
2082
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.8 AUGUST 2018

PAPER

ECG Delineation with Randomly Selected Wavelet Feature and
Random Forest Classifier∗

Dapeng FU†, Nonmember, Zhourui XIA††, Student Member, Pengfei GAO†††, Haiqing WANG††††a),
Jianping LIN†††††, and Li SUN†††††, Nonmembers

SUMMARY Objective: Detection of Electrocardiogram (ECG) char-
acteristic points can provide critical diagnostic information about heart
diseases. We proposed a novel feature extraction and machine learning
scheme for automatic detection of ECG characteristic points. Methods:
A new feature, termed as randomly selected wavelet transform (RSWT)
feature, was devised to represent ECG characteristic points. A random for-
est classifier was adapted to infer the characteristic points position with
high sensitivity and precision. Results: Compared with other state-of-
the-art algorithms’ testing results on QT database, our detection results of
RSWT scheme showed comparable performance (similar sensitivity, pre-
cision, and detection error for each characteristic point). RSWT testing
on MIT-BIH database also demonstrated promising cross-database perfor-
mance. Conclusion: A novel RSWT feature and a new detection scheme
was fabricated for ECG characteristic points. The RSWT demonstrated a
robust and trustworthy feature for representing ECG morphologies. Signif-
icance: With the effectiveness of the proposed RSWT feature we presented
a novel machine learning based scheme to automatically detect all types of
ECG characteristic points at a time. Furthermore, it showed that our al-
gorithm achieved better performance than other reported machine learning
based methods.
key words: ECG, random forest, wavelet transform

1. Introduction

Automatic annotation of electrocardiograms (ECGs) has re-
ceived increasing attention because of its vital role in the di-
agnoses of several cardiac diseases [1]. Most of the clinical
information in ECGs can be inferred from the intervals and
amplitudes of the ECG characteristic points (the peaks and
limits of the individual QRS waves, P wave, and T wave).

For determining the position of ECG characteristic
points several QRS complex detection and ECG delineation
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methods are used. Some methods focus on detection of QRS
complexes [2]–[4], while others use empirical mode decom-
position [3] and threshold-independent QRS detection algo-
rithm [4]. However, most of the QRS detection methods
cannot be straightforwardly applied to the detection of P
and T waves. Delineation methods like low-pass differen-
tiation (LPD) [5], [6], hidden Markov models [7], and spline
representation [8], [9] can delineate P and T wave only with
pre-defined model and manually adjusted data-sensitive pa-
rameters.

The wavelet transform is one of the most popular tech-
niques in ECG characteristic point detection [10]. Inspired
by this method, Martinez et al. [11] developed a single-
lead ECG delineation system. Based on an improved QRS
complex detection method proposed by Li et al. [10], their
system estimated the P and T wave peaks, on-sets, and off-
sets, which showed acceptable detection accuracy on public
ECG databases. Researchers tried to apply different meth-
ods to improve the delineation accuracy. To improve the
delineation performance on T wave, Chen et al. [12] mod-
elled three categories of T wave and designed their decision
rule accordingly. P wave detection and delineation are also
achieved with phase free stationary wavelet transform pro-
posed by Lenis et al. [13]. Besides, Dumont et al. [14] ap-
plied evolutionary algorithms to tune parameters of an ECG
wavelet transform-based delineator, achieved similar detec-
tion accuracy like Martinez et al. [11].

Based on partially collapsed Gibbs sampler, Bayesian
methods were proposed by Lin et al. [15], [16]. By ex-
ploiting the strong local dependency of ECG signals, the
methods showed relatively high detection accuracy of ECG
characteristic points on the QT database. However, their
methods depend on their prior knowledge and pre-defined
models.

