
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018
1393

PAPER

Modeling Complex Relationship Paths for Knowledge Graph
Completion

Ping ZENG†,††, Student Member, Qingping TAN†,††a), Xiankai MENG†,††, Haoyu ZHANG†,††,
and Jianjun XU†,††, Nonmembers

SUMMARY Determining the validity of knowledge triples and filling
in the missing entities or relationships in the knowledge graph are the cru-
cial tasks for large-scale knowledge graph completion. So far, the main
solutions use machine learning methods to learn the low-dimensional dis-
tributed representations of entities and relationships to complete the knowl-
edge graph. Among them, translation models obtain excellent performance.
However, the proposed translation models do not adequately consider the
indirect relationships among entities, affecting the precision of the repre-
sentation. Based on the long short-term memory neural network and ex-
isting translation models, we propose a multiple-module hybrid neural net-
work model called TransP. By modeling the entity paths and their relation-
ship paths, TransP can effectively excavate the indirect relationships among
the entities, and thus, improve the quality of knowledge graph completion
tasks. Experimental results show that TransP outperforms state-of-the-art
models in the entity prediction task, and achieves the comparable perfor-
mance with previous models in the relationship prediction task.
key words: knowledge graph completion, knowledge representation learn-
ing, knowledge graph

1. Introduction

Knowledge graph techniques are widely used in several in-
telligent fields including intelligent search [1], question an-
swering systems [2], expert systems [3], named entity recog-
nition [4] and entity disambiguation [5]. These techniques
represent the semantic network with a graph structure, ex-
pressing the knowledge entities as nodes and relationships
as edges in the graph. The knowledge graph can be formally
described as G = (E,R, S ), where E = {e1, e2, . . . , en} is the
set of entities, R = {r1, r2, . . . , rm} is the set of relationships,
and S ⊆ E×R×E represents the constraint of the entities and
relationships, that is, the triples set T . Each triple in T can
be expressed as Ti = <hi, ri, ti>, where h is the head entity,
t is the tail entity and r is the relationship between h and t.

There is often a large number of corrupted triples in
the knowledge graph; problems in the triples include miss-
ing entities and incorrect relationships. It is difficult to
ensure the correctness and completeness of the knowledge
graph. The main purpose of the completion of the knowl-
edge graph is to identify the missing entities and the incor-
rect relationships by entity prediction or relationship predic-
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tion. The main task of entity prediction is, for a given triple
T = <h, r, ∗> or T = <∗, r, t> (∗ indicates the missing or
incorrect entities), to find all entities which can make the
triple correct. Relationship prediction is also known as link
prediction, and the main task is to find the missing or in-
correct relationships in the triple T = <h, ∗, t> (∗ indicates
the missing or incorrect relationships) which make the triple
correct.

Traditional knowledge representation has problems
such as low computational efficiency, too-sparse data and
the need to manually select features, which make comple-
tion tasks difficult in large-scale knowledge graphs. The
deep learning technique based on representation learning
provides a new perspective on this problem. This technique
expresses the knowledge entities and relationships as low-
dimensional real-valued vectors (vector h represents head
entity h, vector t represents tail entity t and vector r repre-
sents relationship r), then calculates the semantic informa-
tion by simple and fast mathematical methods to achieve
the purpose of knowledge graph completion. Due to the
high performance and the automatic learning of semantic
features, this technique has developed rapidly. Researchers
have proposed a lot of models such as Structured Embed-
ding (SE) [6], Single Layer Model (SLM) [7] and Semantic
Matching Energy (SME) [8], [9]. However, most of these
models only consider the simple relationships among enti-
ties, with poor prediction performance.

