
582
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

PAPER Special Section on Foundations of Computer Science — Frontiers of Theoretical Computer Science —

Polynomial Time Learnability of Graph Pattern Languages Defined
by Cographs

Takayoshi SHOUDAI†a), Member, Yuta YOSHIMURA††∗, Nonmember, Yusuke SUZUKI†††,
Tomoyuki UCHIDA†††, and Tetsuhiro MIYAHARA†††, Members

SUMMARY A cograph (complement reducible graph) is a graph which
can be generated by disjoint union and complement operations on graphs,
starting with a single vertex graph. Cographs arise in many areas of com-
puter science and are studied extensively. With the goal of developing an
effective data mining method for graph structured data, in this paper we
introduce a graph pattern expression, called a cograph pattern, which is a
special type of cograph having structured variables. Firstly, we show that
a problem whether or not a given cograph pattern g matches a given co-
graph G is NP-complete. From this result, we consider the polynomial time
learnability of cograph pattern languages defined by cograph patterns hav-
ing variables labeled with mutually different labels, called linear cograph
patterns. Secondly, we present a polynomial time matching algorithm for
linear cograph patterns. Next, we give a polynomial time algorithm for
obtaining a minimally generalized linear cograph pattern which explains
given positive data. Finally, we show that the class of linear cograph pat-
tern languages is polynomial time inductively inferable from positive data.
key words: graph pattern matching, cograph pattern, polynomial time
algorithm, inductive inference, computational learning theory

1. Introduction

We shall consider the problem of learning graph patterns
from positive graph structured data. To apply such learn-
ability to effective data mining from a graph database, graph
structured data and graph patterns need to have rich ex-
pressive power and computational tractability. Cographs,
which we use as graph structured data, and cograph pat-
terns, which we introduce here as a new kind of graph pat-
terns, have these properties. A cograph (complement re-
ducible graph) [5] is a graph which can be generated by dis-
joint union and complement operations on graphs, starting
with a single vertex graph. Any cograph is also generated by
disjoint union and join operations on appropriate cographs,
where a join operation is an operation on graphs that makes
the disjoint union and adds an edge between every two ver-
tices in different cographs. Cographs are P4-free, that is,
graphs which do not contain any chain consisting of 4 ver-

Manuscript received March 23, 2017.
Manuscript revised July 21, 2017.
Manuscript publicized December 19, 2017.
†The author is with Faculty of Contemporary Business, Kyu-

shu International University, Kitakyushu-shi, 805–8512 Japan.
††The author was with Department of Informatics, Kyushu Uni-

versity, Fukuoka-shi, 819–0395 Japan.
†††The authors are with Faculty of Information Sciences, Hiro-

shima City University, Hiroshima-shi, 731–3194 Japan.
∗Presently, with CAE Solutions Department, Engineering So-

lutions Unit, Fujitsu Kyushu System Services Limited.
a) E-mail: shoudai@cb.kiu.ac.jp

DOI: 10.1587/transinf.2017FCP0005

tices as an induced subgraph [5]. Let Σ be an alphabet for
vertex labels. In Fig. 1, we give examples of cographs whose
vertex labels are in Σ = {A,B,C,D,E}.

In this paper, we introduce a cograph pattern which is
an expression for common structures in a graph database. A
cograph pattern is a graph pattern which is a special type of
cographs having structured variables. Structured variables
in a cograph pattern can be replaced with arbitrary cographs.
Thus, cograph patterns have rich expressive power. A poly-
nomial time matching algorithm for cograph patterns, which
we present in Sect. 4, ensures computational tractability. Let
X be an infinite alphabet for variable labels. A variable in
a cograph pattern g is a vertex of g that is labeled with a
variable label in X. We replace a variable label x ∈ X in g
with a cograph G in the following way. For each variable h
labeled with x, we make a copy of G, say Gh, and the new
edges between all adjacent vertices to h and the vertices of
Gh, and remove h. For a cograph pattern g and a cograph G,
g is said to match G if G can be obtained from g by certain
variable replacements. For example, the cograph pattern g
in Fig. 2 matches the cographs G1, G2, and G3 in Fig. 1

We denote by CG(Σ) and CGP(Σ,X) the set of all
cographs and the set of all cograph patterns, respectively.
For a cograph pattern g in CGP(Σ,X), the cograph pattern
language of g, denoted by L(g), is the set of all cographs
G ∈ CG(Σ) such that g matches G. Let P be a subset of
CGP(Σ,X). The class of all cograph pattern languages of P