Some recent studies adopted statistical machine learn-
ing techniques for the detection of ECG characteristic
points. Saini et al. [17] proposed a K-Nearest Neighbor clas-
sification approach for ECG recognition, which was eval-
uated on multiple ECG databases [18]. However, the K-
NN method has the drawback of high dimensionality, and
the trained K-NN classifier model occupies lots of mem-
ory. In our previous work, a time-domain feature termed as
randomly selected signal pair difference (RSSPD) was pro-
posed for ECG characteristic point detection [19]. This de-
tection scheme was preliminarily evaluated via pre-selected
30 records on QT database and achieved acceptable perfor-
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mance.
In this study, we proposed a novel ECG recognition

scheme, by leveraging wavelet transform and modern ma-
chine learning techniques to detect characteristic points in
ECG waves. We devised a novel wavelet transform based
feature, termed as randomly selected wavelet transform
(RSWT) feature. The RSWT feature could effectively rep-
resent the morphology of ECG waveform (details of the fea-
ture importance are described in Sect. 3.3). The baseline re-
moval and noise reduction process can be combined with the
features selected by random forest classifier. With the fea-
ture pool of RSWT, random forest classifier can determine
the class of each ECG sampling point. The detection result,
given by the trained random forest classifier was further re-
fined to produce the final detection output.

Our evaluation results on the QT database [20] and the
MIT-BIH database [21] showed comparable sensitivity and
precision to other state-of-the-art works. Especially our
scheme with RSWT feature showed better performance than
previous machine learning methods on QT database [18].
Since our scheme is based on machine learning, further ad-
vancement can be achieved with more annotated ECG data.
As for the evaluation results on the MIT-BIH database, it
showed that our method has good extendibility across differ-
ent ECG measuring sources and achieved promising cross-
database performance. Moreover, our method can process
both single lead and multi-lead ECG data, therefore it can
be applied to a variety of applications.

2. Methods

2.1 ECG Characteristic Points

Electrocardiogram (ECG) is a non-invasive way to measure
the heartbeat rhythms. The heart’s electrical activity can be
captured by the voltage variance of ECG. The ECG signal
from a normal heart has typical features such as the P wave,
the QRS complex, and the T wave. Figure 1 is a segment of
ECG sample from the record sel103 of QT database.

Our work can estimate eight types of ECG charac-
teristic points: onset, peak, and offset of P wave; onset,

Fig. 2 The proposed framework for ECG recognition, the RSWT feature extraction algorithm is used
for feature extraction in both training and testing stages.

offset of QRS complex, and its fiducial mark (typically at
the R-wave peak, according to annotation definition in QT
database); peak, offset of T wave, and other points (Tothers),
i.e. points with types other than the previously defined 8
types. Firstly, the classifier model labels each point in ECG
waveform into one of the eight types of characteristic points
or the Tothers type (indicates current point is a non-target
point). Secondly, this classification result will go through
post-processing to derive the final detection output. Accord-
ing to the detected characteristic points, we could also seg-
ment ECG waveform into P, QRS, and T wave segments.

2.2 Algorithm Framework

The framework of our ECG recognition scheme is shown in
Fig. 2. Firstly, we resampled the ECG time-domain signal
to 250 Hz to avoid inconsistency of sampling frequency be-
tween training and testing signals. The frequency of 250 Hz
was selected for both training and testing because the QT
database has a sampling frequency of 250 Hz (any other
suitable sampling frequency could also be chosen). Sec-
ondly, groups of point-pairs were randomly extracted from
a set of windows of length Lw (details of Lw are described

Fig. 1 Sample ECG segment of record sel103 from QT database, the
sample point indexes are in range [150207, 150416], the annotations is the
expert annotations in QT database.
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in Sect. 2.3) at each level of wavelet coefficients. Then we
computed the RSWT feature from all the levels of ECG
wavelet coefficients according to the pair selection scheme
(details of feature extraction are described in Sect. 2.3). Fi-
nally, in the training stage, a random forest classifier was
trained to select the effective features, and the trained model
was used for annotating ECG signals with RSWT feature.

In the detection stage, around the ground truth posi-
tion, there were multiple positive responses with the classi-
fier. Here, a post-processing method was adopted to group
sample points with the same annotation and estimate the fi-
nal position of the annotation, which is described in detail
in Sect. 2.5.

2.3 RSWT Feature Extraction

The key module of our scheme was the extraction of RSWT
feature. To illustrate the process of the RSWT feature ex-
traction, Fig. 3 gives the pseudo code of the feature extrac-
tion algorithm.

