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PAPER

BareUnpack: Generic Unpacking on the Bare-Metal Operating
System

Binlin CHENG†,††, Member and Pengwei LI†††a), Nonmember

SUMMARY Malware has become a growing threat as malware writers
have learned that signature-based detectors can be easily evaded by pack-
ing the malware. Packing is a major challenge to malware analysis. The
generic unpacking approach is the major solution to the threat of packed
malware, and it is based on the intrinsic nature of the execution of packed
executables. That is, the original code should be extracted in memory and
get executed at run-time. The existing generic unpacking approaches need
a simulated environment to monitor the executing of the packed executa-
bles. Unfortunately, the simulated environment is easily detected by the
environment-sensitive packers. It makes the existing generic unpacking
approaches easily evaded by the packer. In this paper, we propose a novel
unpacking approach, BareUnpack, to monitor the execution of the packed
executables on the bare-metal operating system, and then extracts the hid-
den code of the executable. BareUnpack does not need any simulated en-
vironment (debugger, emulator or VM), and it works on the bare-metal
operating system directly. Our experimental results show that BareUnpack
can resist the environment-sensitive packers, and improve the unpacking
effectiveness, which outperforms other existing unpacking approaches.
key words: malware analysis, environment-sensitive techniques, simulated
environment, generic unpacker

1. Introduction

Malicious software (malware) development has become a
booming underground market. Driven by the rich profit,
cyber-criminals are highly motivated to undermine mal-
ware detection/analysis by applying numerous obfuscation
schemes. Instead of obfuscating the malware directly, mal-
ware writers heavily rely on the packer, which is a pro-
gram that “packing” the malware in layers of compression
or encryption so that it has a different looking than the orig-
inal one, to evade detection of signature-based detection.
It is reported that over 85% of malware is packed [1], [2].
The packed malwares seriously degrade the effectiveness of
signature-based detection.

Generic unpacking is a promising solution to the prob-
lem of unpacking the packed executables as it does not rely
on signatures. Regardless of which packer might be applied,
the original code must be present in memory and then be ex-
ecuted. Based on this intrinsic nature of packed executables,
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one could extract the hidden code at run-time as a raw mem-
ory dump.
The problem

However, the existing generic unpacking approaches
may not be reliable in all cases and can be easily evaded.
These approaches are all based on a simulated environ-
ment to capture the “written-then-executed” behaviors of
packed executables [3]–[5]. Unfortunately, the simulated
environment will increase the risk that exposes the exis-
tence of unpacking approaches. Nowadays, the packer
writer produced more complex packers which evade the ex-
isting generic unpacking approaches via detecting the simu-
lated environment [6], [7]. For example, the previous works
have presented many techniques to check the existence of
simulated environment, including anti-debugging, and anti-
emulating [2], [8]. When packed executables recognize the
existence of the simulated environment, they will stop exe-
cution immediately.
The challenge

The simulated environment usually has many features
which are different from the bare-metal OS (operating sys-
tem). As it is difficult to construct the simulated environ-
ment which is exactly the same to the bare-metal OS, we
aim to answer the question: “can we design a generic un-
packing approach which not relies on the simulated envi-
ronment, and on the bare-metal OS directly ?” If we can
design a generic unpacking approach that on the bare-metal
OS directly, it can help us to resist the environment-sensitive
packers and improve the unpacking effectiveness.
Our approach

In this paper, we present a generic unpacking approach,
called BareUnpack. BareUnpack is working on the fully
bare-metal OS, not relies on any simulated environment
(debugging, virtual machine, or emulation). Compared to
the existing works, BareUnpack is not easily evaded by
the environment-sensitive techniques. BareUnpack’s design
principle is motivated by a basic practice at the execution of
packed executables. During the execution, the packed exe-
cutables will restore the import address table (IAT) before
calling the API from the original code. In the paper, we plan
to give the introduction that how to monitor the execution of
the packed executables on the bare-metal OS and propose
BareUnpack, a generic unpacking approach running on the
bare-metal OS.
Contributions

The main contributions of this paper are as follows:
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• We propose a novel hooking method, “packed IAT
hooking”, which can hook the IAT of packed executa-
bles to monitor the behavior of it on the bare-metal OS;

• We propose BareUnpack, a generic unpacking ap-
proach running on the fully bare-metal OS environment
via packed IAT hooking;

• We have evaluated BareUnpack on real-world pack-
ers. Our experiments demonstrate that BareUnpack
achieves more effective unpack results than the existing
approaches which rely on the simulated environment.