Fig. 1 Cographs G1, G2, G3, F1, . . . , F6. F6 is obtained by disjoint
union operation on F1 and F4, F1 is obtained by complement operation
on F2, and G1 is obtained by join operation on F5 and F6.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

SHOUDAI et al.: POLYNOMIAL TIME LEARNING OF COGRAPH PATTERN LANGUAGES
583

Fig. 2 A cograph pattern g and the cotree pattern T [g] of g. We use
square boxes to describe variables of cograph patterns. The labels 0© and
1© of internal nodes in T [g] mean applying disjoint union and join opera-

tions for cographs corresponding to subtrees, respectively. G1 in Fig. 1 is
obtained from g by replacing x and z with F3 and F1 in Fig. 1.

is defined as LP = {L(g) | g ∈ P}. Polynomial time induc-
tive inference from positive data, which is a method used in
computational learning theory, is an important type of learn-
ability which ensures efficient learning from a database.
Angluin [2] and Shinohara [12] showed that, if a class of
languages C has finite thickness, and the membership prob-
lem and the minimal language problem for C are solvable in
polynomial time, then the class C is polynomial time induc-
tively inferable from positive data.

Firstly, we show that for any nonempty set S of
cographs, the cardinality of {L ∈ LCGP(Σ,X) | S � L}
is finite, that is, the class LCGP(Σ,X) has finite thickness.
The membership problem for LP is to decide, given a co-
graph G ∈ CG(Σ) and a cograph pattern g ∈ P, whether
G ∈ L(g). Secondly, we show that the membership problem
for LCGP(Σ,X) is NP-complete. If NP�P, this result indicates
that it is very hard to show thatLCGP(Σ,X) is polynomial time
inductively inferable from positive data. Hence, we intro-
duce a linear cograph pattern, which is a cograph pattern
whose variable labels are mutually distinct. The set of all
linear cograph patterns is denoted by LCGP(Σ,X). Since
LLCGP(Σ,X) � LCGP(Σ,X),LLCGP(Σ,X) has also finite thickness.
Next, we show that the membership problem for LLCGP(Σ,X)

is solvable in polynomial time. This result indicates that the
computational tractability of the membership problem for
cograph patterns depends on the existence of variables la-
beled with the same label. The minimal language (MINL)
problem for LP is to find, given a finite set S � CG(Σ), a
cograph pattern g ∈ P such that S � L(g) and there is no
cograph pattern g′ ∈ P with S � L(g′) � L(g). Thirdly, we
show that the MINL problem for LLCGP(Σ,X) is solvable in
polynomial time. Finally, as our main result, we show that
the classLLCGP(Σ,X) is polynomial time inductively inferable
from positive data.

We considered the inference of ordered term tree pat-
terns [13], TTSP graph patterns [14], and interval graph pat-
terns [15]. Since cographs are P4-free, cograph patterns
have expressive power incomparable with these patterns.
Cograph patterns are used as a data model that these patterns
cannot represent. From the definition of a cograph, a co-
graph pattern has a unique representation of its parse struc-
ture, called a cotree pattern, such that any variable in a co-

graph pattern appears in a leaf of its cotree pattern. In Fig. 2,
we give the cotree pattern T [g] of the cograph pattern g as
an example. In [9], [10], we introduced unordered term tree
patterns, in which the variables are defined as hyperedges
with variable labels. We showed that even if a given un-
ordered term tree pattern is linear, the membership problem
for unordered term tree patterns is NP-complete if each vari-
able consists of 4 vertices as a hyperedge [10]. However it is
solvable in polynomial time if a given unordered term tree
pattern is linear and each variable consists of 2 vertices [9].
Unlike cograph patterns, the computational tractability of
the membership problem for unordered term tree patterns
also depends on the number of vertices constituting a vari-
able.

A cograph has a unique representation of its parse
structure, called a cotree. By using the cotree representation,
several problems which are intractable for general graphs,
such as the graph isomorphism problem, graph coloring
problem, and Hamiltonian cycle problem, are solvable in
polynomial time for cographs [6]. In this paper, we also use
the cotree representation to show that LLCGP(Σ,X) is polyno-
mial time inductively inferable from positive data. Jamison
and Olariu [8] investigated the notion of p-connectedness of
a graph, and proposed a unique tree representation for ar-
bitrary graphs, called the homogeneous decomposition tree.
It is a natural extension of the cotree representation. Some
superclasses of cographs were defined in terms of the num-
ber and structure of its induced P4’s [3], [4]. These classes
are known to have the property of admitting a unique tree
representation of a graph G that can be computed in polyno-
mial time w.r.t. the size of G. The result in this paper will
give a foundation for further studies of the polynomial time
learnability of the graph classes that have such unique tree
representations.

