
1280
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

PAPER

Model Checking in the Presence of Schedulers Using a
Domain-Specific Language for Scheduling Policies∗

Nhat-Hoa TRAN†a), Yuki CHIBA††b), Nonmembers, and Toshiaki AOKI†††c), Member

SUMMARY A concurrent system consists of multiple processes that
are run simultaneously. The execution orders of these processes are de-
fined by a scheduler. In model checking techniques, the scheduling policy
is closely related to the search algorithm that explores all of the system
states. To ensure the correctness of the system, the scheduling policy needs
to be taken into account during the verification. Current approaches, which
use fixed strategies, are only capable of limited kinds of policies and are dif-
ficult to extend to handle the variations of the schedulers. To address these
problems, we propose a method using a domain-specific language (DSL)
for the succinct specification of different scheduling policies. Necessary
artifacts are automatically generated from the specification to analyze the
behaviors of the system. We also propose a search algorithm for explor-
ing the state space. Based on this method, we develop a tool to verify the
system with the scheduler. Our experiments show that we could serve the
variations of the schedulers easily and verify the systems accurately.
key words: concurrent system, model checking, domain-specific language,
system behaviors, scheduler

1. Introduction

The behaviors of a system depend on its scheduler, which
determines the execution orders of the processes. In model
checking, a scheduling policy is closely related to the al-
gorithm that searches all of the system states. If we con-
sider all the behaviors of the processes by interleaving them
when verifying a concurrent system, some spurious coun-
terexamples may be found because following the schedul-
ing policy these behaviors may not happen. This is an over-
approximation approach and can produce false positives. To
avoid this problem, the scheduling policy needs to be taken
into account during the verification to limit the search space
and increase the accuracy.

In reality, many kinds of schedulers, which adopt dif-
ferent strategies, are used in practical systems. These poli-
cies are often different from ‘textbook’ strategies. For ex-

Manuscript received December 2, 2017.
Manuscript revised December 4, 2018.
Manuscript publicized March 29, 2019.
†The author is with Software Engineering Department, Na-

tional University of Civil Engineering, 55 Giai Phong Street,
Hanoi, Vietnam.
††The author is with the Advanced R & D Dept., Tokyo Office,

DENSO CORPORATION, Tokyo, 103–6015 Japan.
†††The author is with the School of Information Science, Japan

Advanced Institute of Science and Technology (JAIST), Nomi-shi,
923–1292 Japan.

∗This paper is an extension of [29]
a) E-mail: hoatn@nuce.edu.vn
b) E-mail: yuki chiba@denso.co.jp
c) E-mail: toshiaki@jaist.ac.jp

DOI: 10.1587/transinf.2017EDP7391

ample, in the automotive operating system (OS) named
OSEK/VDX [5], an application includes multiple concur-
rent tasks that are run based on fixed priority with mixed
preemption scheduling policy; the Linux scheduler supports
different policies for non-real-time and real-time jobs based
on their priorities, such as round-robin and first-in-first-out.
There are methods, such as [6]–[8], for verifying sequential
or concurrent software systems. However, these methods
are difficult to apply directly to verify systems with sched-
ulers because the behaviors that these methods deal with are
different from those of practical systems.

In fact, with the existing modeling languages like
Promela [10], which is used by Spin model checker [3], the
scheduling problems require the encoding of the whole sys-
tem (i.e., the processes and the scheduler) [1], [2]. This ap-
proach is both time-consuming and error-prone. Moreover,
in current studies, the scheduling policies are only realized
in the model of the system and difficult to change.

In this research, we aim at verifying concurrent ap-
plications (systems) which run on OSs using model check-
ing techniques. We address the following problems: a) the
scheduler of the OS controls the executions of the system, b)
there is a variation of the scheduling policies used by the OS,
and c) existing approaches are difficult to handle this vari-
ation. The objective of this research is proposing a method
to facilitate the variation of schedulers in model checking.
To achieve this objective, our method needs to a) easily deal
with different policies with small effort, b) flexibly change
the scheduling strategies, and c) accurately verify the behav-
iors of the system.

We propose a method to verify the system under differ-
ent scheduling policies. The method includes 1) a specifi-
cation language for the processes, 2) a DSL for specifying
the scheduling strategy, and 3) an algorithm to explore the
state space to verify the system behaviors. In our approach,
the main aim of the DSL is to provide a high-level support
for the succinct specification of various scheduling policies.
All of the necessary information for the subsequent analysis
of the system is generated automatically. According to this
method, we have implemented a tool named SSpinJa with
the back-end extended from SpinJa [9], a re-implementation
of the core of Spin in Java. Several experiments were con-
ducted with our approach. The results show that our frame-
work can verify the systems with different scheduling poli-
cies accurately, flexibly, and easily.

The main contributions included in this approach are 1)
proposing a DSL for specifying the scheduling policies, 2)

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1281

proposing a search algorithm based on the behaviors of the
scheduler, and 3) implementing a tool for verifying systems
under various scheduling policies. This paper is an exten-
sion of our work originally reported in [29]. In particular,
the DSL is described in more detail to specify the behaviors
of the system with the formal definitions and the semantic of
the language; we also introduce a new case study to verify
the schedulability of real-time systems.

The rest of the paper is organized as follows: Sect. 2
gives the detail of the approach. Section 3 introduces
the DSL for specifying the scheduling policies. Section 4
presents our approach to model checking systems with
schedulers and the implementation of our method. In
Sect. 5, we introduce four case studies with several exper-
iments. The discussion is shown in Sect. 6. Section 7
presents the related work. Finally, the conclusion and fu-
ture work are given in Sect. 8.

2. The Approach

We propose a method to verify the system behaviors un-
der different scheduling policies. The approach is shown in
Fig. 1. Our ideas are as follows.

Firstly, to model the system, we separate the scheduler
from the processes. This approach is different from the ex-
isting ones, such as [1], [2], which encode both the scheduler
and the processes into the same model. With this approach,
we can flexibly change the policy and reuse the behaviors of
the processes and the scheduling policy.

Secondly, we use Promela as the based modeling lan-
guage to specify the concurrent behaviors of a set of pro-
cesses in the system. In order to deal with the scheduling
policy, several API functions are introduced in this mod-
eling language (1) to support the interaction between the
processes and the scheduler. These functions are for 1) ex-
ecuting a new process with the initial values for the pro-
cess attributes (e.g., priority), 2) accessing the information
managed by the scheduler†, and 3) performing the user-
defined functions (called interface functions) declared in in-
terface part (*) to define the process behaviors related to the
scheduling policy.

Fig. 1 An approach to verifying a system with the scheduling policy.

†These functions are necessary for implementing the algo-
rithms like slack stealing [11] in the scheduling policy.

Thirdly, to facilitate the scheduling strategies, we pro-
pose a DSL (2) to describe the policies with the attributes
of the processes to handle the scheduling tasks. The main
role of the scheduler is a) to select a process for the ex-
ecution, b) to manage the processes using their attributes
(e.g. priority, deadline), c) to change their execution sta-
tuses (e.g. blocks a process), and d) to manage the time.
In our approach, the DSL aims to provide high-level lan-
guage to specify various policies easily. By focusing on a
domain, using a DSL is easier than using an existing mod-
eling language (e.g. Promela). In the DSL, we separate the
attributes of the processes and the behaviors of the scheduler
for flexibly changing them. The attributes of the processes
are defined in process attribute (a), and the behaviors of the
scheduler are defined in scheduler description (b).

Actually, to store the information of processes, the
scheduler uses data structures (e.g. ready queue), which rep-
resent the execution statuses of the processes (such as ready
or blocked). Following the order of the processes (e.g. their
order in the queue), a process is selected to run. To repre-
sent that fact, in the DSL, we define collections for storing
the processes. At a time, there may be many candidates for
the execution (e.g. the processes with the same priority). We
deal with this problem by ordering the processes based on
their attributes. The processes are partially ordered for the
selection. The order of the processes in a collection is either
defined by a comparison function, follows the LIFO/FIFO
strategy, or uses both of these ordering methods. The op-
erations getting a process from and putting a process into
a collection rely on the ordering method used by the col-
lection. Of course, we also support the collection without
using any ordering method (that means the processes in this
collection have the same order).

We deal with the behaviors of the scheduler based on
handling events (called scheduling events), which are spec-
ified in scheduler description (b). Three predefined events
(new_process, select_process, and clock) are intro-
duced. The event new_process occurs when a new pro-
cess arrives to the system. The event select_process is
for selecting a process to run. The event clock is a timer
event, which happens following the occurrence of each ac-
tion of the process. Each event above is handled by an event
handler. We can also define other events raised by the cur-
rent process. These events are specified in the interface
part (called interface functions). To handle the scheduling
events, several statements are introduced to change the run-
ning status of the processes, to change the attributes of the
processes, and to select a process for the execution.

Fourthly, to verify systems with the scheduling poli-
cies, we introduce an algorithm to explore the state space.
This algorithm is different from the existing one (e.g. Depth-
first search (DFS) and breadth-first search (BFS)). We now
deal with the behaviors of the scheduler in the verification.
Here, all of the information necessary for the analysis and
verification is generated automatically from the specifica-
tion of the policy in the DSL. With the new search algorithm,
we can limit the search space following the scheduling pol-

1282
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

icy to accurately verify the system.
Finally, to deal with the time related to the behaviors

of the system, we use discrete time by considering a transi-
tion from one state of the system to another state as taking
one time unit (each transition corresponds to one time unit).
We follow the timed Kripke structure [12] to model the sys-
tem. During exploring the state space, the search can reach
a state that has already been visited. At this time, a period
(a loop) of the system is determined. For example, suppose
that the system has only one periodic process with period 4;
this process takes 2 time units to finish its tasks; the period
considered is only 4 time units because the state of the sys-
tem at time 4 is the same as that at time 0. In fact, the search
can reach several states that have been visited. That means
the Kripke structure may have several loops.