Organization
The rest of this paper is organized as follows. Sec-

tion 2 provides the background. Section 3 introduces our
approach, BareUnpack. Section 4 presents the evaluation.
Section 5 describes related work. Section 6 concludes.

2. Background and Motivation

We now introduce the background in this section.

2.1 Generic Unpacking

A packer is a program that compresses or encrypts an exe-
cutable file into a new file. When the new file is executed,
the unpacking stub of the packed file will restore the original
code and transfer the control flow to the original code.

By taking advantage of the intrinsic nature of packed
executables, that is, the original code must be written in
memory pages and get executed at execution, the generic un-
packing approach monitors the behaviors of “written-then-
executed” at execution, and exact the original code as a raw
memory dump.

Thus, these unpacking approaches need to monitor pro-
gram execution and memory writes in the simulated envi-
ronment, determine whether the code at execution is newly
generated, if so, they extract the newly code immediately.

Fig. 1 The process of the existing generic unpacking approaches.

Table 1 Environment sensitive techniques.

Packing Tools Checking Type Checking Point
Shrinker API Check KiUserExceptionDispatcher()
MSLRH API Check NtQueryInformationProcess()
Yoda’s Protector API Check SuspendThread()
ExeCryptor Memory Check PEB Structure
Yoda’s Crypter Memory Check Section table
HyperUnpackMe2 Memory Check EPROCESS Structure
Obsidium Memory Check Check encrpted section
Pelock Multiple Thread Create Multiple Thread
PECompact API Check&Memory Check Section table
Armadillo API Check&Memory Check Checking Hardware
Themida Sandbox Check

Figure 1 illustrates the process of the existing generic un-
packing approaches.

2.2 Environment Sensitive Packer

The generic unpacking approach is the main solution to the
threat of packed malware. However, the main shortcom-
ing of generic unpacking approach is that packed malware
can be aware of the simulated environment, then the packed
malware can mislead the unpacking approaches to execut-
ing a benign execution path. For example, Table 1 shows
several anti-unpacking techniques which are used to thwart
unpacking approach when there is an emulator or a debug-
ger running. The CPU bugs, alignment checking, and regis-
ters are also could be used to detect the simulated environ-
ments [9], [10].

Once the packed malware is aware of the existence of
the simulated environment, it will stop execution immedi-
ately to mislead the generic unpacking approaches.

3. Overview

We will describe the basic idea of our approach in this sec-
tion.

The existing generic unpacking approaches are based
on the simulated environments to capture the “written-
then-executed” behaviors of packed executables [1], [4], [5].
Their key motivation is that, when the packed executable
executes the hidden code which generated at execution, it
indicates that the packed executable has restored the origi-
nal code. As the simulated environment is easy to be detect
by the packed malware, which causes the existing generic
unpacking approach fail to unpack. We aim to find a new
generic unpacking approach which does not rely on the sim-
ulated environment, and on the bare-metal OS directly.

3.1 Execution Monitor

To monitor a given application’s execution on the bare-metal
OS, the most used way is API hooking, intercepting a call
to a function. Although many alternatives are available to
hook API call [11], [12], all of them cannot completely ful-
fill our requirements. In the following, we first summarize
existing hooking in detail. Then we describe the procedure
of loading IAT of packed executables. At last, we propose
a novel hooking method suitable to hook the IAT of packed
executables.
Existing API hooking methods

When an application calls a function, the API hooking
reroutes the control flow to a different location where the
hooking function resides. The hooking function then per-
forms its own operations and transfers control flow back to
the original API function.