This paper is organized as follows. In Sect. 2, we de-
fine a cograph pattern and its graph language. In Sect. 3,
we define the membership problem and the MINL problem
for LCGP(Σ,X), and show that the membership problem for
LCGP(Σ,X) is NP-complete. In Sect. 4, we present a poly-
nomial time algorithm for solving the membership problem
for LLCGP(Σ,X), and in Sect. 5, we present a polynomial time
algorithm for solving the MINL problem for LLCGP(Σ,X).
From these results, we can conclude thatLLCGP(Σ,X) is poly-
nomial time inductively inferable from positive data. In
Sect. 6, we conclude this paper by discussing related re-
search problems. This paper is the full version of the pa-
per [16], with complete definitions and proofs.

2. Preliminaries

In this section, we formally define a cograph pattern as a
new graph pattern, which can be generated by disjoint union
and complement operations on graph patterns, starting with
a single vertex or a single structured variable. We define a
cograph pattern language as a language of a cograph pattern.

Let Σ be an alphabet for vertex labels. A vertex label-
ing of a graph G = (V, E) is a function ϕ from V to Σ. In

584
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

this paper, a graph means a vertex-labeled undirected graph
without multi-edges or self-loops. For a graph G, the vertex
and edge sets of G are denoted by V(G) and E(G), respec-
tively. For a subset U of V(G), the induced subgraph of
G w.r.t. U, denoted by G[U], is the subgraph F of G such
that V(F) = U and E(F) = {{u, v} ∈ E(G) | u, v ∈ U}.
Let G1,G2 . . . ,Gk be graphs with V(Gi) ∩ V(G j) = ∅ for
each i, j (1 ≤ i < j ≤ k). The disjoint union graph of
G1,G2, . . . ,Gk, denoted by G1 0©G2 0© · · · 0©Gk, is the graph
having the vertex set V(G1) ∪ V(G2) ∪ · · · ∪ V(Gk) and the
edge set E(G1)∪E(G2)∪· · ·∪E(Gk). The complement graph
of G, denoted by Ḡ, is the graph having the vertex set V(G)
and the edge set {{u, v} | u, v ∈ V(G), {u, v} � E(G)}. The join
graph of G1,G2, . . . ,Gk, denoted by G1 1©G2 1© · · · 1©Gk, is
the graph having the vertex set V(G1)∪V(G2)∪ · · · ∪V(Gk)
and the edge set E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk) ∪ {{u, v} | u ∈
V(Gi), v ∈ V(G j) (1 ≤ i < j ≤ k)}.

Definition 1 (Cograph): A cograph G is a vertex-labeled
undirected graph over Σ recursively defined as follows.

1. A single vertex labeled with an element in Σ is a co-
graph.

2. If G is a cograph, then the complement graph Ḡ is a
cograph.

3. If G1 and G2 are cographs, then the disjoint union graph
G1 0©G2 is a cograph.

Definition 2 (Cograph pattern): Let Σ be an alphabet and
X an infinite alphabet, where Σ ∩X = ∅. A cograph pattern
is a cograph g = (V, E) with a vertex labeling ϕ : V → Σ∪X.
An element of X is called a variable label. A vertex labeled
with a variable label is called a variable.

For a cograph pattern g = (V, E) with vertex labeling ϕ,
H(g) denotes the set of variables, i.e., H(g) = {v ∈ V | ϕ(v) ∈
X}, and X(g) denotes the set of all variable labels in g, i.e.,
X(g) = {x ∈ X | ∃v ∈ V s.t. ϕ(v) ∈ X}. We give an example
in Fig. 1. Let Σ = {A,B,C,D,E} and X = {x, y, z, . . .}. For a
cograph pattern g in Fig. 2, V(g) = {v1, v2, v3, h1, h2}, E(g) =
{{v1, v2}, {v1, h2}, {h1, v2}, {h1, h2}, {h1, v3}, {v3, v2}, {v3, h2}},
H(g) = {h1, h2}, and X(g) = {x, z}. Since G1 in Fig. 1
has no variable, G1 is a cograph. CG(Σ) denotes the set
of all cographs whose vertices are labeled with elements in
Σ. CGP(Σ,X) denotes the set of all cograph patterns whose
vertices are labeled with elements in Σ ∪ X.

Proposition 1 ([5]): The following properties hold for co-
graph patterns.