We follow the compilation approach to explore the sys-
tem state space. A converter was built to generate scheduler
function (c) and scheduler information (d) from the speci-
fication of the scheduling policy. The scheduler function is
used to perform the scheduling tasks and the scheduler in-
formation is for determining the state of the system. Based
on the description of the scheduler, a search algorithm (3) is
realized. The states to be searched are changed according to
the description of the scheduler.

3. DSL for Specifying the Scheduling Policies

A DSL is a limited expressive language that focuses on a
particular domain. Using a DSL has several advantages,
such as simplification and productivity in comparison with
using a general purpose language. In our approach, we pro-
pose a DSL to specify the scheduling policy. The grammar
of the language is shown in Appendix. In this section, we
use the priority strategy as an introductory example, which
is depicted in Fig. 2. The behaviors of the processes, the at-
tributes of the processes, and the behaviors of the scheduler
are specified in (a) process program, (b) process attribute,
and (c) scheduler description, respectively.

3.1 The Process Behaviors

The behaviors of the process are specified in the process pro-
gram using the modeling language. To support the interac-
tion between the processes and the scheduler, we introduce
several API functions, such as sch_exec, sch_api_get,
sch_api_set, sch_api and sch_api_self. The func-
tion sch_exec is used for executing a new process, possibly
with the initial values for the process attributes. The func-
tions sch_api_get and sch_api_set are used for access-
ing the information managed by the scheduler. The func-
tions sch_api and sch_api_self are used for performing
the interface functions to define the process behaviors re-
lated to the scheduling policy.

The introductory example indicates a system with two
processes (as shown in Fig. 2 a)). In this example, when
a + b < 100000, process P repeatedly increases the value
of variable a, while process Q increases the value of vari-

Fig. 2 An introductory example.

able b. Statement sch_api_self is used to call an inter-
face function named terminate defined in the interface
part of the scheduler description (Fig. 2 c)) to terminate it-
self. The sch_exec statements used in init part determine
that at the starting time, process P and Q are executed.

3.2 Specifying the Scheduling Policy

To specify the scheduling policy, our DSL provides two
types of specifications†: one for the process attributes and
the other for the scheduler behaviors as <ProcDSL> and
<SchDSL> of the grammar.

Process attributes: The process attributes are used
to deal with the scheduling tasks (especially for selecting
a process to run). The specification for the process at-
tributes (<ProcDSL>) includes (a) the definition of the at-
tributes (<ProcAttr>), (b) the initial values for the attributes
of each process (<Process>), (c) the declaration of the peri-
odic/sporadic processes†† (<ProcConf>), and (d) the execu-
tion order of the processes at the starting time (<ProcInit>).

In the introductory example, only an attribute
†See the Appendix for the detailed language grammar.
††Each periodic process (<PeriodicP>) is determined using a

period, while a sporadic process (<SporadicP>) is defined using
the length of time that the process becomes ready and a number
indicating the maximum instances of the process. We handle these
processes by generating the corresponding variables and manage
their execution following the time changing by the clock event.

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1283

(priority) is defined (as shown in Fig. 2 b)). The initial
value of this attribute for each process is determined by a
template (proctype). In this example, the priority of P is
higher than that of Q. The init part indicates the execution
order of the processes following a partially ordered set. This
example shows that process P and Q are executed at the same
time. We note that the init part in the process program de-
termines the existence of the processes at the starting time
(using the sch_exec statement); the init part of the pro-
cess attribute defines the execution order of these processes.
This order affects the selection of the scheduler.

Scheduler behaviors: The scheduler behaviors de-
fined as <SchDSL> of the grammar are specified in the
scheduler description, which consists of the definition of the
scheduler (<SchDef>) and the definition of the methods for
ordering the processes (<OrdDef>). The definition of the
scheduler includes: (a) the variables used by the scheduler
(<VarDef>), (b) the data used by the scheduler (<DatDef>),
which contains the definition of the process collections
(<ColDef>), (c) the handlers for the events (<HandlerDef>)
and (d) the interface functions (<InterDef>).

Several statements (defined as <Stm> of the grammar)
are introduced to specify the behaviors of the scheduler.

• The values of the variables used by the scheduler and
the values of the attributes of the processes can be
changed using statements: <SetTime> (to indicate the
running time for the current process), <SetCol> (to de-
termine the collection that contains the process after its
execution time) and <Change> (to change the value of
a variable or the value of an attribute of a process).
• We can update the running status of the process using

statements <Move>, <Remove> and <Get> by chang-
ing the collection containing the process.
• Statement <New> is for executing a new process.
• The language also supports conditional statement

(<If>) and loop over a collection statement (<Loop>).
• Statements <Assert> and <Print> are used for tracking

the behaviors of the scheduler.

The processes selected from a collection for the exe-
cution (using statement <Get>) is determined by the order-
ing method used by the collection. We provide a mecha-
nism to order the processes by defining a comparison func-
tion (<CompDef>), which is used to compare two pro-
cesses in the collection. The return value (‘greater’,
‘less’ or ‘equal’) of the function (using statement
<Return>) indicates that the process will be placed in front
of (‘greater’), behind (‘less’) the other or will have the
same order (‘equal’) as the other. Based on this fact, the
processes in the collection are ordered.

In the introductory example, a collection named ready
is used to store the processes, which are ordered following
a function named priorityOrder (Fig. 2 c)). The process
with higher priority will be placed in front of the other. If
two processes have the same priority, they will have the
same order. In this example, the processes with the high-
est priority will be selected for the execution.

In order to perform the scheduling tasks, we handle the
scheduling events. Three predefined events (new_process,
select_process, and clock) are introduced as explained
before. The corresponding event handlers for these events
are specified as <EventDef> of the grammar. Other events
raised by the current process using the interface func-
tions (<InterFunc>) can be defined in the interface part
(<InterDef>). The scheduling events are specified using the
DSL statements (<Stm>).

In the example, the scheduler handles two events
(new_process and select_process). When a new
process (indicated by target) arrives, if its priority is
greater than that of the current process (indicated by
running_process), the current process will be preempted
by putting it to the ready collection (using <Move> state-
ment). This makes the scheduler select another pro-
cess to run. To do that, the scheduler obtains a process
from this collection. That behavior is specified in the
select_process event handler using statement <Get>. A
function named terminate is declared in the interface
part for terminating a process (using statement <Remove>).
This function is called by function sch_api_self in the
process program.

3.3 Formal Definitions

We now give the formal definitions for specifying a system
with the scheduler. Let PID be a set of process identifiers,
X be a set of variables, andV be a set of values.

Definition 1 (Process state): A process state is a tuple
〈σg, σl〉, where σg : Xg →V and σl : PID → (Xl →V).

In this definition, σg is the mapping from the set of
the global variables (Xg ⊂ X) to the set of values (σg is
called the global state of a process), and σl is the mapping
from the set of process identifiers to the mappings from the
local variables of a process (Xl ⊂ X) to the set of values
(σl is called the local state of a process). These variables
are defined in the process program (e.g. in Fig. 2 a)), a and b
are the global variables; there is no local variable). We use
Sproc to denote the set of process states.

Let Lproc = normal ∪ {get} ∪ scheduling be a set of
labels that represent the behaviors of the processes, where:

• normal is a set of normal actions described in Promela.
• get is an action that corresponds to function
sch_api_get to access the information of the sched-
uler.
• scheduling = {api, exec} is a set of actions performed

by the current process using the API functions.

– An api action corresponds to the sch_api (or
sch_api_self) function called by the current
process (e.g. sch_api_self(terminate) repre-
sents an api scheduling action).

– The exec action is to execute a process by call-
ing function sch_exec (e.g. in the example, state-
ment sch_exec(P()) represents an exec action).

These functions are handled by the event handlers and

1284
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

the interface functions specified in the scheduler de-
scription. For instance, in the introductory example,
function sch_api_self(terminate) is handled by
the interface function named terminate.

Definition 2 (Process): A process is a tuple 〈S p, Lp,
Tp, s0〉, where S p ⊆ Sproc is a set of process states, Lp ⊆
Lproc is a set of labels, Tp ⊆ S p × Lp × S p is a set of transi-
tions, and s0 ∈ S p is the initial state.

We use Σp = 〈σg, [σl1 , . . . , σli , . . . , σlm]〉 to denote the
state of the set of processes in the system, where 〈σg, σli〉 ∈
Sproc is the state of ith process; [σl1 , . . . , σli , . . . , σlm] is a
sequence of the local states of the processes, and m ∈ N is
the number of the processes in the system. These local states
are ordered by the identifiers of the processes.

Definition 3 (Process collection): A process collec-
tion is a tuple 〈Pid,�,∼〉, where Pid ⊆ PID, � and ∼ are
binary relations defined as follow:

• �⊆ PID×PID is an irreflexive, antisymmetric, tran-
sitive binary relation and
• ∼⊆ PID × PID is an reflexive, symmetric, transitive

binary relation.

For instance, C = 〈Pid,�,∼〉 where Pid = {P1, P2, P3},
�= {(P1, P3), (P2, P3)}, and ∼= {(P1, P2)} determines a col-
lection with 3 processes: process P1 and process P2 have the
same order and they are placed in front of process P3.

We use the collections to denote the running status
of the processes (such as ready, blocked). In the example
(as shown in Fig. 2), we define only one collection named
ready, which uses the ordering method defined by function
priorityOrder in the comparator part of the scheduler de-
scription. This function compares two processes using their
priority values. The return value of this function deter-
mines the order of these two processes. Based on that fact,
the processes in this collection are ordered. In this defini-
tion, the binary relations (� and ∼) are globally given. We
use COL to denote the set of collections.

Definition 4 (Scheduler state): A scheduler state is a
tuple 〈σs, (C1, . . . ,Ci, . . . ,Ck), Pr〉, where

• σs : Xs∪Xc∪{run, tslice, rcol} → V∪{⊥} is a mapping
from the set of normal variables (Xs ⊂ X) defined in
the policy, the set of clock variables (Xc ⊂ X) used
by the scheduler, and the set of predefined variables
{run, tslice, rcol} ⊆ X to the set of values, where

– run indicates the current process,
– tslice is the time slice to run of the current process,

and
– rcol is the collection stores the process after fin-

ishing its execution time.