The RSWT feature for each ECG sample position was
extracted from a set of signal windows centered on the sam-
ple position guided by a pre-set pattern. This randomly se-
lected pattern was fixed and unchanged throughout the en-
tire training and testing process. Firstly, for each sample
point position in the ECG time domain waveform, a virtual
window with length Lw that centered on the given sample
position was defined. The corresponding windows were also
located on each level of WT coefficients in the correspond-
ing position. Feature extraction procedures would only be
conducted within these windows. Secondly, a pool of every
combination of point-pairs within each window was gener-
ated, and pairs of time-axis positions were drawn from the
coefficient pair pool, then we computed the amplitude dif-
ference and sign of the difference between the selected pairs
as the feature representation of the current window, which is
described in detail as follows.

Using wavelet, we can derive the stationary wavelet
transform coefficients for the signals segment in the window.
In this process, we chose the Daubechies2 (db2) wavelet
because the Daubechies Wavelet is widely reported for the
accuracy of details compared to other methods. More-
over, this wavelet shows similarity with QRS complexes and
the energy spectrum is concentrated around low frequen-

Fig. 3 Pseudo code of RSWT feature extraction.

cies [22], [23]. The maximum level of the wavelet transform
was set to 6, since experiment results showed that higher or-
der mainly consisted of noise.

In order to make the proposed feature more robust to
ECG amplitude variations, the wavelet coefficients inside
the fixed length window were normalized according to the
maximum and minimum values of the time domain signal
inside the window:

Norm(Coe fi) =
Coe fi

(S max − S min)
, (i = 1, 2, . . . , Lw) (1)

Where Coe fi is the ith wavelet coefficient in the fixed length
window, Lw is the length of the window (number of sample
points in ECG signal), and S max and S min are the maximum
and minimum values of the time domain signal in the win-
dow.

The RSWT feature contained the sign and absolute dif-
ference of WT coefficients as a feature representation of the
selected point-pairs. The feature for a given pair (x1, x2) was
represented by: |coe f (x1) − coe f (x2)| and sign(coe f (x1) −
coe f (x2)), where the function coe f (x) represents the xth

sample value of the current level of WT coefficients, and
the sign function sign(x) is given by:

sign(x) =

{
1(x ≥ 0)
−1(x < 0)

(2)

The WT coefficients in different levels contained infor-
mation of ECG waves in different frequency bands. There-
fore, computing point-pair features within each level of WT
coefficients allowed the RSWT feature to obtain frequency
information about ECG waveform. Note that ECG denois-
ing in frequency domain was implicitly performed by the
feature selection process in WT coefficients. This made the
system more robust and allowed the direct application over
the time-domain ECG signal without denoising.

The total number of different signal pairs was:(
Lw

2

)
=

Lw2 − Lw
2

(3)

Where

(
Lw

2

)
denotes the number of 2-combinations in a

set of Lw elements. It cannot be afforded when the window
length Lw is too large. Therefore, we employed the random
selection of pairs instead of storing all the possible pairs,
which greatly reduced the memory cost.

The total feature number used in random forest was N f ,
the value of N f was set to 4000 in our experiments. Since
a pair (x1, x2) could generate 2 features, therefore, the to-
tal number of N f /2 pairs were randomly drawn from the
wavelet coefficients.

There were two types of random pairs: For one pair,
both of the ends were randomly selected, for the other pair,
one end was fixed at the center position of the window and
the other end was randomly selected. The number of pairs
with one end fixed was N f /4, half of the total number of
pairs.

Random selection from the WT coefficient pairs could
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decrease the number of pairs thus reducing the dimension
of our feature. We reduced the dimension of the feature not
only because it was computationally efficient, but also be-
cause of the ability to train the classifier more easily and
efficiently on low dimensional features.

As for Lw, a higher value was set for it than the sam-
pling frequency fs, because the normal resting adult human
heart rate ranges from 60 ∼ 100 bpm, and we wanted the
fixed-size window to include more than one heartbeat cycle.
We set Lw = 3× fs as the fixed-size window length. The de-
tection accuracy was not sensitive to longer window sizes.
The influence of Lw is further discussed in Sect. 3.4.

There are two reasons that make the proposed RSWT
feature more effective. First, the point-pair difference fea-
ture is a good approximation of signal gradient and relative
position between sample points. It captures the amplitude
relationship between the target sample points and surround-
ing sample points. Second, the features in wavelet domain
are easier for the classifier to decide which level of WT co-
efficients contains effective information for classification.

