecting two adjacent f -
cycles in TGn. Since adjacent f -cycles are connected by
exactly two gi-edges for some i, 1 ≤ i ≤ n. By Lemma 2.9,
the number of f -edges between the two adjacent ga-edges is
n. Therefore, C is of length 2n + 2. Since cycle of length
three does not exist in RGn−1 for n ≥ 4 by Lemma 2.6, cycle
with three g-edges does not exist. �

The following lemma determines the structure of short-
est cycles.

Lemma 3.2: Let cycle C be a shortest cycle in TGn for
n ≥ 4. Cycle C is of length 8. Furthermore,

1. Cycle C is a f -cycle for n = 4 if C does not contain
g-edges.

2. Cycle C contains four distinct g-edges and four distinct
f -edges. Edges in C are f -edge and g-edge alternating.

Proof : The shortest cycle can be a cycle with or without g-
edges. First, we consider the cycles without g-edges. Let
cycle C

′
be such a cycle. Clearly, C

′
is a f -cycle. By

Lemma 2.1, C
′

is of length 2n. Since n ≥ 4, the shortest
cycles without g-edges have length 8 for n = 4.

Now, we consider the cycles with g-edges. Let cycle
C
′

has m g-edges. Let l be the length of cycle C
′
. By

Lemma 2.9, we see that the minimum number of f -edges
between any two adjacent g-edges is equal to one. There-
fore, l ≥ 2m. Clearly, l ≥ 8 for m ≥ 4. To show that the
shortest cycle with g-edges has length l = 8, we need the
following two claims.

Claim 1: The cycles with m g-edges where 0 < m < 4
have length l > 8.

Claim 2: There exists a cycle with four g-edges of
length l = 8.

Proof of Claim 1: By Lemma 3.1, we only need to con-
sider the case that m = 2. In this case, the cycle has two
g-edges and has length l = 2n + 2. Since n ≥ 4, we have
l > 8.

Proof of Claim 2: Since cycle C
′

with m g-edges has
length l ≥ 2m, the shortest cycle has length l = 8 if m = 4.

This implies that the shortest cycle C with g-edges must
have four distinct g-edges and the number of f -edges be-
tween adjacent g-edges is equal to one. Thus, edges in C
are f -edge and g-edge alternating. Now, we show that such
cycle C exists in TGn for n ≥ 4. Consider the following
cases.

Case 1: The cycle C uses ga-edge, gb-edge, gc-edge,
and gd-edge for four distinct integers a, b, c, d ∈ {1, · · · , n}.
Let C first go through ga-edge, then gb-edge, then gc-edge,
finally gd-edge. By Lemma 2.9, the values of a, b, c, and d
must satisfy the following equations.

|a − b| = 1 or n − 1

|b − c| = 1 or n − 1

|c − d| = 1 or n − 1

|d − a| = 1 or n − 1

Now, we show that if the equations have solutions then
n = 4.

Case 1.1: The solution contains both of 1 and n. With-
out loss of generality, let a = 1 and b = n. Since values of a,
b, c, and d are four distinct integers, we have two possible
choices of values of c and d. For the choice that d = 2 and
c = 3. From the equations, we must have |b−c| = |n−3| = 1
or n − 1. Another choice is that c = n − 1 and d = n − 2.
From the equations, we must have |d − a| = |(n − 2) − 1| = 1
or n − 1. For both choices of values c and d, we must have
n = 4.

Case 1.2: The solution does not contain both of 1 and
n. This implies that the solution must contain four consec-
utive integers. Without loss of generality, let a be the value
of the smallest of the four consecutive integers. From the
equations, we have b = a + 1, c = b + 1, d = c + 1, and
|d − a| = |(a + 3) − a| = 1 or n − 1. This implies that n = 4.