• Ci ∈ COL is a collection, i = 1..k, k ∈ N;
• Pr ⊆ PID is a set of process identifiers represent the

set of processes that can be run.

The variables used in the scheduling policy can be de-
fined in the scheduler description. The variables: run, tslice,

and rcol are predefined. In some states, the values of these
variables are non-determined (⊥). For instance, run = ⊥
means that there is no currently running process.

The set of collections {Ci}, i = 1..k are defined in the
scheduler description. Pr is predefined to represent the set
of processes which can be run (determined by the sched-
uler). This set of processes is used for indicating the possible
states leading from the current state (by performing an ac-
tion of the process) in searching the state space (see Sect. 4
for more details).

In the example (as depicted in Fig. 2 c)), only one col-
lection (ready) is defined; there is no variable. The time
slice and the collection containing the currently running pro-
cess after its execution time are not determined (i.e. using
statement <SetTime> and <SetCol>). One of the scheduler
states is 〈{run, tslice, rcol}, (ready), Pr〉, where a) run = P,
b) tslice = ⊥, c) rcol = ⊥, d) ready = 〈Pid,�,∼〉 with
Pid = {P,Q}, �= {(P,Q)}, and ∼= {}, and e) Pr = {P}.

Definition 5 (System state): A system state is a tu-
ple Σ = 〈Σp,Σs〉, where Σp = 〈σg, [σl1 , . . . , σli , . . . , σlm]〉
is the state of the set processes in the system and Σs =

〈σs, (C1, . . . ,Ck), Pr〉 is a scheduler state.
The system state is derived from the set of pro-

cesses and the state of the scheduler. For the con-
venience of writing, we use both 〈Σp,Σs〉 and 〈〈σg,
[σl1 , . . . , σli , . . . , σlm]〉,Σs〉 to denote a system state. We use
Ssys to represent the set of system states.

Let Lsch = {select, clock, new, inter} be a set of la-
bels that represent the behaviors (actions) of the scheduler,
where:

• select, clock and new are the actions correspond-
ing to the events select_process, clock and
new_process defined in the scheduler description, re-
spectively, and
• inter is an action corresponds to the event raised by an

interface function called by the current process.

Definition 6 (System): A system is a tuple 〈Σsys,
Lsys,Tsys,Σ0〉, where Σsys ⊆ Ssys is a set of system states,
Lsys ⊆ (Lproc∪Lsch) is a set of labels, Tsys ⊆ Σsys×Lsys×Σsys

is a set of transitions, and Σ0 ∈ Σsys is the initial state.
Note that Lsys represents the set of behaviors/actions

of the system including a) the behaviors of the processes
(Lproc) and b) the behaviors of the scheduler (Lsch). For in-
stance, sch_api_self(terminate) is an action of a pro-
cess, the behavior of the scheduler indicated by the interface
function terminate called by the function sch_api_self
is an action of the scheduler. In this definition, Tsys repre-
sents the transition relation between the system states. Each
relation is defined by both of the statements in Promela for
the behaviors of the processes and the statements in the DSL
for the behaviors of the scheduler.

We define the following functions to get the informa-
tion of the system.

• Function getCol : PID → COL to determine the col-
lection that contains the process. For instance, in the

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1285

example, at the initial time, function getCol(P) returns
ready.
• Function max : COL → 2PID is to select processes

from a collection to run. We have max(〈Pid,�,∼〉) =
P, where P is the smallest set satisfying for any y ∈ Pid
there exists x ∈ P such that x � y with �=� ∪ ∼.
For example, suppose that a system has a collec-
tion named ready contains 3 processes: P1, P2 and
P3 with their priorities being set to 2, 2 and 1, re-
spectively (the greater value means the higher prior-
ity). If this collection uses priority ordering method,
we have ready = 〈Pid,�,∼〉 with Pid = {P1, P2, P3},
�= {(P1, P3), (P2, P3)}, and ∼= {(P1, P2)}. Function
max(ready) returns {P1, P2}. That means the set of pro-
cesses selected is {P1, P2}.

The semantics of the primitive functions defined by the
statements in the DSL is described by the transition relations
between the system states as follows.

• Change the value of a variable

〈Σp, 〈σs, (C1, . . . ,Ck), Pr〉〉
v=〈exp〉
−−−−−→

〈Σp, 〈σs[�exp�/v], (C1, . . . ,Ck), Pr〉〉

where v is a variable used by the scheduler,
σs[�exp�/v] means replacing the value of v by the
value of �exp� obtaining by evaluating expression exp.
This function corresponds to the statements <Change>,
<SetTime> and <SetCol> of the DSL to change the
values of the variables used in the policy.

• Remove a process

〈Σp, 〈σs, (C1, . . . ,Ci, . . . ,Ck), Pr〉〉
rem(p)
−−−−−→

〈Σ′p, 〈σs, (C1, . . . ,C
′
i , . . . ,Ck), P′r〉〉

where Σp = 〈σg, [σl1 , . . . , σl j−1 , σl j , σl j+1 , . . . , σlm]〉
with σl j is the local state of process p, Σ′p =

〈σg, [σl1 , . . . , σl j−1 , σl j+1 , . . . , σlm]〉, getCol(p) = Ci and
C′i = 〈Pi − {p},�i,∼i〉 with Ci = 〈Pi,�i,∼i〉 and
P′r = Pr − {p} (P − {p} means removing p from P).
The function is defined by the statement <Remove> of
the grammar to remove a process from the system.

• Move a process to a collection

- If p is a new process† then

〈Σp, 〈σs, (C1, . . . ,Ci, . . . ,Ck), Pr〉〉
mov(p,Ci)−−−−−−−→

〈Σp, 〈σs, (C1, . . . ,C
′
i , . . . ,Ck), Pr〉〉

where C′i = 〈Pi ∪ {p},�i,∼i〉 with Ci = 〈Pi,�i,∼i〉.
- If p is the currently running process then

〈Σp, 〈σs, (C1, . . . ,Ci, . . . ,Ck), Pr〉〉
mov(p,Ci)−−−−−−−→

〈Σp, 〈σs[⊥ /run], (C1, . . . ,C
′
i , . . . ,Ck), Pr〉〉

†A new process does not belong to any collection.

where C′i = 〈Pi ∪ {p},�i,∼i〉 with Ci = 〈Pi,�i,∼i〉.
- If p belongs to collection Ci then

〈Σp,〈σs,(C1, . . . ,Ci, . . . ,C j, . . . ,Ck), Pr〉〉
mov(p,C j)−−−−−−−→

〈Σp, 〈σs, (C1, . . . ,C
′
i , . . . ,C

′
j, . . . ,Ck), Pr〉〉

where getCol(p) = Ci with Ci = 〈Pi,�i,∼i〉, C′i =
〈Pi − {p},�i,∼i〉, and C′j = 〈Pj ∪ {p},� j,∼ j〉 with
C j = 〈Pj,� j,∼ j〉.
The function is defined by the statement <Move> of the
grammar.

• Select processes from a collection to run

〈Σp, 〈σs, (C1, . . . ,Ci, . . . ,Ck), Pr〉〉
select(Ci)−−−−−−−→

〈Σp, 〈σs, (C1, . . . ,Ci, . . . ,Ck), P′r〉〉

where Ci = 〈Pi,�i,∼i〉 and P′r = max(Ci).
The function is defined by the statement <Get> of the
grammar.

The statements <Move>, <Remove> and <Get> are used
to update the execution status of a process by changing the
collection contains this process.

To define the semantics of non-primitive functions for
the branch statement (<If>) and loop over a collection state-
ment (<Loop>) of the DSL, we consider a group of state-
ments as a single statement (called a block statement) and
use the transitive closure to represent the transition relation.

Here, the relation (
s−→)+ indicates the closure of

s−→ (i.e., the
rule

s−→ is applied following the set of statements in the block
statement s until it can not proceed any more).

• Branch statement
A branch statement is represented as i f (bexp, st1, st2),
where bexp is a boolean expression, st1 and st2 are

block statements. If �bexp� = true then Σ
i f (bexp,st1 ,st2)
−−−−−−−−−−−→

Σ1, where Σ(
st1−−→)+Σ1 else Σ

i f (bexp,st1 ,st2)
−−−−−−−−−−−→ Σ2, where

Σ(
st2−−→)+Σ2.

• Loop over a collection
A loop statement is represented as f or(p, [p1, . . . , pk],
st), where p is the loop variable, [p1, . . . , pk] is a
sequence of process identifiers that represents a to-
tal order of the process in a collection††, and st is a

statement†††. We have Σ
f or(p,[p1 ,...,pk],st)
−−−−−−−−−−−−−→ Σk, where

Σ(
p=p1;st
−−−−−→)+Σ1, . . . , Σk−1(

p=pk ;st
−−−−−→)+Σk with “p = pi”

meaning assigning pi for p and “p = pi; st” represent-
ing the sequence of two statements.

The behaviors of the scheduler are defined in the sched-
uler description. These behaviors are handled by the sched-
uler using the events corresponding to these actions: new,

††we use the identifiers of the processes to define the order
†††a statement can be a block statement (a sequence of state-

ments)

1286
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

select, clock, and inter as explained before. Each event is
specified using the DSL statements defined by the primi-
tive functions above. The semantic of these behaviors of the
scheduler is as follows.

• New event

〈〈σg, [σl1 , . . . , σlm]〉,Σs〉(
new−−→)+

〈〈σg, [σl1 , . . . , σlm]〉,Σ′s〉

This event is handled by new_process event handler
when a new process arrives to the system. It happens
when the current process executes another process or
the system initialize the processes (i.e. using sch_exec
statements).

• Select event

〈Σp,Σs〉(
select−−−−→)+〈Σp,Σ

′
s〉

This event is defined in select_process event han-
dler, which is performed when the scheduler selects a
process to run.
For instance, suppose that the system with a col-
lection ready: C = 〈Pid,�,∼〉 with Pid =

{P,Q}, �= {P,Q}, and ∼= {}. The handler for
the event select_process uses the following state-
ment “get process from ready to run” to select
a process to run. If there is no current process, the
scheduler will perform the select action. The state
of the system is changed as follows.