Translation models such as TransE [10] have become
a hotspot of research in recent years. Based on the trans-
lation invariance of the low-dimensional vector of the enti-
ties, translation models establish the loss function by mea-
suring the Ln distance between h + r and t, then train the
final model. Based on the spatial projection and combina-
torial operators, these models have provided a more useful
perspective on the feature representation of complex rela-
tionships among entities, such as 1-to-N, N-to-1 and N-to-M.
PTransE [11] and other models even consider the existence
of information on paths among the entities in multiple-level
relationships, modeling two to three indirect relationships.
Compared with the previous models, these models have bet-
ter performance in knowledge graph completion tasks, but
still fail to represent the indirect relationships among long-
distance entities.

Based on the existing translation models, we propose
a method to construct the entity and relationship paths
for knowledge graph, and propose a multiple-module deep
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learning model called TransP. TransP uses the long short-
term memory (LSTM) to excavate the indirect relation-
ships among the entities, and uses the method mentioned in
ProjE [12], which takes reducing the collective ranking loss
as the optimization goal to excavate the direct relationships,
to enable effective excavation of rich information about the
relationships among the entities. By using the step-wise
training mechanism, TransP can effectively capture the rich
relationship information among entities. Experimental re-
sults show that TransP outperforms state-of-the-art models
in the entity prediction task, and achieves the comparable
performance with the previous models in the relationship
prediction task.

The main contributions of this work are as follows.
First, proposing a novel multiple-module hybrid neural net-
work model, which jointly considers the direct and indirect
relations among entities. Second, to the best of our knowl-
edge, this study is the first to use LSTM to extract the long
entity path information to enhance the learning ability in
the knowledge graph completion task. Lastly, the proposed
model achieves state-of-the-art performance in the entity
prediction task.

2. Related Work

As the first translation model, TransE [10] assumed that the
tail entity t is translated by the head entity h along the rela-
tionship r. TransE measures the Ln distance between h + r
and t, fr(h, t) = ‖h + r − t‖L1/L2 as the score function, and
the loss function defined as follows:

L =
∑

<h,r,t>∈G

∑

<h′,r,t′>�G

[
γ + fr(h, t) − fr(h′, t′)

]
(1)

In the above formula, <h, r, t> represents the exist-
ing triples in the knowledge graph, called golden triples,
<h’, r, t’> represents the triples that do not exist in the
knowledge graph, called corrupted triples, and γ is the min-
imum margin between a golden triple and a corrupted triple.
TransE has the fewest parameters and the lowest complexity
of all translation models, but it is only suitable for learning
the representation of 1-to-1 relationships.

In order to learn complex relationships such as 1-to-
N, N-to-1 or M-to-N, a series of variant models have been
proposed. TransH [13] proposed to project the head entities
and tail entities onto the hyperplane; TransR [14] proposed
to project the entities into relationship space; CTransR [14]
proposed to cluster the relationships, then divide them into
multiple sub-relationships; KG2E [15] considered the un-
certainty, imbalance and heterogeneity of entities and re-
lationships, and proposed the use of Gaussian distribution
modeling the relationships among entities, using the asym-
metric energy function based on KL divergence and the
symmetrical energy function based on expected probabil-
ity; TransG [16] considered the multiple semantic proper-
ties of the relationships, using the Gaussian mixture model
to describe the relationships among entities, and leverag-
ing the Bayesian nonparametric infinite mixture embed-

ding model to discover the multiple relationships semantics;
TransA [17] proposed the use of Markov distance measure-
ment loss function to learn different weights for each di-
mension; TransD [18] proposed projecting the entities into
relationship space like TransR, but with fewer parameters;
TransSparse [19] considered the heterogeneity and imbal-
ance of the entities and relationships, using the sparse ma-
trix instead of the dense matrix in TransR, and using differ-
ent projection matrices for the head entities and tail entities;
TransF [20] had flexibility, which ensured that the sum of
the head entities and the corresponding relationships had the
same direction as the tail entities, but with different sizes.