2.4 Random Forest Classification

The random forest classifier would extract effective features
from RSWT feature pool. The RSWT feature was a local
descriptor, which not only tried to describe the relative am-
plitudes between the window center with other points, but
also described the relationship between neighboring points.
It was calculated by the values of |coe f (x1) − coe f (x2)| and
sign(coe f (x1) − coe f (x2)), for each pair (x1, x2) generated
in Sect. 2.3.

Since RSWT features were weak gradient-like pair lo-
cal descriptors, random forest was suitable for the RSWT
feature classification task [24]. The ECG characteristic
point detection with random forest consisted of two pro-
cesses: learning and testing. In the random forest learning
process, a group of decision trees was randomly trained ac-
cording to the expert annotations in the QT database. The
training set contained expert annotations from 75 records of
QT database, the other 30 records were used for testing.

We added negative samples (Tothers) to the training set.
The negative samples were taken from positions other than
annotated positions in the ECG signal. In the negative sam-
ple selection process, in order to avoid selecting the sam-
ples that were characteristic points but without expert anno-
tations, we manually marked the range of the expert anno-
tations, and randomly selected negative samples within the
annotated beats. The negative samples were also kept a min-
imum distance of 40ms (the distance between 10 points in
the sampling frequency of 250 Hz) from the expert annota-
tions to avoid high correlations between positive and nega-
tive samples.

In the random forest classifier training process, 30 deci-
sion trees were trained and the test results of the random for-
est was given by averaging the probabilistic prediction of the
decision trees. If the total number of training samples was
N, then each decision tree was trained by N samples ran-

domly drawn with replacement from the training samples.
In the decision tree training process, the best split position
was determined by the best split among a random subset of
the features. The size of the random subset was

√
N f , where

N f is the number of features. The nodes were expanded un-
til the maximum depth was reached or until the leaves con-
tained less than 2 samples. The maximum depth of each
decision tree Dtree was set to 35 to prevent overfitting.

In the testing process, the RSWT feature was first ex-
tracted from the test position in the ECG signal, then the test
result was given by averaging the probabilistic prediction of
decision trees from the trained model.

2.5 Result Post-Processing

The post processing included two stages: grouping and
group filtering.

In the grouping process, we first formed groups by col-
lecting nearby sample points (samples with a distance of
1) with the same prediction label, and skipped groups with
only 1 sample. Then the representative sample position of a
group was determined by the confidence-weighted mean of
the sample positions.

In the group filtering process, the groups with same
label were processed when their distance was less than a
threshold calculated by the maximum human heart rate. The
group with smaller size was skipped to reduce false alarms.

3. Results and Discussion

In this section, we described the experiments to evaluate
the within-database and cross-database performance of our
method. We will describe our overall performance on the
QT database in 3.1. Furthermore, the better cross-database
performance of our system is discussed in 3.2.

To evaluate the results, we adopted the same evaluation
scheme as described by Martinez et al. [11]. We detected
the characteristic points in both leads of the records in QT
database and selected the best data to derive the final conclu-
sion. We computed the detection accuracy, sensitivity (also
referred as detection rate) S e = T P/(T P + FN), and pos-
itive predicitivity P+ = T P/(T P + FP), where TP denotes
the number of true positive detections (wave was present
and was detected), FN represents the number of false nega-
tive (wave was present but was not detected), and FP indi-
cates the number of false positive detections (wave was not
present but was detected).

For an expert annotation, the true positive was evalu-
ated using the standard beat-by-beat comparison procedure
given by AAMI et al. [25]. The number of false nega-
tive was calculated by the number of expert annotations that
couldn’t find a true positive matching and the number of
false positive was calculated by the number of detection re-
sults that didn’t match the expert annotations, we also man-
ually annotated the regions with incomplete expert annota-
tions, so that when a test result was located in these regions,
it was free from statistics calculation.
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Table 1 Detection accuracy on the QT database

Method Metric P-on P-peak P-off QRS-on QRS-peak QRS-off T-peak T-off Average

RSWT M±SD 0.9±12.3 -0.9±9.9 -4.9±10.0 -2.2±6.6 0.8±3.3 -1.8±8.1 6.0±11.6 2.7±16.4 2.5±9.8
(Our method) S e 100.0% 99.9% 100.0% 100.0% 100.0% 100.0% 98.5% 98.1% 99.6%