1. g is a cograph pattern if and only if there is no subset
U of V(g) such that the induced subgraph g[U] is iso-
morphic to P4, where P4 is the chain consisting of 4
vertices.

2. Let g be a cograph pattern. For any subset U � V(g),
the induced subgraph g[U] is a cograph pattern.

3. Let g be a cograph pattern. g can be generated by dis-
joint union 0© and join 1© on graphs, starting with a
single vertex.

A cograph pattern g1 is said to be isomorphic to a co-
graph pattern g2, denoted by g1 � g2, if there exists a bi-
jection ψ : V(g1) → V(g2) satisfying the following three
conditions. Let ϕ1 and ϕ2 be the vertex labelings of g1

and g2, respectively. (1) For any vertices u, v ∈ V(g1),
{u, v} ∈ E(g1) if and only if {ψ(u), ψ(v)} ∈ E(g2). (2) For
any vertex u ∈ V(g1) \ H(g1), ϕ1(u) = ϕ2(ψ(u)). (3) For
any variables h, h′ ∈ H(g1), ϕ1(h) = ϕ1(h′) if and only if
ϕ2(ψ(h)) = ϕ2(ψ(h′)).

Let g be a cograph pattern in CGP(Σ,X) with a vertex
labeling ϕ. For a vertex u in V(g), let Ng(u) = {v ∈ V(g) |
{u, v} ∈ E(g)}. For X � X, let Hg(X) = {h ∈ H(g) | ϕ(h) ∈
X}. For a cograph pattern g and a subset V ′ � V(g), we
denote by g − V ′ the cograph pattern obtained from g by
removing all vertices in V ′, i.e., g − V ′ = (V(g) \ V ′, E(g) \
{{u, v} ∈ E(g) | u ∈ V ′ or v ∈ V ′}). Furthermore, for two
cograph pattern f and f ′, we denote by f ∪ f ′ the cograph
pattern (V(f) ∪ V(f ′), E(f) ∪ E(f ′)). Below, we denote a
single vertex graph by its vertex simply.

Let x be a variable label in X and f a cograph in CG(Σ)
or a cograph pattern in CGP(Σ,X) such that V(g)∩V(f) = ∅.
The form x/ f is called a variable replacement of x by f .
A new graph g{x/ f } can be constructed by replacing each
variable h in H(g) having the variable label x with a copy
of f simultaneously and updating the neighboring relation.
We define it formally as follows. For each h ∈ Hg({x}), we
make a copy of f , denoted by fx,h.

g{x/ f } = (g − Hg({x}))
∪
⋃

h∈Hg({x})
fx,h

∪
⋃

h∈Hg({x})

⋃

u∈Ng(h)\Hg({x})
fx,h 1©u

∪
⋃

h∈Hg({x})

⋃

h′∈Ng(h)∩Hg({x})
fx,h 1© fx,h′ .

In Fig. 3, we give an example of the graph pattern ob-
tained from g by a variable replacement of x by f .

Proposition 2: For cograph patterns g, f ∈ CGP(Σ,X),
g{x/ f } is a cograph pattern in CGP(Σ,X).

Proof. Let h be a variable labeled with x. Since, in the
graph g{x/ f }, each vertex in Ng(h) is adjacent to any vertex
in V(fx,h), we see that there is no subset U of V(g{x/ f }) such

Fig. 3 The graph pattern g{x/ f } obtained from g by a variable replace-
ment of x by f .

SHOUDAI et al.: POLYNOMIAL TIME LEARNING OF COGRAPH PATTERN LANGUAGES
585

that the induced subgraph of g{x/ f } w.r.t. U is isomorphic
to P4. From Proposition 1, the statement holds. �

Let g be a cograph pattern in CGP(Σ,X) and f1, . . . , fn
(n ≥ 1) be cographs in CG(Σ) or cograph patterns in
CGP(Σ,X) such that V(g)∩V(fi) = ∅ (1 ≤ i ≤ n) and V(fi)∩
V(f j) = ∅ (1 ≤ i < j ≤ n). Let x1, . . . , xn (n ≥ 1) be mutually
distinct variable labels in X. A substitution is a finite collec-
tion of variable replacements {x1/ f1, x2/ f2, . . . , xn/ fn}. For
a substitution θ = {x1/ f1, x2/ f2, . . . , xn/ fn}, a new cograph
pattern gθ is obtained by applying all variable replacements
xi/ fi in θ to g simultaneously. We formally define gθ as
follows. Let X = {x1, x2, . . . , xn}. For each h ∈ Hg({xi})
(1 ≤ i ≤ n), we make a copy of fi, denoted by fxi,h. Note
that if h ∈ Hg({xi}) (1 ≤ i ≤ n), fxi,h is the same as fϕg(h),h.

gθ = (g − Hg(X))

∪
⋃

h∈Hg(X)

fϕg(h),h

∪
⋃

h∈Hg(X)

⋃

u∈Ng(h)\Hg(X)

fϕg(h),h 1©u

∪
⋃

h∈Hg(X)

⋃

h′∈Ng(h)∩Hg(X)

fϕg(h),h 1© fϕg(h′),h′ .