Most of the models consider the knowledge comple-
tion problem as a pairwise ranking problem, but ProjE [12]
views the completion problem as a collective scores ranking
problem of candidate entities of the head entity h and cor-
responding relationship r. ProjE establishes a three-layer
neural network model that uses combinatorial operators to
combine the input data into target vectors and improve per-
formance by optimizing the collective rank loss of the candi-
date entities list (or relationships list). It is a self-contained
model and does not depend on any preprocessing.

The above works have improved modeling of the di-
rect relationships among entities, but do not take into ac-
count the indirect relationships among entities. In order to
learn the representation of such relationships, PTransE [11],
RTransE [21] and other models take into account the trans-
lation model and the indirect relationship path information
among the entities. These models further improve the per-
formance of knowledge graph completion tasks. However,
the long paths can result in parameter explosion problem,
and not all of the relationships are reliable, meaning these
models usually only consider two or three level indirect re-
lationships.

3. Methodology

To take into account the direct relationship and the indirect
relationship among entities, TransP constructs the entity re-
lationship paths and a multiple-module hybrid neural net-
work model including LSTM unit, and uses the step-wise
training mechanism to optimize the network parameters. In
order to capture the rich and subtle relationships among en-
tities in the knowledge graph, TransP reduces the overall
collective loss as an optimization goal.

3.1 Term Definitions

This paper includes the following terms and definitions:
Fact Triple: For the knowledge graph G and any triples

T = <h, r, t>, if the triple T exists in the knowledge graph
G, that is, T ∈ G, then T is the Fact Triple in the knowledge
graph G, referred to as Fact.

Indirect Connection Exists: Let Tset = {T1 = <e1, r1,
e2>, T2 = <e2, r2, e3>, . . . , Tn−1 = <en−1, rn−1, en>} be the
set of fact triples in knowledge graph G, such that for every
two triples Ti, T j ( j = i + 1, and where j < n) in Tset,
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Fig. 1 The architecture of TransP. The details of the LSTM layer in the indirect module are hidden
(see Sect. 3.5). e∗ and r∗ in the entities and relationships module denote the vectors of all entities and
relationships in the knowledge graph, which will be fine-tuned during training. e and r in the indirect
module denote the entities and relationships contains in the paths constructed by path construction
module. ec∗ in the direct module denote all the candidate entities corresponding to the entity e and
relationship r. Their scores will be calculated for e and r separately (see Sect. 3.6). We and Wr denote
the weight matrices corresponding e and r.

the tail entity of Ti is just the head entity of T j. We say
that Indirect Connection Exists between e1 and en if there is
another triplet Tk = <e1, r, en> in G.

Entity Relationship Path and Sub-Path: For entity
pairs <h, t>, if there is a sequence of ordered fact triples
inside the h and t arranged in a certain order, we call the set
of entities E = {h = e1, e2, . . . , t = en} in the order as Entity
Path, and the relationships set R = {r1, r2, . . . , rn−1} is called
the Relationship Path. The Entity Path and the Relationship
Path are collectively referred to as the Entity Relationship
Path. A subset of any length in the Entity Relationship Path
is called its Sub-Path.

For example, consider the following set of fact triples:
{<Wall Street, located in, Manhattan>, <Manhattan, lo-
cated in, New York City>, <New York City, located in, New
York state>, <New York state, located in, USA>, <USA,
located in, North America>}. In this example, for triple
<Wall Street, located in, North America>, there exists an en-
tity path {Wall Street, Manhattan, New York City, New York
state, USA, North America}. In this path, there are indirect
connections between any two non-adjacent entities, and path
{New York City, New York state, USA} is a sub-path.

3.2 Model Architecture

TransP is a hybrid neural network model with multiple mod-
ules; the overall architecture includes an entities and rela-
tionships embedding module, a path construction module,
an indirect module and a direct module. The overall archi-
tecture is shown in Fig. 1.

The entities and relationships embedding module
mainly maps all entities and relationships into their corre-
sponding vector representation E ∈ Rd×|E| and R ∈ Rd×|R|,
where d is the vector dimension, |E| and |R| are the total
number of entities and relationships in the knowledge graph.
These vectors are the basis of the entire model and will be
fine-tuned during training.