P+ 99.0% 98.5% 98.5% 100.0% 100.0% 100.0% 99.9% 99.9% 99.5%

RSSPD [19] M±SD 0.4±22.0 N/A 2.1±12.9 0.2±10.2 N/A 0.5±14.4 N/A 1.4±17.2 0.9±15.3
(Our previous work) S e N/A N/A N/A N/A N/A N/A N/A N/A N/A

P+ N/A N/A N/A N/A N/A N/A N/A N/A N/A

KNN([18]) M±SD 2.5±14.3 N/A 3.1±13.9 2.4±8.8 N/A 4.7±9.2 N/A 2.8±18.6 3.1±13.0
S e N/A N/A N/A N/A N/A N/A N/A N/A N/A
P+ N/A N/A N/A N/A N/A N/A N/A N/A N/A

WT([11]) M±SD 2.0±14.8 3.6±13.2 3.5±18.0 4.6±7.7 N/A 0.8±8.7 0.2±13.9 -1.6±18.1 2.3±13.5
S e 98.87% 98.87% 98.75% 99.97% 99.92% 99.97% 99.77% 99.77% 99.54%
P+ 91.03% 91.03% 91.03% N/A 99.88% N/A 97.79% 97.79% 94.76%

Phase free SWT [13] M±SD -0.3±12.2 N/A 5.8±9.1 N/A N/A N/A N/A N/A 3.0±10.7
S e 100% N/A 100% N/A N/A N/A N/A N/A 100%
P+ 88.2% N/A 88.2% N/A N/A N/A N/A N/A 88.2%

Beat-to-beat BGS [16] M±SD 3.4±14.2 1.1±5.3 2.7±9.8 N/A N/A N/A -0.8±4.1 -3.1±14.0 2.2±9.5
S e 99.93% 99.93% 99.93% N/A N/A N/A 100% 100% 99.96%
P+ 99.10% 99.10% 99.10% N/A N/A N/A 99.30% 99.30 99.20%

Multi-beat PCGS [15] M±SD 1.7±10.8 2.7±8.1 2.5±11.2 N/A N/A N/A 0.7±9.6 2.7±13.5 2.1±10.6
S e 99.60% 99.60% 99.60% N/A N/A N/A 100% 100% 99.76%
P+ 98.04% 98.04% 98.04% N/A N/A N/A 99.15% 99.15% 98.48%

†N/A indicates the statistics is not available.
††M±SD is the abbreviation of mean±standard deviation.
†††S e and P+ are the abbreviation of sensitivity and positive predictivity.
††††We computed the average of the absolute values of the M and SD at each characteristic point for a more intuitive comparison.

3.1 Overall Detection Accuracy on QT Database

The QT database contains 105 records chosen from ex-
isting ECG database, including the MIT-BIH Arrhythmia
Database, ST-T Database and several other ECG databases.
At least 30 beats in each record, 3622 beats in all, were man-
ually annotated in the database. The annotation includes the
beginning, the peak, and the end of the P wave; the begin-
ning, the peak, and the end of the QRS complex; the peak,
and the end of the T wave.

In order to evaluate the performance of the proposed
algorithm, we randomly selected 75 records from the QT
database to train the random forest classifier. The remain-
ing 30 records were tested to evaluate the algorithm. This
process was repeated for 30 rounds. We did not detect
the T-onset due to the lack of expert annotations in the QT
database.

The performance of wave delineation was measured by
the mean (denoted as M) and standard deviation (denoted
as SD) of error values. It’s noted that the SD will be more
important when the M is comparable. For each expert label,
the error was defined as the distance between the detection
output and the corresponding expert label. The indicated
time values (in ms) were based on a sampling frequency of
250 Hz.

The total average detection accuracy of 30 rounds are
listed in Table 1. The test result showed that our method
achieved comparable sensitivity, positive predictivity, and
detection accuracy (mean and standard deviations) in ECG
characteristic point detection. Note that only our RSWT de-
lineation scheme managed to detect all types of points in a
unified model simultaneously, thus simplifying the detection
and delineation process.