For example, the cograph G1 in Fig. 1 is obtained from
g in Fig. 2 by replacing x and z with F3 and F1, respectively.
That is, G1 � g{x/F3, z/F1}. Also G2 � g{x/F3, z/F2} and
G3 � g{x/F2, z/F3}.

We say that a cograph pattern g in CGP(Σ,X) is linear
if all variables in g have mutually distinct variable labels in
X. LCGP(Σ,X) denotes the set of all linear cograph pat-
terns whose vertices are labeled with elements in Σ ∪ X.

Definition 3 (Cograph pattern language): Let P be a sub-
set of CGP(Σ,X). Let g be a cograph pattern in P. The
cograph pattern language of g, denoted by L(g), is defined
as the set {G ∈ CG(Σ) | G � gθ for some substitution θ}.
The class of all cograph pattern languages of P is defined as
LP = {L(g) | g ∈ P}.

3. Inductive Inference of Cograph Pattern Languages

In this section, we formally define the membership prob-
lem and the minimal language problem for cograph pattern
languages. In Sect. 4 and Sect. 5, we will discuss these prob-
lems in detail. Here, we summarize the results of this paper.

Angluin [2] and Shinohara [12] showed that if a class of
languages C has finite thickness, and the membership prob-
lem and the minimal language problem for C are solvable in
polynomial time, then C is polynomial time inductively in-
ferable from positive data. We consider the class LLCGP(Σ,X)

as a target of inductive inference.
For a set S , |S | denotes the number of elements in S .

A class C � LCGP(Σ,X) is said to have finite thickness if, for
any nonempty finite set S � CG(Σ), the number of cograph
pattern languages in C that contain S is finite, i.e., |{L ∈ C |

S � L}| < ∞.

Lemma 1: The class LCGP(Σ,X) has finite thickness.

Proof. It is sufficient to prove that for any nonempty finite
set S � CG(Σ), the cardinality of the set {g ∈ CGP(Σ,X) |
S � L(g)} is finite. For any cograph pattern g and any sub-
stitution θ such that gθ has no variable, |V(g)| ≤ |V(gθ)|
holds. Therefore, if S � L(g) for a cograph pattern g, then
|V(g)| ≤ min{|V(G)| | G ∈ S }. The number of vertex labels
in Σ of g is equal to or less than min{|V(G)| | G ∈ S }. Fur-
thermore, since any two isomorphic cograph patterns define
the same cograph pattern language, the number of variable
labels inX that are needed for defining the language is equal
to or less than min{|V(G)| | G ∈ S }. Hence the number of
cograph patterns g in CGP(Σ,X) such that S � L(g) is finite,
that is, LCGP(Σ,X) has finite thickness. �

SinceLLCGP(Σ,X) � LCGP(Σ,X), from Lemma 1, we have
the next corollary.

Corollary 1: The class LLCGP(Σ,X) has finite thickness.

For a subset P � CGP(Σ,X), the membership problem
for LP is formally defined as follows.

Membership Problem for LP
Instance: A cograph pattern g ∈ P and a cograph G ∈
CG(Σ).
Question: Does L(g) contain G?

Unfortunately, we have the next theorem.

Theorem 1: Membership Problem for LCGP(Σ,X) is NP-
complete.

Proof. It is obvious that Membership Problem for LCGP(Σ,X)

is in NP. We will reduce CLIQUE, i.e., the problem of de-
ciding whether or not an unlabeled graph H has a clique of
size k, to this problem. Without loss of generality, we can
assume that H has no isolated vertex. The idea of the re-
duction is similar to the proof of NP-completeness of the
unordered tree pattern matching problem in [1].

Let V(H) = {v1, v2, . . . , vn} (n ≥ 1) and E(H) =
{e1, e2, . . . , em} (m ≥ 1). Let Kk be the clique of size k.
Let V(Kk) = {u1, u2, . . . , uk} and E(Kk) = { f1, f2, . . . , fk′ }
where k′ = k(k−1)

2 . Let Σ = {A1, A2, . . . , An} and X =
{x1, x2, . . . , xk, y, . . .}, where y � {x1, x2, . . . , xk}.