The path construction module is used for the entity

relationship path construction (see Sect. 3.3). The indirect
module is used to analyze the indirect relationship informa-
tion contained in the path provided by the path construc-
tion module (see Sect. 3.5). The direct module is used to
analyze the direct relationship information among the entity
and the corresponding candidate entities (see Sect. 3.6). The
candidate entity acquisition method in the direct module is
described in Sect. 3.4. The inference process of model is
described in detail in Sect. 3.7.

Entities and relationships vectorization, path construc-
tion, and candidate entity sampling are done before training.
TransP uses a step-wise training mechanism, the training of
the model is a two-step iterative process. First, the entities
and relationships vectors in the path are updated according
to the constructed indirect path information by indirect mod-
ule. Then, according to the list of candidate entities, the
direct module is used to further update the entities and re-
lationships vector. The model performance will eventually
stabilize and the trained entities and relationships vectors
will be used for knowledge graph completion tasks.

3.3 Entity Relationship Path Construction

The basic method of entity relationship path construction is
to find all the indirect relationships of entity pairs <h, t> for
all triples T in knowledge graph G, and generate the entity
relationship path in sequence. The essence of finding an en-
tity relationship path is to explore all paths among all nodes
in a directed graph with a time complexity of O(N3), where
N is the total number of nodes in the directed graph, that
is, the number of entities in the corresponding knowledge
graph.

In order to reduce the time complexity, we propose a
batch entity relationship path construction method. Assum-
ing that the total number of triples in the knowledge graph G
is Nt, the entities in each batch (which have M triples) made
into a directed sub-graph, will make a total of Nt/M sub-
graphs (M is the super-parameter). For any of the triples Ti



1396
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

Fig. 2 The unrolled structure of LSTM by time steps. The solid arrows indicate the direction of the
data flow, and the dashed arrows indicate the data correspondence. In the back-propagation phases, the
residuals are passed in the opposite direction to the data stream. In the figure, circle c∗ is the memory
unit, L∗ is the loss function, i∗ = e∗ ⊕ r∗ denotes the input vector and h∗ denotes the output vector. The
input gate, output gate and forgot gate of the LSTM block are hidden.

= <hi, ri, ti> in the sub-graph Gk, we first find all the paths
of the hi node to the ti node, and append the entities in the
path into the entity path set PEk = {PEk1, PEk2, . . . , PEkn}
and append the relationships in the path into the relationship
path set PRk = {PRk1, PRk2, . . . , PRkn−1}.

During the training process, all sub-entity paths and
sub-relationship paths are spliced into a long entity path and
a long relationship path, where the sub-entity paths are sep-
arated by a special symbol and the sub-relationship paths
are separated by two special symbols (since the number of
relationships in the sub-relationship path is one less than the
number of entities in the corresponding sub-entity path). Af-
ter the splicing is complete, the path is segmented according
to the batch size B and the time step T to obtain the final
indirect module training data set.

3.4 Candidate Entity Sampling

A candidate entity is any entity that may make T become a
fact. In a large-scale knowledge graph, if all the entities are
treated as candidate entities for model training, it will bring
great training costs. It is common practice to reduce the
number of candidate entities by using candidate sampling
to improve training efficiency [22]–[24]. As with ProjE, we
use the negative sampling method used in word2vec to sam-
ple candidate entities [23].

In the knowledge graph G, the candidate entity that
makes the triples become a fact is called a positive case;
otherwise it is called a negative case. In the candidate entity
choice process, we include all positive cases into the candi-
date entity set Ec. For the negative cases, we use a simplified
0-1 distribution B(1, py) for sampling, where py is the prob-
ability of negative cases being accepted and 1 − py is the
probability that negative cases are not accepted. The value
range of py is [0%, 100%], where 0% means that no neg-
ative cases are sampled and 100% means that all negative
cases are sampled.