Fig. 4 Examples of test results on the QT database, the index range for
sel100 and sel16273 is [150240, 150500] and [150200, 150460], respec-
tively.
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Among the machine learning based approaches
(RSSPD [19] and KNN [18]), our algorithm achieved supe-
rior performance in SD at all types of characteristic point. It
can also be observed that our results were comparable with
state-of-the-art methods (BGS [16] and PCGS [15]), which
were 2.5±9.8 compared to 2.2±9.5 and 2.1±10.6. However,
BGS and PCGS methods depend on their prior knowledge
and pre-defined models.

The delineation accuracy of each record in one of the
rounds are presented in Table 3. As it is shown in the table,
most of the records had high detection accuracy, however,
some records in the testing set obtained larger mean error
and standard deviation, for the lack of similar wave mor-
phologies in the training set.

The ECG characteristic point detection result on the
QT database is shown in Fig. 4. For the QT record sel100,
even though the T wave is mono-phased, our algorithm cor-
rectly detected the position of T-peak and T-offset. For the
QT record sel16273, we detected the P wave with relatively
small amplitude.

The experiment results in this section on the QT
database showed that the RSWT feature is an effective rep-
resentation of ECG morphologies. This reduces the demand

Table 3 Detection accuracy with window size 3 × fs in QT database

Record Name Metric P-on P-peak P-off QRS-on QRS-peak QRS-off T-peak T-off

sele0121 M±SD(ms) 8.3±7.8 10.3±5.6 4.0±6.8 0.6±7.3 1.6±2.4 -11.4±5.2 3.3±4.3 -30.7±12.7

sel307 M±SD(ms) 3.8±7.0 5.1±5.4 5.1±7.4 -2.3±5.0 2.0±1.5 -12.6±6.1 1.2±8.4 12.8±36.0

sel16773 M±SD(ms) 10.8±8.8 4.7±5.3 -7.3±10.3 -14.3±6.3 1.5±1.4 -1.9±4.3 -9.0±9.3 -6.3±10.1

sel16265 M±SD(ms) 6.3±8.3 -1.2±6.5 4.0±7.5 -16.5±6.1 -0.7±1.9 -15.0±9.2 7.0±8.9 -10.4±15.3

sel873 M±SD(ms) 15.6±11.8 -3.0±10.8 4.0±9.2 4.7±7.3 -2.0±1.8 -6.8±6.7 0.7±7.0 -3.3±11.3

sele0210 M±SD(ms) -7.5±14.7 -6.3±7.3 -7.9±7.6 -4.8±6.1 0.6±1.2 -16.2±8.5 -1.2±6.7 0.8±9.7

sele0406 M±SD(ms) 21.3±18.0 12.0±8.0 8.8±8.8 -0.4±3.5 -0.6±2.5 -13.5±4.7 2.5±5.3 -3.8±10.1

sel808 M±SD(ms) 4.1±18.3 -0.7±7.0 -0.2±9.8 -1.4±11.7 -2.0±1.8 5.4±13.4 1.7±6.8 -0.6±18.8

sele0405 M±SD(ms) 32.2±12.7 20.7±11.5 21.4±10.1 7.2±8.9 -1.5±2.6 -5.5±8.5 3.9±8.4 0.9±17.2

sele0112 M±SD(ms) 0.3±11.5 2.4±6.9 4.3±5.8 -7.3±5.0 0.3±2.9 -11.8±7.4 -8.4±5.9 14.1±11.5

sel231 M±SD(ms) 4.2±10.4 4.2±8.5 -4.3±9.2 5.9±7.5 6.9±4.6 -2.8±19.1 67.0±63.4 40.6±44.9

sel47 M±SD(ms) -28.6±7.8 -0.4±9.9 -4.0±7.6 -14.9±6.9 4.4±3.0 16.1±8.9 -20.4±11.1 20.5±14.9

sele0136 M±SD(ms) 6.1±11.4 3.3±7.4 -0.7±7.2 -2.7±4.4 0.3±2.5 -6.0±6.0 25.8±14.2 37.7±30.8

sel17453 M±SD(ms) 16.7±10.3 19.3±7.7 13.1±8.6 0.6±6.7 2.0±2.2 3.1±8.8 4.4±7.4 -0.5±13.2

sele0303 M±SD(ms) 0.9±8.7 10.3±8.3 4.4±6.3 -2.6±3.7 -2.1±2.8 -13.5±8.5 6.0±6.7 44.7±13.5