First, we construct a graph G with vertex labeling
ϕG : V(G) → Σ as follows. For each e ∈ E(H), we
use e+, e− as vertices of G. By using them, let V(G) =
{e+1 , e−1 , e+2 , e−2 , . . . , e+m, e−m}. If e� = {vi, v j} (1 ≤ � ≤ m, 1 ≤
i < j ≤ n), let ϕG(e+�) = vi and ϕG(e−�) = v j. We define G as
(e+1 1©e−1) 0©(e+2 1©e−2) 0© · · · 0©(e+m 1©e−m). Next, we construct a
cograph pattern g with a vertex labeling ϕg : V(g) → Σ ∪ X
as follows. For each edge f ∈ E(Kk), we use f +, f − as ver-
tices of g. Furthermore, we use w as another vertex of g. Let
V(g) = { f +1 , f −1 , f +2 , f −2 , . . . , f +k′ , f −k′ } ∪ {w}. If f� = {ui, u j}
(1 ≤ � ≤ k′, 1 ≤ i < j ≤ k), let ϕg(f +�) = xi and
ϕg(f −�) = x j. Furthermore, let ϕg(w) = y. We define g as
(f +1 1© f −1) 0©(f +2 1© f −2) 0© · · · 0©(f +k′ 1© f −k′) 0©w. We give an ex-
ample of this reduction in Fig. 4. Since |V(G)| + |E(G)| =

586
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 4 A reduction of the NP-completeness proof of Th. 1. The left graph
H and clique of size 3 are transformed to the right cograph G and cograph
pattern g.

O(m) and |V(Kk)| + |E(Kk)| = O(k2), we compute this trans-
formation in polynomial time w.r.t. m and k.

We assume that there is a subgraph C of H such that
C � Kk holds. Let V(C) = {vp1 , vp2 , . . . , vpk } (1 ≤ p1 <
p2 < · · · < pk ≤ n). Let a1, a2, . . . , ak be new k ver-
tices, where the label of a� is Ap� (1 ≤ � ≤ k). We de-
fine a substitution θ as {x1/a1, x2/a2, . . . , xk/ak, y/G′} where
G′ = G[{e+, e− ∈ V(G) | e ∈ E(H) \ E(C)}]. By this
substitution θ, we have gθ � G. Thus, L(g) contains G.
Conversely, we assume that L(g) contains G, i.e., there is
a substitution θ such that gθ � G holds. If the graph with
which xi (1 ≤ i ≤ k) is replaced has more than one vertex,
gθ has a vertex of degree at least two. It contradicts that
G has no vertex of degree more than one. Therefore, the
graph with which xi is replaced is a single vertex graph. Let
Ap1 , Ap2 , . . . , Apk (1 ≤ p1 < p2 < · · · < pk ≤ n) be the vertex
labels of the single vertex graphs with which x1, x2, . . . , xk

are replaced, respectively. Let V ′ = {vp1 , vp2 , . . . , vpk }. From
the constructions of G and g, for any pair of labels Api and
Apj (i � j), two vertices vpi and vp j are adjacent. Thus,
H[V ′] � Kk holds, i.e., H has a clique of size k. �

Below we consider the linear cograph patterns only.

Theorem 2: Membership Problem for LLCGP(Σ,X) is solv-
able in polynomial time.

In Sect. 4, we will prove Theorem 2 by presenting a
polynomial time algorithm for solving Membership Prob-
lem for LLCGP(Σ,X).

Let P be a subset of CGP(Σ,X). A minimally gen-
eralized cograph pattern w.r.t. P explaining a given set of
graphs S � CG(Σ) is a cograph pattern g ∈ P such that
S � L(g) and there is no cograph pattern g′ ∈ P with
S � L(g′) � L(g). The minimal language problem for LP is
defined as follows.

Minimal Language (MINL) Problem for LP
Instance: A nonempty finite set of cographs S � CG(Σ).
Question: Find a minimally generalized cograph pattern
w.r.t. P explaining S .

In Sect. 5, we will prove Theorem 3 by presenting a
polynomial time algorithm for solving MINL Problem for
LLCGP(Σ,X).

Theorem 3: MINL Problem for LLCGP(Σ,X) is solvable in
polynomial time.

From the results of Angluin [2] and Shinohara [12] and
Corollary 1, Theorems 2 and 3, we have the following main
result.

Theorem 4: The class LLCGP(Σ,X) is polynomial time in-
ductively inferable from positive data.