Since n = 4, we may assume that a = 1, b = 2, c = 3,
and d = 4. Now, C first go through g1-edge, then g2-edge,
then g3-edge, finally g4-edge. Let C start at f -cycle fb2b3b4

where b2b3b4 is the binary number associated with the f -
cycle. By Lemma 2.4 and going through the g1-edge, C
reaches f -cycle fb̄2b̄3b̄4

. Then, C reaches f -cycle fb2b̄3b̄4
after

passing through the g2-edge. After passing through the g3-
edge and g4-edge, C reaches the starting f -cycle.

Now, we construct cycle C as follows. Let t∗1t∗2t∗3t∗4 be
the label of vertex u. The cycle C starting with vertex u is
given below:

u = t∗1t∗2t∗3t∗4
f−→ t∗2t∗3t∗4 t̄∗1

g1−→ t∗2t∗3t∗4t∗1
f−→ t∗3t∗4t∗1 t̄∗2

g2−→ t∗3t∗4t∗1t∗2
f−→ t∗4t∗1t∗2 t̄∗3

g3−→ t∗4t∗1t∗2t∗3
f−→ t∗1t∗2t∗3 t̄∗4

g4−→ t∗1t∗2t∗3t∗4 = u

It is easy to check that the vertices in the cycle are all
distinct.
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Case 2: The cycle C uses ga-edge, gb-edge, and gc-
edge for three distinct integers a, b, c ∈ {1, · · · , n}. Assume
that the cycle C has two gb-edges. By Lemma 2.9, the num-
ber of f -edges between two distinct and adjacent gb-edges
is equal to n, where n ≥ 4. Since the number of f -edges
between adjacent g-edges must be equal to one in cycle C,
the two gb-edges can not be adjacent in cycle C. This im-
plies that ga-edge and gb-edge are adjacent g-edges. And,
gb-edge and gc-edge are adjacent g-edges. Without loss of
generality, let C first go through ga-edge, then gb-edge, then
gc-edge, finally another gb-edge. By Lemma 2.9, the values
of a, b, and c must satisfy the following equations.

|a − b| = 1 or n − 1

|b − c| = 1 or n − 1

Clearly, the solution of the equations contains any three
cyclic consecutive integers of the set {1, · · · , n}.

Now, we show that any solution of the equations can
not have a corresponding cycle in TGn. Let C start at f -
cycle fb2b3···bn where b2b3 · · · bn is the binary number associ-
ated with the f -cycle. By Lemma 2.4 and passing through
the four g-edges, C reaches f -cycle fb2···b̄abbb̄c···bn

if a � 1,
b � 1, and c � 1. Or, C reaches f -cycle such that its associ-
ated binary number has the bit ba and bit bc complemented if
b = 1. Or, C reaches f -cycle such that its associated binary
number has each bit bi, 2 ≤ i ≤ n, complemented except the
bit bc or bit ba if a = 1 or c = 1, respectively. Clearly, the
reached f -cycle is not the same as the starting f -cycle with
each corresponding solution. Thus, this choice of g-edges
has no corresponding cycle in TGn.

Case 3: The cycle C uses ga-edge and gb-edge for two
distinct integers a, b ∈ {1, · · · , n}. Clearly, adjacent g-edges
must be ga-edge and gb-edge and |b−a| = 1 or n−1 for n ≥ 4
by Lemma 2.9. Without loss of generality, the values of a
and b can be chosen as follows. For |b− a| = n− 1, let a = n
and b = 1. For |b − a| = 1, let b = a + 1 for 1 ≤ a < n. By
Lemma 2.4 and passing through even number of ga-edges
and even number of gb-edges, C reaches the starting f -cycle.

Now, we construct cycle C as follows. For |b − a| = 1,
let ta be the symbol corresponding to ga-edge. Then, the
symbol corresponding to gb-edge is ta+1. Let t∗a+1 · · · t∗n
t∗1 · · · t∗a be the label of vertex u. The cycle C starting with
vertex u is given below:

u = t∗a+1 · · · t∗nt∗1 · · · t∗a
f−→ t∗a+2 · · · t∗nt∗1 · · · t∗at̄∗a+1

gb−→ t∗a+2 · · · t∗nt∗1 · · · t∗at∗a+1

f −1

−→ t̄∗a+1 · · · t∗nt∗1 · · · t∗a
ga−→ t̄∗a+1 · · · t∗nt∗1 · · · t̄∗a

f−→ t∗a+2 · · · t∗nt∗1 · · · t̄∗at∗a+1

gb−→ t∗a+2 · · · t∗nt∗1 · · · t̄∗at̄∗a+1

f −1

−→ t∗a+1 · · · t∗nt∗1 · · · t̄∗a
ga−→ t∗a+1 · · · t∗nt∗1 · · · t∗a = u

It is easy to check that the vertices in the cycle are all
distinct. Similarly, the cycle C can be constructed for the
case that |b − a| = n − 1.

Case 4: The cycle C uses four ga-edges for a ∈

{1, · · · , n}. Since adjacent f -cycles are connected by exactly
two gi-edges, cycle C does not exist in TGn.

This completes the proof. �

4. Cyclic Vertex Connectivity of Trivalent Cayley
Graphs

This section determines the value of κc(TGn) where n ≥ 4.

Lemma 4.1: Let C be a shortest cycle in TGn, n ≥ 4. Then
NTGn (C) is a cyclic vertex-cut set of TGn.

Proof : Clearly, TGn − NTGn (C) is disconnected with C as
a component. To prove the lemma, we must show that sub-
graph G

′
= TGn − NTGn (C) − C has a cycle. Since graph

with every vertex degree at least 2 has a cycle, we prove that
the degree of each vertex in G

′
is at least 2.

Assume that there exists a vertex u ∈ G
′

such that
deg(u) ≤ 1. This implies that u has at least two neigh-
bors in NTGn (C). Let v1 ∈ NTGn (C) and v2 ∈ NTGn (C) be
two distinct neighbors of u. Also, let x1 and x2 be the ver-
tices in C adjacent to vertices v1 and v2, respectively. Notice
that x1 and x2 must be two distinct vertices. Otherwise, we
have a cycle C4 = x1v1uv2 of length 4 which is impossible
by Lemma 3.2. Then, there is a cycle C

′
consisting of path

x1v1uv2x2 of length 4 and a path in C between x1 and x2. Let
l be the length of the path in C between x1 and x2. Since C
is a cycle, there are two paths between x1 and x2 in C. If
one of the paths has length l, then the other path has length
8 − l. Since the shortest cycle is of length 8 by Lemma 3.2,
we must have l = 4. Thus, there are two possible C

′
cycles

such that each cycle is of length 8 and contains a path in C
of length 4.

Now, we show that cycle C
′

does not exist. Since cycle
C
′
is of length 8, it must have the structure of shortest cycles

in TGn. By Lemma 3.2, we have two cases. Case 1: C is
a f -cycle and n = 4. This implies that edges (x1, v1) and
(x2, v2), which are the edges between C and NTGn (C), must
be g-edges. Case 2: C contains four distinct g-edges and
four distinct f -edges. By Lemma 3.2, the edges in C are f -
edge and g-edge alternating. This implies that edges (x1, v1)
and (x2, v2), which are the edges between C and NTGn (C),
must be f -edges. Then, C

′
has two consecutive f -edges

incident on either x1 or x2. In both cases, cycle C
′

is not a
cycle with edges that are all f -edges or that are with f -edge
and g-edge alternating. By Lemma 3.2, cycle C

′
does not

exist. From this, we conclude that the degree of each vertex
in G

′
is at least 2. �

Theorem 4.2: For any integer n ≥ 4, κc(TGn) = 8.

Proof : By Lemma 4.1, NTGn (C) is a cyclic vertex-cut set
for a shortest cycle C of length 8. So, we have κc(TGn) ≤
|NTGn (C)|. Since C is the shortest cycle of trivalent Cayley
graph TGn for n ≥ 4, no two vertices on C have a common
neighbor in NTGn (C). Thus, |NTGn (C)| = 8 since every vertex
in TGn for n ≥ 2 has fixed vertex degree 3. This implies that
κc(TGn) ≤ 8.