3.5 Indirect Module

The indirect module consists of the entity relationship sub-

layer, the combined sub-layer and the LSTM sub-layer.
The LSTM sub-layer is a simple LSTM network [25], [29],
which consists of input layer, hidden layer and output layer.
The LSTM sub-layer is responsible for processing the tensor
by time step, and its unrolled structure is shown in Fig. 2.

LSTM is a variant of recurrent neural network designed
to cope with long-term dependency problems. A LSTM unit
is composed of several gates to control the proportions of the
input to give to the memory cell, and the proportion infor-
mation to forget and to pass on to the time steps. We use the
following implementation:

it = σ(Wixt + Uiht−1 + bi)
ft = σ(W f xt + U f ht−1 + b f )
ot = σ(Woxt + Uoht−1 + bo)
gt = tanh(Wgxt + Ught−1 + bg)
ct = ft 	 ct−1 + it 	 gt

ht = ot 	 tanh(ct)

, (2)

where σ is the element-wise sigmoid function, and 	 is the
element-wise product. xt is the input vector at time t, ct is
the memory cell state at time t and ht is the hidden state at
time t. W∗ and U∗ denote the weight matrices of different
gates, and b∗ denote the bias vectors.

The input vector of the LSTM input layer is multiplied
by the entity vector in the entity path and the matrix of the
entity combination, plus the combination vector composed
of the relationship vector in the corresponding relationship
path multiplied by the relationship combination matrix. For
the entity path matrix E and the corresponding relationship
path matrix R, the input tensor IT is defined as follows:

IT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 ⊕ R1

E2 ⊕ R2

. . .
EB ⊕ RB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where

Ei ⊕ Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wei1ei1 +Wri1ri1

Wei2ei2 +Wri2ri2

. . .
WeiT eiT +WriT riT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(4)
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In the above equation, the We∗ and Wr∗ matrices are
diagonal matrices. This means that in the pre-processing,
we only consider the dimension weights of the entity vec-
tor and the relationship vector, regardless of the influence of
dimensions. This approach, on the one hand, can simplify
the calculation; on the other hand, the influence among the
dimensions will be further considered in the hidden layer or
directly related layer. In the entity and relationship predic-
tion task, the indirect module input only considers h + r;
even only considering h can obtain better results.

The output of the LSTM layer is a tensor OT which has
the same form as the input tensor IT, and a tensor contains
B ∗ T vectors with d dimensions (B is the batch size, T is
the time step). For each time step t(0 < t < T ), the output
is a matrix OM which contains B input vectors. Assuming
that the symbol corresponding to the t-th time step in the l-th
sequence is yl

(t), the total loss function is defined as:

L =
1
2

B∑

l=1

T∑

t=1

∥∥∥yl
(t) − hl

(t)

∥∥∥2 (5)

In the above equation, we directly let yl
(t)=el

(t+1), that
is, for the entity vector et and the relationship vector rt in
the entity relationship path, the target output vector is et+1.
Based on this, the BPTT algorithm [25], [26], which is com-
monly used in the recurrent neural network, is used to train
the whole network parameters according to the time steps.
After the indirect module training is completed, the trained
entity vectors, relationship vectors and their corresponding
combined operators are transferred to the direct module for
further training.

3.6 Direct Module

The direct module is a three-layer simple feed-forward neu-
ral network, which contains three sub-layers of input layer,
candidate entity combination layer and scores rank layer.
The input layer data is transformed by the tanh function after
the combination of the entity vectors and relationship vec-
tors and the corresponding combination operator trained by
the indirect module, defined as:

IDi = f (t(ei ⊕ ri)) = tanh(ei ⊕ ri) (6)

Similarly to the ProjE model [12], we consider the
knowledge graph completion problem as a ranking problem
for candidate entities and use the list method [27] to handle
the entity ranking task. According to this method, the can-
didate entity combination layer combines the input vector
with all corresponding candidate entity vectors, and the loss
function definition is also consistent with ProjE:

L(IDi, y) = −
|y|∑

j

log(hd(IDi) j)∑
j 1(y j = 1)

(7)

In the above equation, hd(IDi) j is defined as:

hd(IDi) j = so f tmax(e jtanh(ei ⊕ ri) + b) (8)

In the above equation, e j represents the vector corre-
sponding to the j-th candidate entity, and b is the corre-
sponding bias. This is a multi-class problem, and all positive
cases in the candidate entity set (i.e., entities that are directly
related to the input entity e and the input relationship r) are
scored as 1/|Ec

+| (|Ec
+| representing the total number of posi-

tive cases in all candidate entities corresponding to e and r),
and the entities not directly related to the input entity e and
the input relationship r are scored as 0 in the direct module.

The training method of the direct module is the same
as the feedforward neural network, and the parameters of
the direct path module are trained in the reverse direction.
During the training process, the derivative is directly derived
from the loss value, until the parameters in the entire direct
module are trained.

3.7 Model Inference

All entity vectors, relationship vectors, and the weight pa-
rameters of the model will be fixed after the training process,
and these data will be used in the inference process. The in-
direct module is mainly used to adjust the entity vectors and
relationship vectors to capture potential relationship infor-
mation among entities during training process. The infer-
ence process does not need to construct the entity relation-
ship path, and does not require indirect relationship com-
puting, so the inference process is simpler than the training
process.

In the entity prediction task, given the head entity vec-
tor he and relationship vector re, all the entities except the
head entity will be scored in turn by the following formula:

score(ei) = eitanh(he ⊕ re) + b (9)

In the above equation, ei represents the vector corre-
sponding to the i-th entity. Ranking all the entities accord-
ing to the score in descending order can determine the most
likely tail entity corresponding to the head entity he and re-
lationship re. The head entity inference process is similar,
only need to replace he in the above formula with tail entity
vector te.

In the relationship prediction task, given the head entity
vector he and tail entity vector te, all the relationship will be
scored in turn by the following formula:

score(r j) = tetanh(he ⊕ r j) + b (10)

In the above equation, r j represents the vector corre-
sponding to the j-th relationship. Ranking all the entities
according to the score in descending order can determine
the most likely relationship corresponding to the head entity
he and tail entity te.

4. Experiments

We used Python to implement the TransP model in the
TensorFlow [28] framework and evaluated TransP’s entity
prediction and relationship prediction capabilities based on
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the commonly used data set FB15K [10]. FB15K contains
1,345 relationships and 14,951 entities, corresponding to
483,142 training triples, 50,000 validated triples and 59,071
test triples.

To evaluate the impact of the indirect module, we per-
form ablation tests in the entity prediction task and the re-
lation prediction task respectively, by removing the indirect
module in the whole TransP model.

4.1 Parameter Setting

The indirect module is optimized using the GradientDescent
optimizer. The super-parameters that need to be set in the
whole module include the number of sub-graph triples M,
time step t, hidden layer dimension h, hidden layer number
l, mini-batch size bi and the maximum iteration period ei.

The direct module is optimized by the Adam optimizer,
and the L1 regularization is also used to prevent overfitting.
The super-parameter that needs to be set by the whole mod-
ule includes the negative sampling probability ps, the max-
imum number of training iterations ed, the regularization
weight a, the mini-batch size bd, and the parameters β1, β2
and ε that the optimizer needs to set.

In addition, we introduced dropout layers in both the
indirect module and the direct module. The whole model
needs to set the public hyperparameters including the en-
tity and relationship dimension k, the learning rate r and the
dropout probability d.

Inspired by ProjE [12], in our experiments, the param-
eters were initially set to M = 5, 000, py = 0.25, t = 5,
h = 200, l = 1, bi = 20, ei = 4, ps = 0.5, ed = 100,
a = 1e−5, bd = 200, β1 = 0.9, β2 = 0.999, ε = 1e−8,
k = 200, r = 0.01 and d = 0.5.