〈Σp,Σs〉(
select−−−−→)+〈Σp,Σ

′
s〉 with Σs = 〈σs, (C), Pr〉,

where Σ′s = 〈σs, (C), P′r〉 and P′r = {P}.

• Inter event

〈Σp,Σs〉(
inter−−−→)+〈Σ′p,Σ′s〉

This event is defined by the interface functions, which
is performed by the current process. Note that the pro-
cess state can be changed (e.g. the current process ter-
minates itself) and a clock event happens after this ac-
tion (see the description of a sequence-action below).

• Clock event

〈Σp,Σs〉(
clock−−−→)+〈Σp,Σ

′
s〉

This event is defined in clock event handler performed
after each action of the current process. It is used for
handling the timer event. Beside changing the sched-
uler state using the statements defined in the clock
event handler, each clock variable used in the schedul-
ing policy is increased by 1 when this event is handled:
σ′(c) = σ(c)+ 1, where c ∈ Xc is a clock variable used
by the scheduler.

Suppose that process Pi is selected by the scheduler
for the execution. Following an action of this process, a

sequence-action happens as follows.

• Let a ∈ normal ∪ {get} be an action† of process Pi and
〈〈σg, σli〉, a, 〈σ′g, σ′li〉〉 ∈ Tpi be a transition of this pro-
cess, two corresponding actions happen in the follow-
ing sequence:

〈〈σg, [σl1 , . . . , σli , . . . , σlm]〉,Σs〉
a−→

〈〈σ′g, [σl1 , . . . , , σ
′
li
, . . . , σlm]〉,Σs〉〉 (1)

〈〈σ′g, [σl1 , . . . , , σ
′
li
, . . . , σlm]〉,Σs〉(

clock−−−→)+

〈〈σ′g, [σl1 , . . . , , σ
′
li
, . . . , σlm]〉,Σ′s〉 (2)

• If the process performs an exec action, three actions
happen in the following sequence:

〈〈σg, [σl1 , . . . , σli , σli+1 , . . . , σlm]〉,Σs〉
exec−−−→

〈〈σg, [σl1 , . . . , σli , σln , σli+1 , . . . , σlm]〉,Σs〉 (1)

〈〈σg, [σl1 , . . . , σli , σln , σli+1 , . . . , σlm]〉,Σs〉(
new−−→)+

〈〈σg, [σl1 , . . . , σli , σln , σli+1 , . . . , σlm]〉,Σ′s〉 (2)

〈〈σg, [σl1 , . . . , σli , σln , σli+1 , . . . , σlm]〉,Σ′s〉(
clock−−−→)+

〈〈σg, [σl1 , . . . , σli , σln , σli+1 , . . . , σlm]〉,Σ′′s 〉 (3)

where σln is the local state of the new process.
We note that the new process may be assigned the iden-
tifier that has been used by previous instance of this
process type (proctype). For example, at the initial
time, an instance of process type P with identifier 1
runs. After that, this process ends. Later, another in-
stance of P is spawned by another process. Because the
identifier 1 is not used by any process, it is assigned to
the new process. Now, the sequence of the local states
of the processes is updated. This mechanism helps to
produce the same state of the set of processes in the
system.
• If the current process performs an api action that raises

an inter action taken by the scheduler, two actions hap-
pen in the following sequence:

〈Σp,Σs〉
inter−−−→ 〈Σ′p,Σ′s〉 (1)

〈Σ′p,Σ′s〉(
clock−−−→)+〈Σ′p,Σ′′s 〉 (2)

We note that if there is no currently running process
after the occurrence of these sequence-action(s) above, the
scheduler will perform the select action to select a process
to run.

In the example, when a process executes the statement
sch_api_self(terminate) to terminate itself (an api ac-
tion), the scheduler will handle this task by performing the
function terminate (an inter action). Because in this ex-
ample, we do not use any clock variable and the handler
for the clock event is not defined, the clock action does
nothing. After that, because the running process is not de-
termined, the scheduler will select another process to run (a
select action).

†Statement get is considered as an action to change the value
of a variable.

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1287

4. Model Checking Systems with Schedulers

In this section, we propose an algorithm for exploring the
state space to verify the system with the scheduler. We also
present our approach to generate the necessary information
for the scheduling policy and introduce the implementation
of our framework.

Scheduler Search Algorithm: DFS and BFS are the
search algorithms used by explicit-state model checkers.
Because the execution orders of the processes defined by the
scheduler are different from that defined by the current algo-
rithms, we need another algorithm to deal with the schedul-
ing policies. The algorithm using the scheduling policy is
shown in Algorithm 1. It is an extension of the DFS algo-
rithm. However, it has two main characteristics. Firstly, the
process is selected to run by the scheduler. Secondly, the
behaviors of the scheduler need to be considered in the al-
gorithm.

Two data structures are used in this algorithm: a state
space SS and a stack ST . The state space is an unordered
set of states. Two routines are used to update the contains
of the state space: Add state(SS,Σ) to add state Σ as an
element to the state space, and Contains(SS,Σ) to check
whether element Σ exists in the state space. The stack, which
is used to record the search steps, is an ordered set of states.
The operations Push (adds a state to the stack), Top (returns
the top element of the stack) and Pop (removes the top ele-
ment from the stack) are performed at the head of the stack.

The algorithm performs a search starting from function
START (line 3) to visit every state that is reachable from the
initial state Σ0. In the algorithm, function SELECT (line 12)
is used to obtain the processes from a relevant collection for
the execution. This function corresponds to the select action
of the scheduler (it happens when the system has no running
process). This action is handled by the select_process
event handler. Based on the ordering method used by the
collection, a set of processes is returned. This function can
return an empty set (line 13) indicating that no process can
be executed. In this case, the system only performs the
clock action determined by the clock event handler, which
is done by function CLOCK (line 14). Otherwise, all actions
of the processes selected (line 21, 22) are considered. Func-
tion TAKE (line 23) performs an action a of the process to
change the system state: Σa = TAKE(a,Σ). This function
represents the following behaviors:

• the behavior of the process defined by the transition
〈〈σg, σl〉, a, 〈σ′g, σ′l〉〉 ∈ Tp, where 〈σg, σl〉 and 〈σ′g, σ′l〉
are the states of the process, and a ∈ normal ∪ {get} is
an action of the process;
• the behavior of the process and the behavior of the

scheduler corresponding to an action a ∈ {api, exec}
of the process (i.e. handling the scheduling action).

The functions SELECT, TAKE and CLOCK determine
the transition relation 〈Σ, a,Σ′〉 ∈ Tsys of the system. From
the state space determined by the search algorithm, we can

Algorithm 1 Scheduler depth-first search algorithm.
1: Input: Σ0 � initial state
2: Output: SS � state space
3: procedure START()
4: Stack: ST = {}
5: State space: SS = {}
6: Push(ST ,Σ0)
7: Add state(SS,Σ0)
8: SEARCH()
9: end procedure

10: procedure SEARCH()
11: Σ = Top(ST)
12: P = SELECT(Σ)
13: if P == {} then
14: Σt = CLOCK(Σ)
15: if Contains(SS,Σt) == f alse then
16: Push(ST ,Σt)
17: Add state(SS,Σt)
18: SEARCH()
19: end if
20: else
21: for p ∈ P do
22: for a ∈ p.T do � a is an action of p
23: Σa =TAKE(a,Σ)
24: Σt

a = CLOCK(Σa)
25: if Contains(SS,Σt

a) == f alse then
26: Push(ST ,Σt

a)
27: Add state(SS,Σt

a)
28: SEARCH()
29: end if
30: end for
31: end for
32: end if
33: Pop(ST)
34: end procedure

Fig. 3 Generation approach.

verify the system behaviors.
Generate Scheduling Information: In our frame-

work, the information needed for performing scheduling
tasks is generated from the description of the scheduling
policy. Our approach for the generation is shown in Fig. 3.
The generation is as follows. All the variables (1) are gen-
erated from scheduler data, which contains the definition of
the scheduler variables and the collections. The template(s)
(proctype) for the process(es) and the attributes of the pro-
cess are converted to process information (2), which is man-
aged by the scheduler. The definition of the collections in
the scheduler data is converted to process collections (3),
which use the ordering methods defined in the scheduler
description. The process initialization (corresponding to
the init part of the process attribute) determines the initial
function in (4). The other functions in (4) are realized from
the interface functions specified in the scheduler descrip-
tion. The definitions of the events in this description are

1288
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

Fig. 4 Architecture of the framework.

converted to event handlers (5). Using these functions and
the information above, the framework performs the search
algorithm with the scheduling policy defined in the DSL.

Implementation: The design of our framework is
shown in Fig. 4. Promela is used as the base modeling lan-
guage for the process. We extended SpinJa for the back-end
tool in our framework. XText framework [13] was used to
implement the DSL.

A tool named SSpinJa† has been implemented accord-
ing to the method proposed. We follow the compilation ap-
proach as in Spin and SpinJa model checkers to prepare all
necessary information beforehand. The parser and the com-
piler of SpinJa were updated to realize the new API func-
tions in the modeling language. The process program is
compiled into a model (in Java), which uses the libraries
of SSpinJa. We built a converter to generate the scheduler
information and the scheduler function from the descrip-
tion of the scheduling policy under XText framework. The
generated code includes (a) the implementation of the pro-
cesses, (b) the implementation of the collections with order-
ing methods, and (c) the implementation of the scheduler. A
new search algorithm, which uses the information generated
from the description of the scheduler, was implemented in
the tool.

5. Case Studies

In order to evaluate our method, many experiments were
conducted on several systems ranging from simple to practi-
cal ones, such as the dining philosopher problem, the bench-
mark for explicit model checkers [14], the OSEK/VDX OS,
and the Linux OS with real-time scheduling policies to show
the accuracy, flexibility, and scalability. This section in-
troduces four case studies and presents the experiment re-
sults††.