Now, we show that no minimum cyclic vertex-cut set F
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such that |F| ≤ 7. Suppose that we have a minimum cyclic
vertex-cut set F such that |F| ≤ 7. Let Fi = F∩ fi where fi is
a f -cycle associated with number i, i ∈ {0, 1, · · · , 2n−1 − 1}.
Define I = {i | |Fi| ≥ 2}.

Claim 1: Let G1 be the subgraph of TGn induced by⋃
i�I V( fi − Fi). Then G1 is connected.

Proof of Claim 1: Let u ∈ V( fi − Fi) and v ∈ V( f j − F j)
with |Fi| ≤ 1 and |F j| ≤ 1 for some i and j, where i and j
may be the same. To prove the claim, we have to show that
there is a path between vertices u and v.

Case 1: i = j. Since |Fi| ≤ 1, subgraph induced by
fi−Fi is connected. Thus, there is a path connecting u and v.

Case 2: i � j. Observed that the two g-edges between
adjacent f -cycles corresponding to an edge in RGn−1. To
delete an edge in RGn−1, each g-edge must have one vertex
deleted. Thus, deleting an edge in RGn−1 requires deleting
at least two vertices in TGn. Since every vertex in TGn is
incident on exactly one g-edge, vertices in TGn incident on
different g-edge are different vertices. Thus, at most one
incident edge of vertex fi in RGn−1 is deleted. Similarly,
at most one incident edge of vertex f j in RGn−1 is deleted.
Since |F| ≤ 7, at most three edges in RGn−1 are deleted.
Since |F| ≤ 7, RGn−1 has at most three vertices ( f -cycles)
fk such that k ∈ I. Since k ∈ I, fk � G1. By Lemma 2.7
and n ≥ 4, there is a path P in RGn−1 connecting fi and f j

such that at most one vertex fs where s � i and s � j in P
has |Fs| = 1 and other vertices fl where l � i and l � j in P
have |Fl| = 0. Since |Fs| ≤ 1, subgraph induced by fs −Fs is
connected. Since |Fi| ≤ 1 and |F j| ≤ 1, induced subgraphs
fi − Fi and f j − F j are connected. Thus, there exists a path
connecting u and v in G1. This completes the proof of the
Claim 1.

By Claim 1, if |I| = 0, then subgraph induced by
V(TGn−F) is G1 which is a connected graph, contradicting
that F is a vertex-cut set. Therefore, we have |I| > 0. Since
|F| ≤ 7, RGn−1 has at most three vertices ( f -cycle) fk such
that k ∈ I. Thus, 1 ≤ |I| ≤ 3. Let G2 be the subgraph of TGn

induced by
⋃

i∈I V( fi − Fi).
Claim 2: Let T be a connected component of G2 con-

taining at least a cycle. Then, T is connected to G1.
Proof of Claim 2: We prove the claim by contradiction.

Assume that T is not connected to G1. First, we show that
NTGn (T ) ⊆ F. Clearly, NTGn (T )

⋂
V( fi) ⊆ Fi for i ∈ I since

T is a component of G2. Let v ∈ NTGn (T )
⋂

V( fi) for some
i � I. Since |Fi| ≤ 1 for i � I, fi − Fi is connected. If
v � Fi, then v ∈ G1. This implies that T is connected to G1.
So, we must have v ∈ Fi. Thus, NTGn (T )

⋂
V( fi) ⊆ Fi for

i � I. Therefore, NTGn (T ) ⊆ F. Since |F| ≤ 7, we have the
following condition:

|NTGn (T )| ≤ 7.

In the following, we derive a contradiction that this condi-
tion can not be hold.

Let C be a cycle in T . Since 1 ≤ |I| ≤ 3, we have the
following three cases.

Case 1: C is a cycle in subgraph G induced by V( fi)
for some i ∈ I. Since |Fi| ≥ 2, the subgraph induced by

V( fi − Fi) consists of paths or isolated vertices. Thus, T
contains isolated vertex or paths in G. This implies that C
can not be a cycle in G.