An API call typically goes through three key data struc-
tures of Windows OS: IAT (Import Address Table), EAT
(Export Address Table), and SSDT (System Service Dis-
patch Table). All of these three tables act as lookup tables to
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Fig. 2 The execution path of windows API.

preserve function address. Depending on which table ma-
nipulated, API hooking can be divided into IAT hooking,
EAT hooking, and SSDT hooking.

Figure 2 shows the procedure of API call by showing
two applications (“a.exe” and “b.exe”) call the API “Write-
File”. The procedure can be illustrated as followers:

1. The application “a.exe” looks up the address of “Write-
File” in its own IAT (Import Address Table)

2. IAT directs the function call to the actual memory ad-
dress of “WriteFile” located in the EAT (Export Ad-
dress Table) of Kernel32.dll.

3. In the kernel mode, KiSystemSerivce (kernel mode in-
terrupt handler) looks up the address of the “NTWrite-
File” in the SSDT (System Service Dispatch Table)
and calls “NTWriteFile” on behalf of the application
“a.exe”.

From the procedure above we can see that the API call
of “WriteFile” will go through three key data structures in
the Windows OS: IAT (Import Address Table), EAT (Ex-
port Address Table) and SSDT (System Service Dispatch
Table). The common feature of these data structures is that
they are the tables which preserve the address of the func-
tion. If a program replaces the address of “WriteFile” API
in any one of these tables, then it can intercept the call to
the API “WriteFile”. Depending on which table replaced,
the API hooking can be divided into different classes: IAT
hooking, EAT hooking and SSDT hooking.

In addition to the common features, the various hook-
ing methods also have their own features. IAT hooking can
hook all the APIs used for the given process which holds
the IAT. While both EAT hooking and SSDT hooking do
not know the which APIs used for the given process (shown
as Table 2).

BareUnpack needs to monitor the execution of the
given process (packed executable). If we use the EAT hook-
ing or SSDT hooking, we need to hook all the API in the
EAT or the SSDT as the effective range. Too many hooking
will lead to the following limitations:

1. It is easy to be aware by the environment sensitive
packer;

Table 2 Effective range of different API hooking methods.

Hooking Methods Process-Special
IAT hooking ✓
EAT hooking
SSDT hooking

Fig. 3 Standard IAT Loading.

2. It will increase the performance overhead of the bare-
metal OS.

Since these limitations, the IAT hooking is more suit-
able for BareUnpack compared to the EAT hooking and
SSDT hooking. In the following, we will introduce the IAT
hooking in detail and study whether it can be used for Bare-
Unpack in practice.
IAT Hooking

IAT (Import Address Table) hooking [13], [14] is a
widely used hooking method. To understand the IAT hook-
ing, we need understand the IAT first.

IAT is an important data structure for the executable
files in the Windows OS. Each PE executable file (e.g. EXE)
in Windows OS contains an IAT, which holds names for
functions that need to be imported from an external DLL.

When an executable is loaded, the required DLLs are
mapped into the memory address space of the application,
and the IAT is filled in by the Windows Loader with the vir-
tual addresses of each imported function. This table (IAT)
is referred to by indirect control flow instructions in the pro-
gram to call the functions in the linked DLL (as shown in
Fig. 3).

Having loaded into memory, the executable looks up
the address of the function in IAT when needs a func-
tion call. We could redirect the function call to a hooking
function than the original function via IAT hooking, which
rewrites the virtual address in the IAT (as shown in Fig. 4).
After the execution of monitoring code, the hooking func-
tion can forward the control flow to the original API call.
Restoring IAT

The IAT hooking can be used to monitor the execution
of an application effectively. However, it is not suited for the
packed executable, as the process of IAT loading of packed
executables is different for the normal ones.