sel32 M±SD(ms) 15.8±9.9 15.5±13.3 3.6±6.3 0.9±3.4 1.3±2.5 4.4±6.7 8.2±18.8 21.7±27.7

sel306 M±SD(ms) -8.2±8.3 12.5±8.5 -7.4±10.3 -2.0±5.1 0.4±3.4 -16.4±7.1 5.4±9.7 -3.9±10.0

sele0106 M±SD(ms) 2.4±7.9 7.6±9.7 0.2±11.4 -8.1±4.7 2.7±3.2 -2.8±4.2 42.6±10.7 36.1±15.4

sel16795 M±SD(ms) 20.2±11.5 16.3±7.8 10.9±8.2 1.9±7.0 1.6±3.7 -1.6±7.3 4.1±5.8 0.8±9.5

sel871 M±SD(ms) -1.9±8.6 2.3±6.4 6.3±10.7 -14.5±7.1 2.1±3.4 -7.2±5.5 7.2±9.8 6.6±12.5

sele0129 M±SD(ms) 11.1±14.5 1.4±7.4 -6.4±8.6 -0.5±9.8 0.0±2.3 -2.6±5.0 1.0±5.5 22.3±12.2

sel16539 M±SD(ms) 17.0±10.2 -2.4±6.0 -24.1±19.2 0.9±2.9 1.4±2.3 -6.0±4.9 15.5±9.0 -0.6±9.6

sele0609 M±SD(ms) 8.5±9.6 8.1±9.3 3.8±8.3 -8.9±5.7 -0.6±2.0 -7.2±8.3 4.2±9.6 12.9±19.1

sele0612 M±SD(ms) -72.1±15.3 -64.0±8.9 -49.2±13.0 -3.4±6.8 -3.6±2.0 0.6±7.7 15.6±14.2 12.0±13.2

sel302 M±SD(ms) 36.1±12.6 23.9±12.7 14.9±5.7 2.4±5.3 0.3±3.1 -2.5±6.0 -4.5±7.7 -4.3±11.1

sele0124 M±SD(ms) -13.7±11.6 -9.2±8.1 -14.6±10.6 -0.5±7.2 2.0±3.9 -6.2±7.7 3.5±9.8 25.1±16.4

sele0122 M±SD(ms) 7.1±6.8 8.8±5.5 -1.8±6.4 -0.2±5.6 0.6±2.5 -7.8±6.4 -2.3±6.0 -41.3±9.0

sel16272 M±SD(ms) 53.0±16.3 45.2±10.2 28.2±7.3 6.6±6.1 0.2±2.3 -7.8±8.1 3.1±6.0 -6.6±10.6

sel114 M±SD(ms) -5.3±13.4 -8.9±18.3 -15.7±14.5 -6.8±8.7 0.5±1.9 3.5±10.8 8.4±11.7 10.6±24.0

sele0704 M±SD(ms) 6.7±17.7 3.4±9.2 4.8±7.9 -1.6±5.3 -21.5±11.4 31.1±16.5 3.0±6.7 -9.6±9.0

for a denoising procedure, since denoising often results in
the loss of clinical information in the ECG waves.

3.2 QRS Detection Results on MIT-BIH Database

The MIT-BIH database includes specially selected Holter
recordings with anomalous but clinically important phe-
nomena. The annotations of QRS positions (R-peak) were
used for the evaluation in this section.

In order to verify the enhanced cross-database per-
formance, our classification model was trained on the QT
database and then applied to the MIT-BIH database. Since
the sampling frequency is 360 Hz for the MIT-BIH database
and 250 Hz for the QT database, we down-sampled the
ECG in the MIT-BIH database to 250 Hz. Table 2 shows
the QRS detection sensitivity S e and positive predictivity

Table 2 QRS detection results on MIT-BIH database

Sensitivity P+

This work 99.82% 99.37%

DPI ([4]) 99.52% 99.70%

WT ([11]) 99.80% 99.86%
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Fig. 5 Feature importance of the trained R-peak random forest classi-
fier model. It showed that the R wave model had more important pairs in
Coefficient 3.

P+ on the MIT-BIH database. The results showed that our
scheme achieved higher sensitivity and comparable positive
predictivity compared to other reported detection schemes.
Note that both DPI [4] and WT [11] were tuned and evalu-
ated solely on the MIT-BIH database. It demonstrated that
our novel RSWT scheme has a robust cross-database perfor-
mance.