Case 2: Let G be the subgraph induced by V( fi)∪V( f j)
for some i ∈ I, j ∈ I, and i � j. C is a cycle in G such that
V(C) ∩ V( fi) � ∅ and V(C) ∩ V( f j) � ∅.

This implies that C is a cycle connecting two adjacent
f -cycles. Since adjacent f -cycles are connected by exactly
two ga-edges for 1 ≤ a ≤ n, the number of f -edges be-
tween the two adjacent ga-edges is n by Lemma 2.9. By
Lemma 2.12, C contains two paths of length n − 2 where
one of the paths is in fi and the other one is in f j. By
Lemma 2.10, we can choose a path P1 = u1u2 · · · un−1 in
fi such that the g-edge incident on us, 1 ≤ s ≤ n − 1,
is not a ga-edge. By Lemma 2.11, the outside neighbors
u
′
1, u

′
2, · · · , u

′
n−1 are in n − 1 different f -cycles. Let Y1 =

{u′1, u
′
2, · · · , u

′
n−1} be the outside neighbor set of P1. Let

u
′
s ∈ Y1. Since the g-edge incident on us is not a ga-edge,

we have u
′
s � V( f j). Clearly, outside neighbor u

′
s � V( fi).

We have Y1 ∩ ( fi ∪ f j) = ∅.
Now, we count the number of vertices in Y1 that be-

long to NTGn (T ). Let outside neighbor u
′
s ∈ Y1. Let outside

neighbor u
′
s ∈ V( fk) for some k � I. Clearly, u

′
s ∈ NTGn (T ).

Let u
′
s ∈ V( fk) for some k ∈ I where k � i and k � j. By

Lemma 2.11 and |I| ≤ 3, at most one of the outside neigh-
bors, say u

′
s, belongs to V(G2). Thus, at least |Y1|−1 = n−2

outside neighbors are in NTGn (T ).
Similarly, let P2 = v1v2 · · · vn−1 be the path in f j such

that the g-edge incident on vs, 1 ≤ s ≤ n−1, is not a ga-edge.
Let Y2 = {v′1, v

′
2, · · · , v

′
n−1} be the outside neighbor set of P2.

By the same argument on path P1, we have Y2∩( fi∪ f j) = ∅
and at least |Y2|−1 = n−2 outside neighbors are in NTGn (T ).
By Lemma 2.12, Y1 ∩ Y2 = ∅.

By Lemma 2.6, no f -cycle can be adjacent to both fi
and f j since fi and f j are adjacent f -cycles. Thus, Y1 ∪ Y2
contains at most one vertex in fk for k ∈ I where k � i and
k � j. Thus, we have at least |Y1|+ |Y2| − 1 = 2n− 3 outside
neighbors in NTGn (T ).

Observed that subgraph GF induced by V( fi − Fi) with
|Fi| ≥ 2 consists of paths or isolated vertices. Since T
contains a path or an isolated vertex of GF, Nfi (T ) ⊆ Fi

and Nfi (T ) ≥ 2. By the same argument, Nfj (T ) ⊆ F j and
Nfj (T ) ≥ 2. Notice that Fi ∩ F j = ∅. Now, we have

|NTGn (T )|
≥ |Y1| + |Y2| − 1 + |Nfi (T )| + |Nfj (T )|
≥ 2n − 3 + 2 + 2 = 2n + 1.

From this, we have |NTGn (T )| ≥ 2n + 1 ≥ 9 for n ≥ 4.
Since |NTGn (T )| ≤ 7 by the assumption, this is a contradic-
tion.