If an executable is packed by the packer, the IAT of the
executable is erased by the packer to hide the API informa-
tion of the executable [2], [15]. Since the function names
are erased, when loading the packed executable into mem-
ory, the Windows Loader cannot implement the operation
of converting the function name into the function address as
loading the standard IAT loading (shown in Fig. 3). Instead,
the packer converts the function name of IAT into the func-
tion address by itself, leveraging the API “GetProcAddress”,
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which converts the function name into the function address.
This process is called “Restoring IAT” [2], [16](shown in
Fig. 5).

Comparing the Fig. 3 and Fig. 5, we can see that the
process of loading IAT for the packed executable (shown as
Fig. 5) is different from the standard IAT loading (shown as
Fig. 3). As the existing IAT hooking method is based on the
process of standard IAT loading, how to hook the IAT of the
packed executable is still a problem, and we will study it in
the following.
Packed IAT Hooking

In this paper, we propose a novel hooking method to
hook the IAT of packed executables. As the process of
“Restoring IAT” needs a key API “GetProcAddress”, we can
hook the API of “GetProcAddress”, and replace it with the
hooking function “MyGetProcAddress”. When the packer
tries to call the API “GetProcAddress” to restore the IAT,
it will call the hooking function “MyGetProcAddress” in-
stead. Take the API “CreateFileA” for example, “MyGetP-

Fig. 4 IAT hooking.

Fig. 6 Packed IAT hooking.

rocAddress” will convert the function name “CreateFileA”
in the IAT into the address of another hooking function
of “MyCreateFileA”. The hooking function of “MyCreate-
FileA” will execute the monitoring code and then forward
the control flow to the original API call “CreateFileA”. In
this way, we can hook the IAT of the packed executable. We
call this process as “packed IAT hooking” (shown in Fig. 6).

“Packed IAT hooking” is a novel hooking method
which we proposed in this paper. Different from the ex-
isting hooking methods ( SSDT hooking, IAT hooking, and
EAT hooking), the “packed IAT hooking” has the following
noval features:

1. Double Hook “Packed IAT hooking” is a kind of dou-
ble hooking method. It first hooks the API of “Get-
ProcAddress”, replacing it into the hooking function
“MyGetProcAddress”, and then it hooks the IAT of the
packed executable through the function

2. Penetrating Hook “Packed IAT hooking” is kind of
penetrating hooking method, as it penetrates the pro-

Fig. 5 Restoring IAT.
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Fig. 7 The framework of BareUnpack.

tecting of packer to hook the IAT of packed executa-
bles.

3. Run-time Hook “Packed IAT hooking” is kind of run-
time hooking method, as it hooks the IAT of the packed
executable at the execution of restoring IAT at run-
time.

Bare-metal Generic Unpacking
In Sect. 3.1, we have described how to hook the IAT of

packed executables via “packed IAT hooking”. In this sub-
section, we will introduce BareUnpack how to work on the
bare-metal OS leveraging “packed IAT hooking” method.

Similar to other generic unpacking approaches, our un-
packing approach also capture the “written-then-executed”
behaviors of packed executables [1], [3]–[5]. That is, when
the packed executable executes the hidden code which gen-
erated at execution, it indicates that the packed executable
has restored the original code. The difference between Bare-
Unpack and other approaches is the running environment.
BareUnpack is running on the bare-metal OS, while other
approaches are running on the simulated environments.

An overview of BareUnpack is shown in Fig. 7. Bare-
Unpack combines the dynamic analysis and static analysis
of the packed executable. In the dynamic analysis, BareUn-
pack dynamically monitors the execution of the packed ex-
ecutable via “packed IAT hooking”; and examines whether
the current API has a related IAT. If so, BareUnpack com-
pares the related IAT with the static IAT which extracted by
static analysis. If they are different in terms of IAT’s location
or content, it means the related IAT is generated at run-time
and the original code has been restored. Then, we dump the
memory of current process into a file on the disk and exit the
execution of the monitored process immediately. The file is
the unpacked executable which contains the original code.