4. Polynomial Time Algorithm for Solving the Mem-
bership Problem for Linear Cograph Patterns

In this section, we present a polynomial time algorithm for
solving Membership Problem for LLCGP(Σ,X) by giving a
pattern matching algorithm for linear cotree patterns, which
are tree representations of parse structures of cograph pat-
terns.

4.1 Polynomial Time Matching Algorithm for Linear
Cotree Patterns

A cotree pattern is defined as follows. Below, a vertex of
any tree representation is called a node.

Definition 4 (Cotree pattern): A cotree pattern is a node-
labeled unordered tree in which the internal nodes are la-
beled with 0© or 1©. The leaves of a cotree pattern are
the vertices and variables of the corresponding cograph pat-
tern. A subtree rooted at a node labeled with 0© (dis-
joint union operation) corresponds to the cograph pattern
g1 0©g2 0© · · · 0©gn of the subgraphs g1, g2, . . . , gn defined
by the subtrees rooted at the children. A subtree rooted
at a node labeled with 1© (join operation) corresponds
to the cograph pattern g1 1©g2 1© · · · 1©gn of the subgraphs
g1, g2, . . . , gn defined by the subtrees rooted at the children.

An internal node of a cotree pattern labeled with 0©
(resp., 1©) is called a 0©-node (resp., 1©-node). A leaf la-
beled with an element in Σ is called a Σ-node. A leaf labeled
with an element in X is called an X-node. A cotree is a
cotree pattern with no X-node. We say that a cotree pattern
t is linear if for each variable x ∈ X, the number of X-nodes
of t labeled with x is at most one. In this paper, we deal with

SHOUDAI et al.: POLYNOMIAL TIME LEARNING OF COGRAPH PATTERN LANGUAGES
587

Fig. 5 T [G1], T [g], T [F1], and T [F3] are linear cotree patterns of the
linear cograph patterns G1, g, F1 and F3 in Fig. 1, respectively. Square
boxes describe X-nodes of linear cotree patterns.

linear cotree patterns only. The set of all linear cotree pat-
terns is denoted by LCTP(Σ,X), and the set of all cotrees
is denoted by CT (Σ).

For a node v, we denote the depth of v by d(v) and the
parent of v by p(v). We denote the label of v by λ(v) and the
number of children of v by ch(v). For a cotree or a cotree
pattern t, the vertex and edge sets of t are denoted by V(t)
and E(t), respectively. For two cotree patterns s and t, s
and t are isomorphic, denoted by s ≡ t, if a bijection ψ :
V(s) → V(t) exists such that (1) the root of s is mapped
to the root of t by ψ, (2) for any node v ∈ V(s) that is not
an X-node, λ(ψ(v)) = λ(v), (3) {u, v} ∈ E(s) if and only if
{ψ(u), ψ(v)} ∈ E(t), and (4) for any X-nodes v, v′ ∈ V(s),
λ(v) = λ(v′) if and only if λ(ψ(v)) = λ(ψ(v′)).

Since a cotree is a unique representation of a co-
graph [5], we have the following proposition.

Proposition 3 ([5]): The cotree pattern for a cograph pat-
tern in CGP(Σ,X) is unique up to isomorphism.

For a cograph pattern g ∈ CGP(Σ,X), T [g] denotes
the cotree pattern for g. A naive algorithm for constructing
the cotree pattern T [g] from a given cograph g is as fol-
lows. (1) If g is either a single vertex or a single variable,
then the cotree is a single Σ-node or X-node correspond-
ing to g. (2) If g is disconnected, then make the 0©-node
the root and continue recursively on each connected com-
ponent. (3) If g is connected, then make the 1©-node the
root, form ḡ = g1 0©g2 0© · · · 0©gk (k > 1), where the gi’s
(1 ≤ i ≤ k) are the connected components of ḡ, and continue
recursively on each ḡi. For example, T [G1], T [g], T [F1],
and T [F3] in Fig. 5 are the linear cotree patterns of the lin-
ear cograph patterns G1, g, F1, and F3 in Fig. 1. We can
construct the cotree pattern T [f] for a cograph pattern f in
linear time, by applying the linear time algorithm in [6] to
f .

Let g be a cograph pattern in CGP(Σ,X). For two
leaves u, v of T [g], the lowest common ancestor of u and v,
denoted by lcaT [g](u, v), is the node that is the farthest from
the root of T [g] among the common ancestors of u and v.

Fig. 6 Two cases of the bindings. Let x/t be a binding and h an X-node
of label x. Ex. 1 shows the case that the label of the root of t is equal to that
of p(h). Ex. 2 shows the other case.