Case 3: Let G be the subgraph induced by V( fi) ∪
V( f j) ∪ V( fk) where fi, f j, and fk are three distinct f -
cycles and i, j, k ∈ I. Let C be a cycle in G such that
V(C) ∩ V( fi) � ∅, V(C) ∩ V( f j) � ∅, and V(C) ∩ V( fk) � ∅.
By Lemma 2.6, no cycle of length 3 in RGn−1 for n ≥ 4. So,
using the construction of C in the proof of Lemma 2.13, fi
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and f j are not adjacent f -cycles, fi and fk are connected by
two ga-edges, and f j and fk are connected by two gb-edges,
where a � b and a, b ∈ {1, 2, · · · , n}. By Lemma 2.10, we
can choose a path P1 = u1u2 · · · un−1 in fi such that the g-
edge incident on us, 1 ≤ s ≤ n − 1, is not a ga-edge. By
Lemma 2.11, the outside neighbors u

′
1, u

′
2, · · · , u

′
n−1 are in

n − 1 different f -cycles. Let Y1 = {u′1, u
′
2, · · · , u

′
n−1} be the

outside neighbor set of P1. Let u
′
s ∈ Y1. Since the g-edge

incident on us is not a ga-edge, we have u
′
s � V( fk). Clearly,

outside neighbor u
′
s � V( fi). Since fi and f j are not adjacent

f -cycles, u
′
s � V( f j). We have Y1 ∩ ( fi ∪ f j ∪ fk) = ∅.

Now, we count the number of vertices in Y1 that belong
to NTGn (T ). Let u

′
s ∈ Y1. Since Y1 ∩ ( fi ∪ f j ∪ fk) = ∅,

u
′
s � G2. By the same argument in Case 2, u

′
s ∈ NTGn (T ) if

u
′
s ∈ V( fl) for l � I. Thus, all |Y1| = n − 1 outside neighbors

u
′
s are in NTGn (T ).

Similarly, let P2 = v1v2 · · · vn−1 be the path in f j such
that the g-edge incident on us, 1 ≤ s ≤ n − 1, is not a gb-
edge. Let Y2 = {v′1, v

′
2, · · · , v

′
n−1} be the outside neighbor set

of P2. By the same argument on path P1 in this case, we
have Y2 ∩ ( fi ∪ f j ∪ fk) = ∅ and all |Y2| = n − 1 outside
neighbors u

′
s are in NTGn (T ).

Notice that Fi, F j, and Fk are pairwise disjoint and
|Fs| ≥ 2 for s ∈ I. By the same argument in Case 2, we have
Nfs (T ) ⊆ Fs and Nfs (T ) ≥ 2 for s ∈ I. By Lemma 2.13, we
have Y1 ∩ Y2 = ∅. Now, we have

|NTGn (T )|
≥ |Y1| + |Y2| + |Nfi (T )| + |Nfj (T )| + |Nfk (T )|
≥ 2(n − 1) + 6 = 2n + 4.

From this, we have |NTGn (T )| ≥ 2n + 4 ≥ 12 for n ≥ 4.
Since |NTGn (T )| ≤ 7 by the assumption, this is a contradic-
tion.

This complete the proof of Claim 2.
Let G̃1 be the connected component containing G1.

From Claim 2, every connected component in G2 which
has a cycle is connected to G1. Thus, every such connected
component in G2 is in G̃1. Therefore, TGn − F − G̃1 con-
sists of acyclic connected components, contradicting to F is
a cyclic vertex-cut set. This completes the proof. �

By considering all possible vertex subsets F and dis-
tributing of the vertices in F to the f -cycles, we can deter-
mine the values of the cyclic vertex connectivity κc(TG2)
and κc(TG3) of TG2 and TG3, respectively.

The TG2 has two f -cycles and eight vertices. It is easy
to check that the cyclic vertex connectivity κc(TG2) does not
exist.

The TG3 has four f -cycles. The shortest cycle C of
TG3 is of length 6. The NTG3 (C) can be checked as a cyclic
vertex-cut set of TG3. Since |NTG3 (C)| = 6 and any vertex
subset F such that 1 ≤ |F| ≤ 5 can not be checked as a cyclic
vertex-cut set, the cyclic vertex connectivity κc(TG3) = 6

5. Concluding Remarks

In this paper, the value of the cyclic vertex connectivity

κc(TGn) for the trivalent Cayley graphs TGn for n ≥ 4 is
determined and is a constant.

Without a proof, we also determine the values of the
cyclic vertex connectivity κc(TG2) and κc(TG3) for TG2 and
TG3, respectively.
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