3.3 RSWT Feature Importance Visualization

The feature importance in each level of Wavelet Transform
(WT) coefficients for trained P-peak model, QRS fiducial
mark (R-peak) model, and T-peak model are visualized in
Fig. 5, Fig. 6, and Fig. 7 respectively. In order to compare
the difference in the trained model of the different type of
waves, we adopted the same set of pairs randomly generated
in WT coefficients.

The feature importance was derived from the average
of the number of samples that a feature can predict in the
random forest. To visualize the importance of the selected
pairs, we analysed the top 3% of the most important pairs,
and evenly divided the time-axis into 8 sections. With in-
creasing number of weighted pairs in a section the color be-
came darker. The weight of a region Ω is given by:

weight(Ω) =
∑

pair[0]x ∈ Ω
pair[0]x , centerx

Importance(pair)

+
∑

pair[1]x ∈ Ω
pair[1]x , centerx

Importance(pair)
(4)

Fig. 6 Feature importance of the trained T-peak random forest classifier
model. It showed that the P wave model had more important pairs in the
front of the window center in Coefficient 3.

Fig. 7 Feature importance of the trained P-peak random forest classifier
model. It showed that the T wave model had more important pairs in the
back of the window center in Coefficient 3.

Where pair[0]x is the time index of the first point in the
pair and pair[1]x is the time index of the second point in
the pair; centerx is the time index of the window center and
Importance(pair) is the feature importance of the pair. We
didn’t visualize the importance of the window center index
because it was manually selected.

The most significant difference of the feature impor-
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Fig. 8 Standard deviation(ms) and detection P+ for different window lengths, L1∼L4 represents win-
dow length of 1 × fs to 4 × fs, respectively.

Fig. 9 Toffset detection standard deviation(ms) and detection P+ for different N f values, where N f is
the number of features drawn from the windows.

tance of these models lied in WT coefficient level 3 and 4.
Comparing Fig. 5 with Fig. 6 and Fig. 7, the R wave model
had more important pairs in WT level 3, since R wave usu-
ally has higher frequency than P and T wave. There were
also differences among the important features of P and T
wave. In wavelet transform level 3, the P wave model had
more important pairs in the front of the window center,
while the T wave model had more important pairs in the
back of the center. This is because the P wave is usually in
front of the QRS complex, having more pairs in the front can
exploit this property. The similar explanation was applied to
T wave also.

The difference between the important features of the P,
QRS, and T wave models proved that the proposed scheme
effectively captured the features of the ECG signal. The vi-
sualization result indicated that the first level of WT coeffi-
cient had less important features, since this level was often
contaminated with high-frequency noises. This result also
proved the effectiveness of the feature selection process.

The detection results on the QT database and the MIT-
BIH database showed that the proposed method achieved su-
perior performance to other studies, indicating that the pro-
posed method is an effective method for ECG characteristic
point detection.

3.4 Parameter Sensitivity Analysis

The delineation accuracy of our scheme is not sensitive to
variations in parameter values. We evaluated the influence
of window length Lw and number of features N f on QT
database with other parameters kept the same as in Sect. 3.1.

In order to evaluate the influence of window length Lw
in RSWT feature extraction, we tested on different values
of Lw for Toffset, as is shown in Fig. 8. According to the
experiment results, the detection accuracy was not sensitive
to window length, and we chose the window length of 3× fs

for a relatively better result.
The detection accuracy for Toffset at different values of

N f is also presented in Fig. 9. The detection accuracy was
not sensitive to the value of N f , and we chose N f = 4000
in our work. The similar relation could be found for other
characteristic points.

4. Conclusion

This work demonstrated a novel RSWT feature and a new
detection scheme for ECG characteristic points. The RSWT
feature exhibited a reliable feature to represent ECG mor-
phologies. With the effectiveness of RSWT feature and the
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power of machine learning, this novel scheme detected ECG
characteristic points with comparable sensitivity, positive
predictivity, and detection accuracy. This novel method can
be further improved in speed with parallel computing since
the feature extraction stage for ECG sample points are inde-
pendent of each other, thus making this algorithm applicable
for real-time applications.
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