The initial value of the learning rate of the model can
also be set larger, and then gradually decreased with the in-
crease in the number of training sessions. All entity vec-
tors, relationship vectors and parameters that need to be ini-
tialized in the model are initialized using TransE’s recom-
mended uniform distribution U[−6/

√
k, 6/
√

k].

4.2 Entity Prediction

For the entity prediction task, we used the same evalua-
tion criteria mentioned in TransE, DKRL, TransH, TransR,
PTransE, RTransE, TransA and ProjE. That is, for each test
triple T = <h, r, t>, h and t are replaced by each entity ei

in the data set respectively; the score is then calculated for
Tr = <ei, r, t> and Tr = <h, r, ei>, and the entities sorted in
descending order according to the scores.

Based on the above entity ranking, we consider the col-
lective average ranking (Mean Rank) and the top 10 hit rate
(HITS10) metrics. The Mean Rank refers to the average
number of correct entities in the ranking. HITS10 refers to
the proportion of the correct entities which appear in the top
10.

In the original measurement results, there may be some
misclassified triples T , T does not exist in the test set, but

Table 1 The results of the entity prediction on the FB15K dataset. ADD-
2 means use the ADD method and consider a two-length path; RNN-2
means use the RNN method and consider a two-length path; ADD-3 means
use the ADD method and consider a three-length path. As the same data
set and evaluation metrics are used, the data are directly drawn from the
related work.

Models
Mean Rank HITS10

Raw Filter Raw Filter
TransE 243 125 34.9 47.1
DKRL CNN 200 113 44.3 57.6
TransH 212 87 45.7 64.4
TransR 198 77 48.2 68.7
TransE+Rev 205 63 47.9 70.2
PTransE ADD-2 200 54 51.8 83.4
PTransE RNN-2 242 92 50.6 82.2
PTransE ADD-3 207 58 51.4 84.6
RTransE - 50 - 76.2
TransA 155 74 56.1 80.4
TransF 220 89 40.5 61.2
ProjE pointwise 174 104 56.5 86.6
ProjE listwise 146 76 54.6 71.2
ProjE wlistwise 124 34 54.7 88.4
TransP-Ind 117 27 61.3 86.4
TransP 107 17 62.4 89.3

exists in the training set and the validation set. To reflect
the predictive performance objectively, we process the orig-
inal results and remove the triples from the list. In the ex-
perimental results, we mark the untreated original measure
as Raw, and the result after processing is called Filter. All
triples that are judged to be wrong in the filter do not exist
in the knowledge graph.

We compare a number of models and the results are
shown in Table 1. From the experimental results it can be
seen that TransP outperforms state-of-the-art models. For
MeanRank (Raw) and MeanRank (Filter), TransP improved
by 17 (about 13.7%) and 17 (about 50.0%), respectively.
And for HITS10 (Raw) and HITS10 (Filter), TransP im-
proved by 7.7 (about 14.1%) and 0.9 (about 1.0%), respec-
tively. The results indicate that TransP has better prediction
capabilities in entity prediction tasks.

We removed the indirect module from the whole
TransP model, to evaluate the impact of the indirect mod-
ule (denoted TransP-Ind). The results shows that the per-
formance degraded after removing the indirect module. For
MeanRank (Raw) and MeanRank (Filter), TransP-Ind de-
creased by 10 (about 9.3%) and 10 (about 58.8%), respec-
tively. And for HITS10 (Raw) and HITS10 (Filter), TransP-
Ind decreased by 1.1 (about 1.8%) and 2.9 (about 3.2%),
respectively.

We speculate that the main reason for this disparity is
that by modeling the indirect relationship of entities, some
entities with implicit relationships can be predicted. For ex-
ample, there is no direct relationship between New York City
and USA for entity paths {New York City, New York State,
USA}, but there is an indirect relationship that can be pre-
dicted through indirect path modeling.