5.1 Dining Philosopher Problem

We used round-robin (RR) and priority (FP) strategies to
deal with the dining philosopher problem. Numbers of
philosophers considered were 2, 4, 8, 16, and 32. The
philosopher was modeled as a process. Each behavior of
the philosopher was represented as an atomic action. With
RR policy, we set the time slice to 3 indicating that the num-
ber of actions taken for each process turn was 3. With FP

†SSpinJa stands for ‘Scheduling SpinJa’.
††The experiments were conducted on Intel Core i7, 3.4 GHz

CPU with 32G RAM.

Table 1 Checking deadlock and starvation results.

Scheduling policy Deadlock Starvation

Without scheduler Yes -

RR, time slice = 3 No No

FP No Yes

Table 2 Results of dining philosopher problem.

N
Without scheduler RR FP

S T M S T M S T M

2 9 0.01 8.64 11 0.01 17.0369 4 0.01 17.0327

4 115 0.03 8.66 17 0.02 17.0343 4 0.01 17.0339

8 12319 18.79 9.58 33 0.03 17.0403 4 0.01 17.0368

16 - T.O. - 65 0.05 17.0588 4 0.01 17.0478

32 - T.O. - 129 0.1 17.1211 4 0.01 17.0515

Table 3 The configuration of the processes.

Process PERIOD Initial OFFSET TIME PRIORITY DEADLINE

t1 20 6 5 2 16

t2 20 9 5 3 11

t3 20 11 5 2 8

t4 20 10 5 5 20

policy, different priorities were assigned for the processes.
To check the absence of starvation, we considered the prob-
lem with only four philosophers. The results for checking
deadlock and starvation are listed in Table 1.

In these experiments, deadlock occurred when we did
not use the scheduler; therefore, the starvation problem was
not considered. We note that every error was counted dur-
ing the search. Without using the scheduler, the search was
incomplete within the limited time (60 seconds) if the num-
ber of philosophers was equal to 16 or 32. Using FP policy,
the deadlock was resolved, but the starvation occurred. Both
deadlock and starvation were absent with RR policy. Table 2
shows the detailed results for checking deadlock with the
number of philosophers (N), the number of states (S), time
(T) in seconds, and memory usage (M) in Mb. In the results,
T.O. means timeout (the search was incomplete within 60
seconds); this only happened without using the scheduler.

5.2 Schedulability for Real-Time Systems

In a real-time system, each task (process) has several at-
tributes, such as priority (PRIORITY), best-case execution
time (BCET), worst-case execution time (WCET), the time
between task releases (PERIOD), and deadline (DEAD-
LINE). The schedulability means that all tasks will meet
their deadlines. We conducted two experiments based on
these attributes to deal with the schedulability problem.

In the first experiment, four processes, which had dif-
ferent configurations, were considered. The attributes of
these processes are shown in Table 3 with TIME indicating
both of the BCET and the WCET; Initial OFFSET deter-
mining the time before the first instance of the process can

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1289

Table 4 Analysis results with four processes.

Scheduler
Scheduling framework in UPPAAL SSpinJa

T M Result T M Result

FP 0.002 41.46 may not be satisfied 0.06 19.692 unsatisfied

FIFO 0.002 41.176 may not be satisfied 0.02 19.675 unsatisfied

EDF 0.01 41.8 satisfied 0.03 19.709 satisfied

Table 5 Analysis results with different number of processes.

N
Scheduling framework in UPPAAL SSpinJa

Ta Ma Result Ta Ma Result

2 0.004 40.94 satisfied 0.02 19.6891 satisfied

3 0.015 40.98 may not be satisfied 0.03 19.6906 satisfied

4 0.141 41.29 may not be satisfied 0.063 19.6984 satisfied

5 1.064 43.54 may not be satisfied 0.203 25.2627 ND.

be activated. For the evaluation, we used three scheduling
policies: priority (FP), first-in-first-out (FIFO) and earliest-
deadline-first (EDF). Deadline violation was analyzed for
this system.

We also conducted the experiments using the frame-
work introduced in [25]. This study aims at schedulabil-
ity analysis following the model-based approach using UP-
PAAL model checker [4]. The resource sharing problem
with real-time behaviors and a scheduling policy for each
resource is considered. To apply this study, we considered
the scheduler to be a system resource. The attributes of the
processes were set up as above. The analysis results of using
this framework and the results of using our approach were
compared, which are shown in Table 4 with time (T) in sec-
onds and memory usage (M) in Mb. In this table, “satisfied”
means no deadline violation; “unsatisfied” means that dead-
line violation occurs; “may not be satisfied” means that the
deadline violation was not determined.

In the second experiment, different numbers of the pro-
cesses with the same configuration for each process were
used to analyze the performance. The configuration was
(PERIOD, BCET, WECT, DEADLINE, PRIORITY) = (20,
5, 5, 20, 1). The numbers of processes considered were 2,
3, 4, and 5. The analysis results are shown in Table 5 with
the average time (Ta) in seconds and the average memory
usage (Ma) in Mb. for three scheduling policies above. We
note that the result column indicates the results for all of the
scheduling policies (e.g., “satisfied” means that no deadline
violation was found for all of the scheduling policies). In
this table, “ND.” means “not determined”; that occurs when
the system reaches the maximum number of processes† de-
termined by the tool.

5.3 Synchronization Mechanism in OSEK/VDX OS

We considered a typical problem with common synchro-
nization mechanisms for scheduling resources. The problem

†The maximum number of simultaneously running processes
is 255.

Fig. 5 Synchronization mechanism problem.

relates to the system using priority scheduling policy with
the fact that a lower-priority process (task) can delay the ex-
ecution of the higher-priority process. For example, assume
that the system with preemptive policy has three processes
from T1 to T3 (as shown in Fig. 5 a)). Process T3, which
has the lowest priority, is currently running and occupies the
semaphore S . Process T1 with the highest priority preempts
this process and requests the same semaphore. However, T1

is denied because S is already used by T3; therefore, T1 en-
ters the waiting state. Now process T2 runs. Process T1 can
only run until all lower-priority processes have been termi-
nated and the semaphore S has been released. Process T2

does not use S but it delays process T1.
To avoid this problem, OSEK/VDX OS [5] uses the

Priority Ceiling Protocol. When a process occupies a re-
source and the priority of the process is lower than that of
the resource, the priority of the process will be raised to this
value. It will be reset after the process releases the resource
(as shown in Fig. 5 b)). Note that the ceiling priority of a
shared resource is lower than the lowest priority of all pro-
cesses that do not access the resource and higher than the
priorities of all processes that access the resource.

To demonstrate the mechanism, we described the
OSEK/VDX scheduler in the DSL. Each process has two
attributes (PRIORITY and CEILING PRIORITY) to indi-
cate the static priority and the dynamic priority of the pro-
cess. The dynamic priority is changed when the process
accesses to a resource. Two service APIs GetResource
and ReleaseResouce were described as two interface func-
tions, which change the priority of the process following
that of the resource. Two other functions ActivateTask
and TerminateTask were described for executing and ter-
minating a process corresponding to the two related service
APIs of OSEK/VDX OS. We modeled the system in the ex-
ample above with three processes (from t1 to t3) (as shown
in Fig. 6). We note that at the starting time, only process
t3 can be executed because we set the value true for the
attribute AUTOSTART of this process; the other processes
will be in suspended state.

We conducted the experiments with and without using
the protocol to verify the the occurrence of the behaviors

1290
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

of the processes. The results are shown in Table 6. With-
out using the protocol, we found the violation of assertion
corresponding to the assert statement (x==1) in process t2.
This error means that process t1 can not terminates before
t2 ends.

5.4 Linux Scheduling Policies

In this section, we show the accuracy of the framework for
verifying a practical system. The Linux scheduling policies
were used for the experiments.

The primary scheduling mechanism in Linux OS is
based on the priority of the process. For a non-real-time
process, Linux supports three kinds of normal schedul-
ing policies (the priority of the process is set to 0)
that are SCHED OTHER (for round-robin, time-sharing
policy), SCHED BATCH (for batch executions), and
SCHED IDLE (for background processes). For each real-
time process (the priority is set from 1 to 99), Linux uses

Fig. 6 The example program.

Table 6 Results of verifying priority ceiling protocol.

State Time (s) Memory (Mb.) Error

Not using protocol 5 0.01 17.0751 Yes

Using protocol 16 0.01 17.0688 No

Table 7 Results of verifying Linux tasks.

No. Scenario Property Result S T M Linux execution result

1 SCHED OTHER, P.pri == Q.pri (a > 0) ∧ (b > 0) holds 240627 0.41 52.15 (a, b) = (99976, 25)

2 SCHED FIFO, P.pri > Q.pri (a > 0) ∧ (b == 0) holds 300008 0.42 57.40 (a, b) = (100000, 0)

3 SCHED FIFO, P.pri < Q.pri (a > 0) ∧ (b > 0) holds 200108 0.29 48.31 (a, b) = (42837, 57164)

4 SCHED FIFO, P.pri == Q.pri (a > 0) ∧ (b == 0) holds 300008 0.46 57.42 (a, b) = (100000, 0)

5 SCHED RR, P.pri > Q.pri (a > 0) ∧ (b == 0) holds 300008 0.49 57.40 (a, b) = (100000, 0)

6 SCHED RR, P.pri < Q.pri (a > 0) ∧ (b > 0) holds 240617 0.46 52.15 (a, b) = (54020, 45981)

Table 8 Results of verifying tasks with related scheduling policies.

No. Scenario Related policy Property Result S T M

1 SCHED OTHER, P.pri == Q.pri round-robin (a > 0) ∧ (b > 0) holds 240616 0.4 50.34

2 SCHED FIFO, P.pri > Q.pri first-in-first-out (a > 0) ∧ (b == 0) holds 300008 0.42 52.85

3 SCHED FIFO, P.pri < Q.pri first-in-first-out (a > 0) ∧ (b > 0) not hold 300003 0.33 53.15

4 SCHED FIFO, P.pri == Q.pri first-in-first-out (a > 0) ∧ (b == 0) holds 300008 0.42 52.85

5 SCHED RR, P.pri > Q.pri round-robin (a > 0) ∧ (b == 0) not hold 240603 0.35 51.64

6 SCHED RR, P.pri < Q.pri round-robin (a > 0) ∧ (b > 0) holds 240616 0.4 50.34

two policies that are SCHED FIFO and SCHED RR. The
difference between SCHED FIFO and SCHED RR is that
among the processes with the same priority, SCHED RR
performs the round-robin method with a certain time slice;
SCHED FIFO, instead, needs the process to explicitly
yield the processor. Since version 3.14, an additional pol-
icy called SCHED DEADLINE was available in the Linux
kernel. This policy implements the EDF scheduling algo-
rithm. Each process under this policy is assigned a deadline
and the earliest-deadline process is selected to run.