The algorithm of BareUnpack is shown in Algorithm 1.
To identify potential packed code, BareUnpack intro-

duced static analysis. By comparing static analysis results
and dynamic analysis results based on “packed IAT hook-
ing”. The key idea of “packed IAT hooking” is hooking
the API of “GetProcAddress”. However, such an approach
was limited, considering the API “GetProcAddress” was
frequently used both by benign and packed executables. For
example, the benign executables may dynamically load API
using “GetProcAddress”. This may cause false positive to
BareUnpack. That is the reason why BareUnpack exam-
ines whether the current API has a related IAT before the
IAT comparing. If the benign executable dynamically loads
API via “GetProcAddress”, it has not a related IAT to the

Algorithm 1 The Algorithm of BareUnpack
packedFile: The name of packed file.

1: function Unpack(packedFile)
2: staticIAT ← StaticAnalysis(packedFile)
3: SetPackedIATHooking()
4: process← Execute(packedFile)
5: for each APIi in APIMonitor(process) do
6: if GetRelatedIAT () , ∅ then
7: if relatedIAT () , staticIAT then
8: DumpProcess()
9: ExitProcess()

10: end if
11: else
12: Invoke the API handle for process
13: return
14: end if
15: end for
16: end function

loaded API. Then, BareUnpack does not carry out the next
IAT comparing. In this way, BareUnpack can preclude the
false positive from the benign executables.

While BareUnpack monitors the “written-then-executed”
behaviors of packed executables same as the existing
generic unpacking approaches, the monitor environment of
BareUnpack is different from other approaches. BareUn-
pack is running on the bare-metal OS via “packed IAT hook-
ing” (shown in Fig. 7), while other approaches are running
on simulated environments. The packing IAT hooking en-
ables the BareUnpack monitor the execution of packed exe-
cutables on the bare-metal OS without any simulated envi-
ronments.

In the next section, we will evaluate the effectiveness
of BareUnpack compared to other approaches.

4. Implementation

As shown in Fig. 6, the key idea of “Packed IAT hooking” is
hooking the function of “GetProcAddress”. BareUnpack’s
“GetProcAddress” hooking module is developed on the Mi-
crosoft’s API hooking framework, Detours†, containing 120
lines of code in C/C++. We extend Detours to hook “GetP-
rocAddress”, use our function “MyGetProcAddress” to re-
place “GetProcAddress”. And “MyGetProcAddress” will
convert the function names in the packed IAT into the ad-
dress of our hooking functions. In this way, we can hook
the IAT of the packed executable.

5. Evaluation

In this section, we will evaluate BareUnpack. We conduct
our experiments with several objectives in mind. First and
foremost, we want to evaluate whether BareUnpack out-
performs existing generic unpacking approaches in terms
of better effectiveness. To this end, we evaluate Bare-
Unpack and other state-of-the-art generic unpacking ap-
proaches against a set of famous known packers. And then

†https://www.microsoft.com/en-us/research/project/detours/
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Table 3 Comparative evaluation with ground truth dataset.

Packers PolyUnpack Renovo OmniUnpack CoDisasm PINdemonium BareUnpack
NsPack ✓ ✓ ✓ ✓ ✓
nPack ✓ ✓ ✓
FSG ✓ ✓ ✓
UPX ✓ ✓ ✓ ✓ ✓ ✓
eXPressor ✓
RLPack ✓ ✓
Petite ✓ ✓
Aspack ✓ ✓ ✓
MoleBox ✓ ✓ ✓ ✓
Asprotect ✓ ✓
WinUpack ✓ ✓ ✓ ✓ ✓ ✓
PECompact ✓ ✓ ✓
Yoda’s Crypter ✓
MEW ✓ ✓ ✓ ✓
ORiEN ✓ ✓ ✓
Private exe Protector ✓ ✓ ✓
Enigma ✓
ZProtect ✓ ✓ ✓
Yoda’s Protector ✓ ✓ ✓ ✓
Obsidium ✓
SoftwarePassport ✓ ✓
Pelock ✓ ✓ ✓
Telock ✓ ✓ ✓
Pespin ✓ ✓ ✓
Armadillo ✓
ACProtect ✓ ✓
Themida

we also study the effectiveness of BareUnpack in analyzing
a large set of packed malwares in the wild. Finally, a case
study of custom packers is reported.

