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Polynomial-Space Exact Algorithms for the Bipartite Traveling
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SUMMARY Given an edge-weighted bipartite digraph G = (A, B; E),
the Bipartite Traveling Salesman Problem (BTSP) asks to find the min-
imum cost of a Hamiltonian cycle of G, or determine that none exists.
When |A| = |B| = n, the BTSP can be solved using polynomial space in
O∗(42nnlog n) time by using the divide-and-conquer algorithm of Gurevich
and Shelah (SIAM Journal of Computation, 16(3), pp.486–502, 1987). We
adapt their algorithm for the bipartite case, and show an improved time
bound of O∗(42n), saving the nlog n factor.
key words: bipartite traveling salesman problem, exact algorithms, poly-
nomial space, divide-and-conquer, Stirling’s formula

1. Introduction

Given an edge-weighted bipartite digraph G = (A, B; E), we
are interested in finding the minimum cost of a Hamiltonian
cycle in G, or determine that none exists. We call this prob-
lem Bipartite Traveling Salesman Problem (BTSP), akin to
the well-known Traveling Salesman Problem (TSP).

A Hamiltonian cycle must visit the vertices in A and
B alternately, and obviously cannot exist unless |A| = |B|.
Henceforth, let |A| = |B| = n, which means that G is a graph
on 2n vertices. A straightforward reduction from the TSP
tells us that the BTSP is also NP-hard, and previous works
in the literature mainly report approximation algorithms [5],
or exact solutions for special cases of the BTSP [2].

In exponential algorithms, the O∗ notation suppresses
polynomial factors. Exponential-time algorithms which also
need exponential space are highly impractical, and recently
developing exact algorithms which run in polynomial space,
as well as improving their time bounds have gathered atten-
tion [1]. Gurevich and Shelah [3] have shown that the TSP in
a k-vertex digraph is solvable in O∗(4kklog k) time and poly-
nomial space, by giving a divide-and-conquer algorithm.
Their algorithm actually solves the Hamiltonian path prob-
lem for fixed terminals, and the TSP can be solved by calling
this algorithm a polynomial number of times. In the “di-
vide” step, the algorithm investigates all possible balanced
bipartitions of the graph’s vertex set, by creating O(k2k) sub-
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instances of �k/2� vertices.
Applying this algorithm to the BTSP where |A| = |B| =

n, gives an O∗(42nnlog n) time bound. However, in the bipar-
tite setting, it is evident that not all possible balanced bipar-
titions of the vertex set A ∪ B yield feasible sub-instances.
Based on this insight, we propose that instead of investi-
gating all balanced bipartitions of the vertex set A ∪ B, we
investigate balanced bipartitions on each of the sets A and B
individually, and state the following claim.

Theorem 1: Given an edge-weighted bipartite digraph
G = (A, B; E) where |A| = |B| = n, a minimum cost Hamil-
tonian cycle in G, if one exists, can be computed in O∗(42n)
time and polynomial space.

To achieve a refined analysis on the time bound, we
show that for a set of n elements, not more than 2n/

√
n sub-

sets need to be taken to yield all balanced bipartitions, given
as the following claim.

Lemma 2: For any positive integer n, it holds that
maxk∈{0,1,...,n}

(
n
k

)
≤

(
n
	n/2


)
≤ 2n/

√
n.

Proof. Since
√

2πn ·(n/e)n ≤ n! ≤ e · √n ·(n/e)n by Stirling’s
formula [6], we see that for an even integer n = 2�,

(
n
	n/2


)
=

(
2�
�

)
=

(2�)!
�! · �! ≤

e
√

2�(2�/e)2�

π2�(�/e)2�
≤ 22�

√
2�
.

From this, we see that for an odd integer n = 2�+1,
(

n
	n/2


)
=

(
2�+1
�

)
=

1
2

(
2�+2
�+1

)
≤ 22�+2

2
√

2�+2
≤ 22�+1

√
2�+1

.

�

Different proofs of Lemma 2 for an even integer n can
be found elsewhere in the literature, e.g., Matoušek and
Nešetřil [4].

2. Algorithm and Analysis

Let R denote the set of real numbers. Henceforth let G =
(A, B; E) be a bipartite digraph such that |A| = |B|, and
w : E → R be an edge weight function, where an edge
with a tail u and a head v is denoted by (u, v) and the weight
w(e) of an edge e = (u, v) is also written as w(u, v). A path,
or a v1, vk-path is defined to be a graph with a vertex set
{v1, v2, . . . , vk} and an edge set {(vi, vi+1) | i = 1, 2, . . . , k − 1},
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which we denote by P = (v1, v2, . . . , vk) and whose cost w(P)
is defined to be