The system introduced in the example in Sect. 3 was
used for the experiments. Several scenarios based on the
combinations of the scheduling policies with different pri-
orities of the processes were used. Some properties ex-
pected to be held were checked under these policies. The
experiments with the policies (RR and FIFO) related to the
Linux scheduling were also conducted. We implemented
the programs corresponding to these experiments in Linux.
The results of verifying the system with Linux scheduling
policies and the results of verifying the system with the
related policies were compared; they were then matched
with the results of the executions of the programs in Linux.
The experiment results are shown in Table 7 with the num-
ber of states (S), time (T) in seconds, and memory usage
(M) in Mb. In this table, each scenario follows the form
(scheduling policy, priority condition); for example, the
scenario (SCHED OTHER, P.pri > Q.pri) means that the
SCHED OTHER policy was used, the priority of process P
was higher than that of Q. For each scenario, the process P
is set to run first. The results of verifying the system with
the related policies are shown in Table 8.

We can see that, in every case, the expected property
holds with the scheduling policy described. It conforms with
the results of the execution of the programs in Linux. How-
ever, in some cases, the policies related to Linux scheduler
indicate that these properties do not hold.

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1291

6. Discussion

Verifying the systems using different scheduling policies
and without using the scheduler produces different results
because they lead to different behaviors of the system. That
means that in order to verify system accurately, the schedul-
ing policy needs to be taken into account during the verifica-
tion. As shown in Sect. 5.1, the dining philosopher problem
caused the deadlock when the scheduler was not used while
deadlock and starvation were absent in the case of using RR
policy. If the priorities for the philosophers are different as
in FP policy, their opportunities to eat are different. In this
case, there is no deadlock; however, starvation occurs. This
is because the philosophers with low priorities will have no
chance to eat. The number of visited states and the running
time for different scheduling policies are different. For ex-
ample, the dining philosopher problem under the FP policy,
only the process with the highest priority can be selected to
run; therefore, the number of states is unchanged. That is
different from the result of using RR policy (as shown in
Fig. 7 a)). The running times for each scheduling policies
are also different (Fig. 7 b)) because the larger number of
states to visit, the more time needed to explore.

The first experiment in Sect. 5.2 for verifying the
schedulability of a real-time system shows that deadline vi-
olation occurs when the system uses either FP or FIFO pol-
icy; however, it does not occur with EDF strategy. With
the second experiment, although we can easily realize that
the deadline violation does not occur with the number of
the processes being less than 5, the analysis results with
the framework using the UPPAAL model checker were still
“may not be satisfied” meaning that the framework can
not determine the satisfaction. That is due to the over-
approximation approach adopted by this work. In addi-
tion, this framework only focuses on the time constraints.

Fig. 7 Results for the dining philosopher problem.

Fig. 8 Running time and memory usage.

Therefore, considering both the behaviors of the process and
the behaviors of the scheduler is also challenging. More-
over, we can see that the running time of the scheduling
framework showed a significant increase in comparison with
SSpinJa, and SSpinJa used less memory than this framework
(as shown in Fig. 8).

In Sect. 5.4, with the scheduling policies used by Linux
OS, we can see that the system can be verified accurately if
the specification of the scheduler conforms with the policies
used by the system. In fact, the scheduling policies used by
practical systems are often different from ‘textbook’ strate-
gies. Therefore, to verify a practical system, we need to
specify the behaviors of the scheduler conforming with that
of the system.

The synchronization mechanism shown in Sect. 5.3 re-
lates to the scheduling policies. This relation is not easy to
handle with using only the modeling language for the pro-
cess because we need to model the whole system including
the processes and the scheduler, then encode the relations
between them. With our framework, these relations are easy
to define because an interface for the interaction between the
processes and the scheduler is already provided.

By changing the initial values of the process attributes,
our framework can deal with different configurations of the
system. Moreover, using appropriate data structures to store
the processes and specifying the handler for each system
event is a flexible way to deal with describing the behaviors
of the scheduler. The description code for specifying each
scheduling policy used in the experiments is really small in
comparison with the number lines of code generated (as in-
dicated in Table 9). For example, with a general language,
if we want to deal with FIFO policy, we need to implement
the queue data structure with the corresponding operations;
of course, the implementation needs a lot of work, time-
consuming and error-prone.

In our framework, the specification of the scheduling

1292
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

Table 9 The number lines of code generated from the scheduling policy.

Scheduling policy
No. Lines No. Lines

Specification Code Generated

First-in-first-out (FIFO) 13 1668

Priority 30 1787

Earliest deadline first (EDF) 30 1775

Round-robin (RR) 15 1475

OSEK/VDX Priority Ceiling Protocol 68 2061

Linux (SCHED OTHER, SCHED FIFO, SCHED RR) 55 1868

policy and the process model are separate. Considering the
scheduling strategy as an input of the verification, with the
same process model we can apply different scheduling po-
lices, and with the same scheduling policy we can apply var-
ious process models. This means that the process model and
the description of the scheduler can be reused completely.

As indicated in Sect. 5.1, when the search was com-
pleted, although the number of states visited by SSpinJa was
smaller than the number of states visited by SpinJa, SSpinJa
needed more memory than the original tool (SpinJa) did.
Because our tool considers the behaviors of the scheduler
during the verification, it needs more memory to store the
information of the scheduler for the computation.

7. Related Work

The related work for search algorithms is directed model
checking, which focuses on several techniques to reduce
the search space based on the abstractions of the system
state [15], [16] or based on estimating the distance [17], [18]
from the current state to the error states. The process that
has the transition corresponding to the best value (low-
est/highest) will be chosen for the execution. This means
guiding the search for particular aims. In comparison with
these techniques, we use the scheduler for selecting the pro-
cess, while directed model checking techniques choose the
best process for the execution.

There are several studies that analyzed the behaviors of
systems without considering the scheduling policies, such
as [19], [20]. To easily implement a model checking tool,
the work [21] proposed a framework named Bogor with an
extensible input language for the implementation. Our re-
search is different because we do not deal with the imple-
mentation; instead, we propose a method for flexibly veri-
fying different kinds of concurrent behaviors based on the
scheduling policies.

In the scheduling domain, there are several ways to deal
with schedulability problem. One of these is schedulabil-
ity analysis, which aims to find the set of conditions on a
task (process) design that determines whether the schedul-
ing problem is feasible or not. These works in this research
field are based on constraints solving [22], [23], using fixed
scheduling [24] or worst-case assumption [26]. Moreover,
there are tools based on the rate monotonic analysis that
uses fixed priority for the process, such as TimeWiz from
Time Sys Corporation and RapidRMA from TriPacific. In

comparison with these works, ours have the following dif-
ferences. Firstly, we deal with facilitating the variation of
the scheduler in model checking techniques. Secondly, we
do not use any assumption because the behaviors of the sys-
tem will be missed. For example, with the worst-case as-
sumption, some of the combinations of the conditions never
occur. Thus, verifying the system based on worst-case as-
sumption is very pessimistic.

To analyze the time constraints, the work UML profile
for MARTE [27] introduced a DSL for modeling a real-time
system with timing properties. However, this language only
focuses on the time relations and can not deal with the be-
havior of processes and the behaviors of the scheduler as our
work does.

One of the model checkers for verifying real-time sys-
tems is UPPAAL. To deal with the scheduling policies, with
UPPAAL, we can create a timed automata to capture the
behaviors of the scheduler and the processes. However, the
limitation is that UPPAAL does not support accessing the in-
ternal information of a process, which is described as a tem-
plate. Therefore, we must declare all internal information of
the process as public variables to implement the scheduling
algorithms or synchronization mechanisms that use these at-
tributes, such as the slack stealing algorithm or the priority
ceiling protocol. We can see that this approach lacks of flex-
ibility. Moreover, dealing with the facilitating the variation
of the scheduler with timed automata is challenging.

The appropriate model checker using the schedulers
is TIMES [28], which allows performing scheduling anal-
ysis with various properties for tasks, such as period, pri-
ority, and deadline. Nevertheless, TIMES only supports
five scheduling policies that are rate-monotonic, deadline-
monotonic, fixed-priority, earliest-deadline-first, and first-
come first-served. There is no way to extend this tool for
other policies.

To deal with using the scheduling policy in model
checking techniques, the approaches like [1], [2], use sim-
ulation methods for combining the scheduler with the pro-
cesses into a system model, then use an existing tool for the
verification. However, the checking capability is limited.
This is because much redundant information of the system is
stored in the system state and many behaviors of the sched-
uler are checked during the verification. Therefore, the state
space explosion problem will occur easily.

It is difficult to extend current approaches to deal with
various kinds of schedulers. To solve this problem, we pro-

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1293

pose a DSL to facilitate the variation of the scheduler. The
most closely related languages in this area are Bossa and
Catapults, which are introduced in [30] and [31]. In com-
parison with these studies, our approach has two main dif-
ferences, which are based on the target systems and the pur-
pose. Firstly, their studies focus on specific systems and
rely on the techniques of these systems: Bossa is based
on the Linux OS and Catapults is used for embedded sys-
tems, although it can support different target platforms and
languages. Therefore, they only support limited types of
scheduling strategies. In contrast, our approach does not ap-
ply to any particular system and can support a variation of
policies. Secondly, their aim is for implementing the sched-
uler in practical systems; ours is for ensuring the correctness
of software systems using model checking techniques.

8. Conclusion

This paper presents an approach to verify concurrent be-
haviors under various kinds of scheduling policies in model
checking techniques. We have the following contributions
for this paper: 1) We propose a DSL to specify the schedul-
ing policies; 2) We propose a search algorithm based on the
scheduler; 3) We developed a tool for verifying systems un-
der different scheduling policies.