4.3 Relationship Prediction

For the relationship prediction task, we consider two metrics
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Table 2 The results of the relationship prediction on the FB15K dataset.
As the same data set and evaluation metrics are used, the data are directly
drawn from the related work.

Models
Mean Rank HITS1

Raw Filter Raw Filter
TransE 2.8 2.5 65.1 84.3
TransE+Rev 2.6 2.3 67.1 86.7
DKRL CNN 2.9 2.5 69.8 89.0
PTransE ADD-2 1.7 1.2 69.5 93.6
PTransE RNN-2 1.9 1.4 68.3 93.2
PTransE ADD-3 1.8 1.4 68.5 94.0
ProjE pointwise 1.6 1.3 75.6 95.6
ProjE listwise 1.5 1.2 75.8 95.7
ProjE wlistwise 1.5 1.2 75.5 95.6
TransP-Ind 1.5 1.2 75.5 94.8
TransP 1.5 1.1 75.8 95.1

of Mean Rank and HITS1 (top 1 hit rate). For the original
measurement results (Raw), we used the same methods to
process the results in the entity prediction task and all the
triples which in the knowledge graph will be removed from
the results list, recorded as Filter.

As shown in Table 2, TransP has the best effect on the
Mean Rank (Raw and Filter) and HITS1 (Raw) which simi-
lar to the ProjE listwise model. For HITS1 (Filter), TransP
is slightly lower than ProjE by 0.6 (about 0.6%), but remark-
ably higher than the other models. This shows that TransP
has comparable performance with the previous models in
the relationship prediction task.

After removing the indirect module, we found that
the Mean Rank (Raw) metrics of TransP-Ind is exactly the
same as the TransP and ProjE. The Mean Rank (Filter) and
HITS1 (Raw and Filter) metrics of the TransP-Ind decreased
slightly, of which the Mean Rank (Filter) decreased by 0.1
(about 9.1%), the HITS1 (Raw) decreased by 0.3 (about
0.3%) and the HITS1 (Filter) decreased by 0.3 (about 0.3%).
This shows that the indirect module also has a promotion
effect in the relationship prediction task. But under the
high prediction performance, the improvement effect of the
model is not obvious.

We speculate that in the relationship prediction task
based on FB15K, the performance of the neural network
model is strongly affected due to the data noise or other fac-
tors such as gradient vanishing, and eliminating data noise
may further improve the performance. In addition, the re-
sults may fluctuate due to the random initialization of pa-
rameters.

5. Conclusions

Based on ProjE and other translation models, this paper
proposes a new knowledge representation learning model,
called TransP. TransP is a multiple-module hybrid deep
neural network model using step-wise training mechanism
learning knowledge representations. TransP considers the
rich entity relationship path information in the knowledge
graph. By constructing the entity relationship path, the
LSTM is used to model the relationship among these enti-
ties, and the distant relationship among the entities is exca-

vated. Experiments show that this indirect relationship con-
sidered by TransP has a significant effect on learning knowl-
edge’s vector representations, which is of great significance
in knowledge graph completion tasks.

In addition to the methods mentioned in this paper,
TransP also has a strong scalability, can be combined with
other knowledge learning models, and can even be adjusted
using these combinations to adapt to different tasks. After
combining with other models, the indirect entity relation-
ship is extracted by the method proposed by TransP, and the
model parameter space is optimized to further optimize the
learning ability of the knowledge models.

In the future, we will consider two aspects: Firstly,
we will consider the use of an attention mechanism, con-
cerned with the higher-frequency entities and relationships
in the knowledge graph, especially for the entities and re-
lationships that contribute greatly to the relationships in the
process of the entity relationship path construction, to fur-
ther enhance the model’s learning ability. Secondly, we will
consider the excavation of the description information cor-
responding to the entities or relationships contained in the
knowledge graph, to further enhance the model capacity.
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