5.1 Comparative Evaluation with Ground Truth Dataset

Dataset
Our first experiment is to evaluate BareUnpack’s effec-

tiveness on famous known packers. We need ground truth
dataset so that we can assess experiment results more pre-
cisely. For example, we would like to compare BareUn-
pack’s output with the no-packer version to show that Bare-
Unpack perfectly restores the original code. To this end, we
use a malware sample hupigon and apply a set of known
packers on it. Hupigon family were once in-famous for the
back doors they left on the compromised machine. This ex-
periment represents a typical scenario that a malware writer
builds a new malware by concealing a malicious code with
a third-party packer.

To evaluate BareUnpack successfully extracts the orig-
inal code, we calculate the code section’s MD5 value for
both no-packer version and BareUnpack’s result.

We also compare BareUnpack’s result with other rep-
resentative generic unpacking tools: PolyUnpack [3], Ren-
ovo [4], OmniUnpack [5], CoDisasm [17] and PINdemo-
nium [18]. All of them are relying on some simulated envi-
ronments. For example, PolyUnpack [3] leverages a debug-
ger, Renovo [4] is based on the emulator of QEMU, Omni-
Unpack [5] uses the page-level interceptor, while CoDisasm
and PINdemonium rely on the dynamic binary instrumenta-
tion of Pin [19].
Results

The results of this evaluation are summarized in Table
3. The results show that the comparative generic unpacking

tools fail in many cases. We attribute their failures to the
simulated environments they used. For example, Armadillo,
and Obsidium packers will terminate execution the debug-
ging environment of PolyUnpack [3]; PECompact and Yoda
Crypter packers can detect QEMU emulator and circumvent
Renovo; PESpin, ACProtect, and Pelock packers can finger-
print Pin environment and crash the execution of CoDisasm
and PINdemonium [18].

In contrast, BareUnpack was successful in all cases
except Themida. Themida is a sophisticated commercial
packer which is based on virtualization obfuscation. Bare-
Unpack extracted some hidden codes which do not match
the original binary. We believe that this is the virtualiza-
tion code equivalent to the original code. Meanwhile, all
the comparative generic unpacking tools fail to extract the
original codes with Themida.

The evaluation in this subsection illustrates a typical
scenario where a malware writer builds a new malware by
concealing a malicious code with a packer. The key point
here is that BareUnpack effectively retrieves the original
code from packed malware and outperform other generic
unpacking approaches.

5.2 Analyzing Packed Malware in the Wild

The high effectiveness of BareUnpack enables us to per-
form large-scale malware analysis. We collect total 71, 259
malware samples from three different malware repositories:
VX Heaven†, VirusShare††, and VirusTotal†††. This mal-
ware dataset covers major malware categories such as back-
door, worm, trojan, and virus, including now-infamous ran-

†http://vxheaven.org/
††http://virusshare.com/
†††http://www.virustotal.com/
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somware families. The active time of these samples ranges
from 2008 to 2017. We report several interesting statistics
from our malware dataset: 1) we scan the malware sam-
ples with PEiD†, and 62.4% of them are protected by known
packers; 2) only less than 0.2% are only protected by pack-
ers with code virtualization; 3) 20.1% of them are packed
by custom packers, and this number is increasing over the
years; 4) more than 70% of custom packers reveal similar
behaviors with known packers (e.g., detecting the run-time
environment), which means malware authors customize new
packers from existing ones. We will perform a case study on
this new type of packers in Sect. 5.3.