The DSL provides a high-level support for the succinct
specification of scheduling strategies. The necessary arti-
facts are automatically generated for the subsequent analy-
sis of the system. The advantages of this approach are: 1)
the specification language is simple, 2) the behaviors of the
systems can be extended easily, and 3) the descriptions can
be reused completely. The demonstration shows that our
approach facilitates the variation of schedulers and verifies
systems accurately.

The limitation of the framework is memory usage,
which is a problem for an explicit-state model checker. In
the future, some optimization techniques, such as partial or-
der reduction, will be applied to overcome this limitation.
In addition, we plan to study on the scheduling optimiza-
tion techniques for the specification of the scheduler and use
model-based testing approach to check that the specification
in the DSL can specify the practical one.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 18H03220.

References

[1] N. Marti, R. Affeldt, and A. Yonezawa, “Model-checking of a Mul-
tithreaded Operating System,” 23rd Workshop of the Japan Society
for Software Science and Technology, University of Tokyo, Tokyo,
Japan, http://staff.aist.go.jp/reynald.affeldt/documents/
marti-jssst2006-en.pdf, 2006.

[2] T. Aoki, “Model checking multi-task software on real-time operating
systems,” 2008 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC),

IEEE, pp.551–555, 2008.
[3] G.J. Holzmann, The SPIN model checker: Primer and reference

manual, Addison-Wesley Reading, vol.1003, 2004.
[4] K.G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”

International Journal on Software Tools for Technology Transfer
(STTT), vol.1, no.1-2, pp.134–152, 1997.

[5] OSEK Group and others, “OSEK/VDX Operating System Specifi-
cation,” http://portal.osek-vdx.org, 2005.

[6] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri, “Verifying
SystemC: a software model checking approach,” Formal Methods in
Computer-Aided Design (FMCAD), 2010, IEEE, pp.51–59, 2010.

[7] L. Cordeiro and B. Fischer, “Verifying multi-threaded software us-
ing smt-based context-bounded model checking,” Proceedings of
the 33rd International Conference on Software Engineering, ACM,
pp.331–340, 2011.

[8] Z. Yang, C. Wang, A. Gupta, and F. Ivančić, “Model check-
ing sequential software programs via mixed symbolic analysis,”
ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol.14, no.1, pp.1–26, 2009.

[9] M. de Jonge and T.C. Ruys, “The SpinJa model checker,” Interna-
tional SPIN Workshop on Model Checking of Software, Springer,
vol.6349, pp.124–128, 2010.

[10] R. Gerth, “Concise PROMELA reference, 1997,”
http://spinroot.com/spin/Man/Quick.html, accessed: 20-April-2017.

[11] J.P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive sys-
tems,” Real-Time Systems Symposium, 1992, IEEE, pp.110–123,
1992.

[12] E. Emerson, A. Mok, A. Sistla, and J. Srinivasan, “Quantita-
tive temporal reasoning,” Computer-Aided Verification, Springer,
pp.136–145, 1991.

[13] L. Bettini, “Implementing Domain-Specific Languages with Xtext
and Xtend,” Packt Publishing Ltd, 2013.

[14] R. Pelánek, “BEEM: Benchmarks for explicit model checkers,”
International SPIN Workshop on Model Checking of Software,
Springer, pp.263–267, 2007.

[15] A.S. Andisha, M. Wehrle, and B. Westphal, “Directed Model Check-
ing for PROMELA with Relaxation-Based Distance Functions,”
Model Checking Software, Springer, vol.9232, pp.153–159, 2015.

[16] S. Kupferschmid, J. Hoffmann, H. Dierks, and G. Behrmann,
“Adapting an AI planning heuristic for directed model checking,”
International SPIN Workshop on Model Checking of Software,
Springer, vol.3925, pp.35–52, 2006.

[17] S. Edelkamp, S. Leue, and A. Lluch-Lafuente, “Directed explicit-
state model checking in the validation of communication protocols,”
International journal on software tools for technology transfer, vol.5,
no.2-3, pp.247–267, 2004.

[18] M. Wehrle, S. Kupferschmid, and A. Podelski, “Transition-based
directed model checking,” International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer,
vol.5505, pp.186–200, 2009.

[19] C. Pan, J. Guo, L. Zhu, J. Shi, H. Zhu, and X. Zhou, “Modeling and
verification of can bus with application layer using UPPAAL,” Elec-
tronic Notes in Theoretical Computer Science, vol.309, pp.31–49,
2014.

[20] Y. Liu, J. Sun, and J.S. Dong, “Pat 3: An extensible architecture
for building multi-domain model checkers,” 2011 IEEE 22nd In-
ternational Symposium on Software Reliability Engineering, IEEE,
pp.190–199, 2011.

[21] M.B. Dwyer and J. Hatcliff, “Bogor: A flexible framework for creat-
ing software model checkers,” Testing: Academic & Industrial Con-
ference-Practice And Research Techniques (TAIC PART’06), IEEE,
pp.3–22, 2006.

[22] S. Nejati, S. Di Alesio, M. Sabetzadeh, and L. Briand, “Model-
ing and analysis of CPU usage in safety-critical embedded sys-
tems to support stress testing,” International Conference on Model
Driven Engineering Languages and Systems, Springer, vol.7590,

http://dx.doi.org/10.1109/isorc.2008.46
http://dx.doi.org/10.1109/isorc.2008.46
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1145/1985793.1985839
http://dx.doi.org/10.1145/1455229.1455239
http://dx.doi.org/10.1007/978-3-642-16164-3_9
http://dx.doi.org/10.1109/real.1992.242671
http://dx.doi.org/10.1007/bfb0023727
http://dx.doi.org/10.1007/978-3-540-73370-6_17
http://dx.doi.org/10.1007/978-3-319-23404-5_11
http://dx.doi.org/10.1007/11691617_3
http://dx.doi.org/10.1007/s10009-002-0104-3
http://dx.doi.org/10.1007/978-3-642-00768-2_19
http://dx.doi.org/10.1016/j.entcs.2014.12.004
http://dx.doi.org/10.1109/issre.2011.19
http://dx.doi.org/10.1109/taic-part.2006.5
http://dx.doi.org/10.1007/978-3-642-33666-9_48

1294
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

pp.759–775, 2012.
[23] S. Di Alesio, S. Nejati, L. Briand, and A. Gotlieb, “Stress testing

of task deadlines: A constraint programming approach,” 2013 IEEE
24th International Symposium on Software Reliability Engineering
(ISSRE), IEEE, pp.158–167, 2013.

[24] H. Gomaa, “Designing concurrent, distributed, and real-time appli-
cations with UML,” Proceedings of the 23rd international confer-
ence on software engineering, IEEE Computer Society, pp.737–738,
2001.

[25] A. David, J. Illum, K.G. Larsen, and A. Skou, “Model-based frame-
work for schedulability analysis using UPPAAL 4.1,” Model-based
design for embedded systems, vol.1, no.1, pp.93–119, 2009.

[26] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and micropro-
gramming, vol.40, no.2-3, pp.117–134, 1994.

[27] MARTE, UML, “UML profile for MARTE: model and analysis of
real-time embedded systems,” http://www.omgwiki.org, 2015.

[28] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi,
“TIMES: a tool for schedulability analysis and code generation
of real-time systems,” International Conference on Formal Model-
ing and Analysis of Timed Systems, Springer, vol.2791, pp.60–72,
2003.

[29] N.-H. Tran, Y. Chiba, and T. Aoki, “Domain-specific language facil-
itates scheduling in model checking,” 2017 24th Asia-Pacific Soft-
ware Engineering Conference (APSEC), pp.417–426, IEEE, 2017.

[30] L.P. Barreto and G. Muller, “Bossa: a language-based approach to
the design of real-time schedulers,” Proceedings of the 23rd IEEE
Real-Time Systems, pp.19–31, 2002.

[31] M.D. Roper and R.A. Olsson, “Developing embedded multi-
threaded applications with CATAPULTS, a domain-specific lan-
guage for generating thread schedulers,” Proceedings of the 2005
international conference on Compilers, architectures and synthesis
for embedded systems, ACM, pp.295–303, 2005.

Appendix: Language Grammar

〈Model〉 ::= 〈ProcDSL〉 | 〈SchDSL〉
〈ProcDSL〉 ::= ‘def’ ‘process’ ‘{’ [〈ProcAttr〉] 〈Process〉* ‘}’

[〈ProcConf 〉] [〈ProcInit〉]
〈ProcAttr〉 ::= ‘attribute’ ‘{’ 〈PAttr〉* ‘}’
〈PAttr〉 ::= [‘var’|‘val’] 〈Type〉〈ID〉 (‘,’〈ID〉)* [‘=’〈Value〉]‘;’
〈Type〉 ::= ‘int’ | ‘byte’ | ‘clock’
〈Value〉 ::= 〈BOOL〉 | 〈INT〉
〈Process〉 ::= ‘proctype’ 〈ID〉 ‘(’[〈PramList〉]‘)’ ‘{’ 〈AttAss〉* ‘}’
〈PramList〉 ::= 〈PramAss〉 (‘;’ 〈PramAss〉)*
〈PramAss〉 ::= 〈Type〉 〈ID〉 (‘,’ 〈ID〉)* ‘=’ 〈Value〉
〈AttAss〉 ::= [‘this’ ‘.’] 〈ID〉 ‘=’ (〈Value〉 | 〈ID〉) ‘;’
〈ProcConf 〉 ::= ‘config’ ‘{’ 〈PConf 〉* ‘}’
〈PConf 〉 ::= 〈SporadicP〉 | 〈PeriodicP〉
〈SporadicP〉 ::= ‘sporadic’ ‘process’ 〈Proc〉 ‘in’ ‘(’ 〈INT〉 ‘,’

〈INT〉 ‘)’ [‘limited’ 〈INT〉] ‘;’
〈PeriodicP〉 ::= ‘periodic’ ‘process’ 〈Proc〉 ‘offset’ ‘=’ 〈INT〉