∑k−1
i=1 w(vi, vi+1). Let A′ ⊆ A and B′ ⊆ B

be subsets. We call a path in G that contiguously and alter-
nately visits all vertices in A′∪B′, A′, B′-alternating. Define
OPT(A′, B′, x, y) to be the minimum cost w(P) of an A′, B′-
alternating x, y-path P in G, and let OPT(A′, B′, x, y) = ∞
if such a path does not exist. We easily observe that for any
two vertices x ∈ A′ and y ∈ B′, the following property holds

OPT(A′, B′, x, y)
= min{OPT(A1, B1, x, u) + w(u, v) + OPT(A2, B2, v, y) |

x ∈ A1 ⊆ A′, |A1| = �|A′|/2�, A2 = A′ \ A1,

y � B1 ⊆ B′, |B1| = �|B′|/2�, B2 = B′ \ B1,

(u, v) ∈ E, u ∈ B1, v ∈ A2}. (1)

Equation (1) gives an obvious way of computing the min-
imum cost of a Hamiltonian cycle in G; we only need to
evaluate OPT(A, B, x, y) for an arbitrary x ∈ A and each
of its O(n) neighbors y ∈ B. As base case, the value of
OPT(A′, B′, x, y) can be evaluated in constant time for any
sets A′, B′ of fixed size. Hence, we give a recursive proce-
dure to compute OPT(A′, B′, x, y) for any subsets A′ ⊆ A,
B′ ⊆ B with |A′| = |B′|, and vertices x ∈ A′ and y ∈ B′, as
Recursive Procedure BTSP-P(A′, B′, x, y).

Recursive Procedure BTSP-P(A′, B′, x, y)

Input: Two vertex sets A′ ⊆ A and B′ ⊆ B such that
|A′| = |B′|, and two vertices x ∈ A′ and y ∈ B′.
Output: The minimum cost of an A′, B′-alternating x, y-
path, and∞ if such a path does not exist.

1: if |A′| = |B′| ≤ 2 then
2: return OPT(A′, B′, x, y)
3: else /* |A′| = |B′| ≥ 3 */
4: cost := ∞; n1 := �A′/2�;
5: for each pair (A1 ⊆ A′, B1 ⊆ B′) such that

|A1| = |B1| = n1, x ∈ A1, and y � B1 do
6: A2 := A′ \ A1; B2 := B′ \ B1;
7: cost1[u] := BTSP-P(A1, B1, x, u) for each u ∈ B1;
8: cost2[v] := BTSP-P(A2, B2, v, y) for each v ∈ A2;
9: for each edge (u, v) ∈ E with u ∈ B1 and v ∈ A2 do

10: cost := min{cost, cost1[u] + w(u, v) + cost2[v]}
11: end for
12: end for;
13: return cost
14: end if.

Lemma 3: Given vertex subsets A′ ⊆ A and B′ ⊆ B such
that |A′| = |B′| = n, the time complexity of Recursive Proce-
dure BTSP-P is O∗(42n).

Proof. Let T (n) be the number of recursive sub-calls of Re-
cursive Procedure BTSP-P, each of which takes time poly-
nomial in n. For n ≤ 4 the procedure finishes in polyno-
mial time, and we proceed under the assumption that n ≥ 5.
Since the two terminal vertices x and y are fixed, there are(

n−1
�n/2�

)
choices for the pair of subsets A1 ⊆ A′ and B1 ⊆ B′

in Line 5, and for each choice, the procedure is recursively

called for each u ∈ B1 and v ∈ A2 = A′ \ A1, for which there
are �n/2� and 	n/2
 candidates, respectively, from which we
get

T (n) ≤
(
n − 1
�n/2�

)2

(�n/2�·T (�n/2�)+	n/2
·T (	n/2
)). (2)

To show the claim, it suffices to show that

T (n) ≤ n · 42n (3)

satisfies Eq. (2) for all n ≥ 5. Substituting Eq. (3) into
Eq. (2), we obtain from Lemma 2 that

T (n) ≤
(

2n−1

√
n − 1

)2

· 2 · (n + 1
2

)(
n + 1

2
) · 4n+1

= n42n · (n + 1)2

2n(n − 1)
≤ n42n (by n ≥ 5),

as required. �

Note that Recursive Procedure BTSP-P can be imple-
mented to use polynomial space in the size of the given sub-
sets A′ and B′ locally at each call, and the depth of the re-
cursion is not more than O(log |A′|), and therefore the en-
tire space needed for a given input is at most polynomial.
By Lemma 3 and the fact that Recursive Procedure BTSP-P
can be used as a sub-procedure to develop an algorithm for
the BTSP by calling it a polynomial number of times, we
conclude a proof of Theorem 1. Note that since the O∗ nota-
tion suppresses polynomial factors, the claim holds both for
random access and log-cost access models.

It is an interesting question whether an improved anal-
ysis on a similar divide-and-conquer approach, especially
introducing a non-trivial measure [1], can yield an improved
bound on the time complexity for some special class of
BTSP instances.
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