Except for the malware protected by code virtualiza-
tion, we have applied BareUnpack on all of the packed
malware successfully. Since we do not have ground truth,
we use the “code-to-data” ratio proposed by Eureka [20]
to evaluate whether BareUnpack restores the original code.
The “code-to-data” ratio for packed code is typically below
5% and above 50% for the unpacked code. Encouragingly,
BareUnpack’s outputs for all of the packed malware are be-
yond the threshold of 50% “code-to-data” ratio. Our encour-
aging results express a strong potential that BareUnpack can
be deployed in the practice.

5.3 Case Study: Custom Packers

In our large-scale malware analysis, we find many recent
notorious malware families using custom packers to hide
their malicious codes. These families are including Con-
ficker, Ogimant, FakeAV, Upatre, Tescrypt, and Cerber Ran-
somware. The custom packers mean these families are not
packed by the known packers written by the third party. In-
stead, they are packed by the packers written by themselves
in order to avoid detection by the AV scanner.

Our in-depth study draws a general finding: most of
these custom packers are environment-aware, and they de-
tect the run-time environment to mislead the generic un-
packing approaches. Table 4 shows various environment
detection methods which used by the malware families’ cus-

Table 4 The summary of environment detection methods with custom
packers of various malware families.

Malware Family Environment Detection
Conficker GetTickCount()
Ogimant GetLastError()
FakeAV GetCurrorPos()
Upatre Callback of Graph Controls
Tescrypt Com Interface

Table 5 Comparative evaluation of unpacking capability with custom packers.

Packers PolyUnpack Renovo OmniUnpack CoDisasm PINdemonium BareUnpack
Conficker ✓ ✓ ✓ ✓ ✓
Ogimant ✓ ✓ ✓ ✓
FakeAV ✓
Upatre ✓ ✓ ✓ ✓ ✓
Tescrypt ✓ ✓ ✓ ✓ ✓
Cerber ransomware ✓

†https://www.aldeid.com/wiki/PEiD

tom packers.
For example, the infamous backdoor of Conficker uses

the API of “GetTickCount” to detect the simulated environ-
ment, as many simulated environments can not simulate this
API just like the real OS [21], [22]. And the recent Cerber
Ransomware will crash the sandbox environment while run
well in the bare-metal OS.

We also evaluate these environment-aware custom
packers with BareUnpack and other comparative unpacking
approaches. The results are shown in Table 5.

The results show that BareUnpack outperforms the
comparative unpacking approaches when applied to the
environment-aware custom packers. We also attribute the
failures of comparative unpacking approaches to their sim-
ulated environments. For example, the QEMU emulator of
Renovo can not emulate the API “GetTickCount” correctly.
And both CoDisasm and PINdemonium can not implement
the API of GetLastError like the bare-metal OS.

The evaluation in this subsection illustrates another
typical scenario where unpack the prevalent malware pro-
tected by the custom packer. As more and more prevalent
malware families use custom packers in recent years [2], we
believe that BareUnpack can improve the efficiency of secu-
rity researchers when analyzing these prevalent malwares.

6. Discussion

Since BareUnpack works with adversaries, we have to con-
sider how a skilled attacker could circumvent BareUnpack
once our approach is known. In this section, we discuss
BareUnpack’s possible attacks and limitations, which also
light up our future work.

6.1 Possible Attacks

Recall that BareUnpack attempts to work in bare-metal OS,
without the use of any detectable component. The only
modification of to the OS by BareUnpack is the “GetPro-
cAddress” hooking. Therefore, we have to consider how a
skilled attacker could circumvent BareUnpack by detect the
“GetProcAddress” hooking.

A method for preventing hooking detection from mem-
ory scanning is commonly known as the memory subversion
technique [23]. Memory subversion was first proposed in
the Shadow Walker rootkit [24] to prevent detection from
memory scanning. The Shadow Walker rootkit demon-
strated that it was possible to control the view of memory



3090
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

Fig. 8 The memory-subversion.

regions seen by OS and other processes via exploiting the
Intel split TLB (Translation Lookaside Buffer) architecture.
The basic idea of memory subversion is desynchronizing
ITLB and DTLB translate code and data access Inspired
from Shadow Walker rootkit, we improve BareUnpack, us-
ing memory subversion mechanism to forward the code ac-
cess of the logic frame (ITLB)to the physical frame which
contains “MyGetProcAddress” and translate the data access
(DTLB)to “GetProcAddress” (shown as Fig. 8). In this way,
BareUnpack can bypass the detection from memory scan-
ning.