‘period’ ‘=’ 〈INT〉 [‘limited’ 〈INT〉] ‘;’
〈Proc〉 ::= 〈ID〉 ‘(’ [〈Value〉 (‘,’ 〈Value〉)*] ‘)’
〈ProcInit〉 ::= ‘init’ ‘{’ ‘[’ 〈PSet〉 (‘,’ 〈PSet〉)* ‘]’ ‘}’‘;’
〈PSet〉 ::= ‘{’ 〈Proc〉 (‘,’ 〈Proc〉)* ‘}’
〈SchDSL〉 ::= 〈SchDef 〉 [〈OrdDef 〉]
〈SchDef 〉 ::= ‘scheduler’ 〈ID〉 ‘(’ [〈ParamList〉] ‘)’ [‘refines’

〈ID〉] ‘{’ [〈VarDef 〉] [〈DatDef 〉] [〈HandlerDef 〉]
[〈InterDef 〉] ‘}’

〈VarDef 〉 ::= ‘variable’ ‘{’ 〈VDec〉* ‘}’
〈VDec〉 ::= [〈IfDef 〉] (〈VBlockDef 〉 | 〈VOneDef 〉)
〈IfDef 〉 ::= ‘#’ ‘ifdef’ ‘(’ 〈Expr〉 ‘)’
〈VBlockDef 〉 ::= ‘{’ 〈VOneDef 〉* ‘}’
〈VOneDef 〉 ::= 〈Type〉 〈ID〉 (‘,’ 〈ID〉)* [‘=’ 〈Value〉] ‘;’

〈DatDef 〉 ::= ‘data’ ‘{’ 〈DDef 〉* ‘}’
〈DDef 〉 ::= [〈IfDef 〉] ‘data’ (〈DBlockDef 〉 | 〈DOneDef 〉)
〈DBlockDef 〉 ::= ‘{’ 〈DOneDef 〉* ‘}’
〈DOneDef 〉 ::= 〈VOneDef 〉 | 〈ColDef 〉
〈ColDef 〉 ::= [‘refines’] ‘collection’ 〈ID〉 [‘using’ 〈ID〉 (‘,’

〈ID〉)*] [‘with’ 〈OrdType〉] ‘;’
〈OrdType〉 ::= ‘lifo’ | ‘fifo’
〈HandlerDef 〉 ::= ‘event’ ‘handler’ ‘{’ 〈EventDef 〉* ‘}’
〈EventDef 〉 ::= 〈Event〉 ‘(’ [〈ID〉] ‘)’ ‘{’ 〈IfDefStm〉* ‘}’
〈IfDefStm〉 ::= [〈IfDef 〉] 〈Stm〉
〈Event〉 ::= ‘select_process’ | ‘new_process’ | ‘clock’
〈InterDef 〉 ::= ‘interface’ ‘{’ 〈InterFunc〉* ‘}’
〈InterFunc〉 ::= ‘function’ 〈ID〉 ‘(’ [〈IParamList〉] ‘)’ ‘{’ 〈Stm〉* ‘}’
〈IParamList〉 ::= 〈IParamDec〉 (‘,’ 〈IParamDec〉)*
〈IParamDec〉 ::= 〈Type〉 〈ID〉
〈OrdDef 〉 ::= ‘comparator’ ‘{’ [〈CVarDef 〉] 〈CompDef 〉* ‘}’
〈CVarDef 〉 ::= ‘variable’ ‘{’ 〈VOneDef 〉* ‘}’
〈CompDef 〉 ::= ‘comparetype’ 〈ID〉 ‘(’ ‘process’ 〈ID〉 ‘,’ 〈ID〉 ‘)’

‘{’ 〈Stm〉* ‘}’
〈Stm〉 ::= 〈SetTime〉 | 〈SetCol〉 | 〈Change〉 | 〈Move〉 | 〈Remove〉 |

〈Get〉 | 〈New〉 | 〈If 〉 | 〈Loop〉 | 〈Block〉 | 〈Assert〉 | 〈Print〉
| 〈Return〉

〈SetTime〉 ::= ‘time_slice’ ‘=’ 〈Expr〉 ‘;’
〈SetCol〉 ::= ‘return_set’ ‘=’ 〈ID〉 ‘;’
〈Change〉 ::= 〈ChgUnOp〉 | 〈ChgExpr〉
〈ChgUnOp〉 ::= 〈QualName〉 (‘++’ | ‘--’) ‘;’
〈ChgExpr〉 ::= 〈QualName〉 ‘=’ 〈Expr〉 ‘;’
〈QualName〉 ::= 〈ID〉 [‘.’〈ID〉]
〈Move〉 ::= ‘move’ 〈ID〉 to 〈ID〉 ‘;’
〈Remove〉 ::= ‘remove’ 〈ID〉 ‘;’
〈Get〉 ::= ‘get’ ‘process’ ‘from’ 〈ID〉 ‘to’ ‘run’ ‘;’
〈New〉 ::= ‘new’ 〈Proc〉 [‘,’ 〈INT〉] ‘;’
〈If 〉 ::= ‘if’ ‘(’ 〈Expr〉 ‘)’ 〈Stm〉 [‘else’ 〈Stm〉]
〈Loop〉 ::= ‘for’ ‘each’ ‘process’ 〈ID〉 ‘in’ 〈ID〉 〈Stm〉
〈Block〉 ::= ‘{’ 〈Stm〉* ‘}’
〈Assert〉 ::= ‘assert’ 〈Expr〉 ‘;’
〈Print〉 ::= ‘print’ 〈Expr〉 ‘;’
〈Return〉 ::= ‘return’ 〈OrderType〉 ‘;’
〈OrderType〉 ::= ‘greater’ | ‘less’ | ‘equal’
〈Expr〉 ::= 〈Or〉
〈Or〉 ::= 〈And〉 (‘||’ 〈And〉)*
〈And〉 ::= 〈Equality〉 (‘&&’ 〈Equality〉)*
〈Equality〉 ::= 〈Equality〉 (‘==’ | ‘!=’) 〈Compar〉
〈Compar〉 ::= 〈PlusMinus〉 (‘>=’ | ‘<=’ | ‘>’ | ‘<’) 〈PlusMinus〉
〈PlusMinus〉 ::= 〈MulOrDiv〉 (‘+’ | ‘-’) 〈MulOrDiv〉
〈MulOrDiv〉 ::= 〈MulOrDiv〉 (‘*’ | ‘/’) 〈Primary〉
〈Primary〉 ::= ‘(’〈Expr〉‘)’ | ‘!’〈Primary〉 | 〈Empty〉 | 〈Null〉 | 〈InCol〉

| 〈Exist〉 | 〈GetID〉 | 〈HasName〉 | 〈Atomic〉
〈Empty〉 ::= 〈ID〉 ‘.’ ‘isEmpty’ ‘(’ ‘)’
〈Null〉 ::= 〈ID〉 ‘.’ ‘isNull’ ‘(’ ‘)’
〈InCol〉 ::= 〈ID〉 ‘.’ ‘containsProcess’ ‘(’ 〈STRING〉 ‘)’
〈Exist〉 ::= ‘exists’ ‘(’ 〈STRING〉 ‘)’
〈GetID〉 ::= ‘get_pid’ ‘(’ 〈STRING〉 ‘)’
〈HasName〉 ::= 〈ID〉 ‘.’ hasName’ ‘(’ 〈STRING〉 ‘)’
〈Atomic〉 ::= 〈Value〉 | 〈QualName〉 | 〈SysVar〉
〈SysVar〉 ::= ‘Sys’ ‘(’ 〈ID〉 ‘)’

• We note that some terms, such as <ID>, <STRING>, <INT>,
<BOOL>, are not shown in the grammar.

• The ‘val’ (‘var’) keyword for defining an attribute of the process
indicates that the value of this attribute is unchangeable (changeable).
Only the values assigning to the changeable attributes are stored in
the system state.

• The <IfDef> statement is used for initializing the scheduler based on
the condition <Expr>. This statement allows us to deal with param-
eterizing the scheduling policy.

• We also support reusing the specification by introducing ‘refines’

http://dx.doi.org/10.1007/978-3-642-33666-9_48
http://dx.doi.org/10.1109/issre.2013.6698915
http://dx.doi.org/10.1201/9781420067859-c4
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://dx.doi.org/10.1007/978-3-540-40903-8_6
http://dx.doi.org/10.1109/apsec.2017.48
http://dx.doi.org/10.1145/1086297.1086336

TRAN et al.: MODEL CHECKING IN THE PRESENCE OF SCHEDULERS USING A DOMAIN-SPECIFIC LANGUAGE FOR SCHEDULING POLICIES
1295

keyword. If scheduler B ‘refines’ scheduler A, all of the data
structures and the event handlers of A are inherited by B; however,
B can redefine them, add more data structures and handle its new
events. It is similar as the inheritance in object-oriented program-
ming. With a collection, ‘refines’ means redefining its ordering
method.

Nhat-Hoa Tran received the B.S., M.S.
degrees in Information Technology from Hanoi
University of Science and Technology, Viet-
nam (2003, 2008), and Ph.D. degree from Japan
Advanced Institute of Science and Technol-
ogy (2018). He is currently a lecturer at na-
tional University of Civil Engineering, Vietnam
(NUCE). His primary research interests are soft-
ware engineering, formal verification, formal
method and model checking.

Yuki Chiba received his B.S., M.S., and
Ph.D. degrees from Tohoku University (2003,
2005, 2008). He is currently a researcher
at DENSO CORPORATION. His research in-
terests include program transformation, term
rewriting system, automated theorem proving,
and model checking.

Toshiaki Aoki is a professor, JAIST (Japan
Advanced Institute of Science and Technology).
He received B.S. degree from Science Univer-
sity of Tokyo (1994), M.S. and Ph.D. degrees
from (1996, 1999). He was an associate at
JAIST from 1999 to 2006, and a researcher of
PRESTO/JST from 2001-2005. His research in-
terests include formal methods, formal verifica-
tion, theorem proving, model checking, object-
oriented design/analysis, and embedded soft-
ware.