6.2 Limitation

Virtualization packers, such as Themida, pose a extreme
case problem for all the unpackers. These packers do not
reveal the original payload at run-time. Instead, the orig-
inal payload is replaced by several bytecode, and the at-
tached virtualization engine will simulate these bytecode at
run time. irtualization packers represent a completely differ-
ent challenge, we plan to how to handle this challenge in the
future work.

7. Related Work

Hidden code extraction from the packed executables, which
called unpacking, is the major challenge to malware analy-
sis. Generic unpacking is a major solution to the threat of
various packing techniques. Emulator, debugger, and virtual
machine, which used as the simulated environments for the
existing generic unpacking approaches to unpack the packed
executables [15].

PolyUnpack [3], Renovo [4], OmniUnpack [5] CoDis-
asm [17] and PINdemonium [18] are the most notably
generic unpacking approaches. Table 6 illustrates the var-
ious simulated environments applied by these approaches.

PolyUnpack [3] first builds a static view of the pro-
gram, and then uses a debugger to single step the execution
of the program to check the executed code whether outside
the static view.

Renovo [4] uses the emulator of QEMU to track execu-
tion of the program, identifying the newly generated code as
the hidden code.

OmniUnpack [5] leverages the page-level interceptor to
monitor the execution of the program. It identifies the code

Table 6 The summary of the existing generic unpacking approaches.

Approach Simulated Environment Monitoring Granularity Evade Evasions
PolyUnpack Debugger Instruction Anti-Debugger
Renovo Emulator Instruction Anti-Emulator
OmniUnpack VM Page Anti-VM
CoDisasm Pin Instruction Anti-Pin
PinDemonium Pin Instruction Anti-Pin

executing in a page which was newly modified as the hidden
code.

CoDisasm [17] developed Pin tracer to collects an ex-
ecution trace of a stripped binary, which is based on Pin
tool [19] and recovers each unpacking layer by taking a
memory snapshot at the beginning of the layer. Similarly,
PinDemonium [18] also relies on the Pin tool to “identify
written and then executed memory regions”.

These simulated environments have many obvious dif-
ferences with the bare-metal OS. The environment sensitive
packer can be aware of the existence of the simulated envi-
ronment and then change its behavior to evade unpack.

The limitation of simulated environments motivates us
to design an transparent unpacking approach on the bare-
metal OS directly, not relying any simulated environment.
Our solution ensures that we can unpack the environment-
aware packers effectively.

8. Conclusion

To evade detection, malware writer often tries to pack the
original executables into packed one.

The existing generic unpacking approaches need the
simulated environments to monitor the execution of the
packed executables. The simulated environments make
these approaches easily evaded by the environment-sensitive
packers. In this paper, we propose a new execution mon-
itoring method, called “packed IAT hooking”, which can
monitor the execution of packed executables on the bare-
metal OS. And then we propose BareUnpack, a bare-metal
generic unpacking approach which is based on the “packed
IAT hooking”. BareUnpack can unpack the packed executa-
bles on the bare-metal OS directly, not requiring any simu-
lated environment.

Our experimental evaluation has shown that BareUn-
pack successfully unpacks majority of packers and that per-
forms well compared to existing generic unpackers. We be-
lieve that BareUnpack can help the security researchers to
cope with the growing threat of packed malwares.

Since the GOT table of ELF file in Linux OS has the
similar function to the IAT of PE file in Windows OS. Both
of them list functions to import from other shared libraries.
We plan to study the feasibility of applying BareUnpack’s
idea to packed Linux malware in the future.
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