For a leaf u of T [g], the corresponding vertex of u of g is
denoted by the same symbol u.

Proposition 4 ([5]): Let g be a cograph pattern in
CGP(Σ,X). For two leaves u, v of T [g], lcaT [g](u, v) is a
1©-node if and only if u and v are adjacent in g.

Let s be a cotree pattern and h anX-node of s with vari-
able label x ∈ X. Let t be a cotree pattern in LCTP(Σ,X)
having r as its root. Then the form x/t is called a bind-
ing for x. A new cotree pattern s{x/t} can be obtained by
applying the binding x/t to s in the following way. (1)
If λ(r) = λ(p(h)), then remove h and identify r with p(h)
(See Ex. 1 in Fig. 6). (2) Otherwise, remove h and con-
nect r directly to p(h) (See Ex. 2 in Fig. 6). A substitution
θ = {x1/t1, . . . , xn/tn} is a finite collection of bindings such
that for any i, j (1 ≤ i < j ≤ n), the variable labels xi

and x j are distinct. The cotree pattern sθ is obtained by si-
multaneously applying all bindings in θ to s. For example,
in Fig. 5, the cotree T [G1] is obtained from T [g] by substi-
tuting T [F3] and T [F1] for x and z, respectively. That is,
T [G1] ≡ T [g]{x/T [F3], z/T [F1]}.

For a cotree T and a cotree pattern t, t is said to match T
if there exists a substitution θ such that T ≡ tθ. The match-
ing problem for LCTP(Σ,X) is defined as follows.

Matching Problem for LCTP(Σ,X)
Instance: A cotree pattern t ∈ LCTP(Σ,X) and a cotree
T ∈ CT (Σ).
Question: Does t match T?

In Procedure 1, we present a procedure, called
Matching-LCTP, for solving Matching Problem for
LCTP(Σ,X). For a cotree or a cotree pattern t and its node
u, t[u] denotes the rooted subtree of t induced by the descen-
dants of u. Note that u is a descendant of itself.

588
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Procedure 1 Matching-LCTP(t,T)
Input: t: a cotree pattern in LCTP(Σ,X), T : a cotree in CT (Σ)
Output: “yes” or “no”
1: Let r and R be the roots of t and T , respectively
2: for d :=the height of t to 0 do
3: for each node u of t such that d(u) = d do
4: CS (u) := ∅
5: if u is a Σ-node of t then
6: for each leaf � of T such that d(�) = d and λ(u) = λ(�) do
7: CS (u) := CS (u) ∪ {�}
8: end for
9: end if

10: if u is an X-node of t then
11: for each node v of T with d(v) = d do
12: CS (u) := CS (u) ∪ {v}
13: end for
14: end if
15: if u is an internal node of t then
16: CS (u) :=Inode-CSset(u,T) (Procedure 2)
17: end if
18: end for
19: end for
20: if R ∈ CS (r) then
21: return “yes”
22: else
23: return “no”
24: end if

Definition 5: Let t be a cotree pattern in LCTP(Σ,X) and
T a cotree in CT (Σ). The correspondence set of a node
u ∈ V(t), denoted by CS (u), is defined as {v ∈ V(T) | t[u]
matches T [v] and d(u) = d(v)}.

Procedure Matching-LCTP (Procedure 1) computes
CS (u) for each node u of a given cotree pattern t by using
CS (c1), . . . ,CS (cch(u)) where c1, . . . , cch(u) are all children of
u. The procedure assigns a correspondence set to each node
of t and terminates when a correspondence set is assigned
to the root of t. From the definition of a correspondence
set, CS (r) contains the root of T if and only if t matches T ,
where r is the root of t.

Lemma 2: Given a cotree pattern t ∈ LCTP(Σ,X) and a
cotree T ∈ CT (Σ), Matching-LCTP correctly computes
the correspondence sets of all nodes in V(t).

Proof. For each u ∈ V(t), let CS (u) be a set of nodes of T in
Matching-LCTP. According to Definition 5, we will prove
that when Matching-LCTP terminates, for any u ∈ V(t),
v ∈ CS (u) if and only if t[u] matches T [v] and d(u) = d(v).
This is shown by backward induction on the depth of a node
u of t.

Basis: When d(u) is equal to the height of t, u is either a
Σ-node or an X-node.

If u is a Σ-node, at the lines 5–9 of Matching-LCTP,
CS (u) is computed as the set of all leaves � of T such that
d(u) = d(�) and λ(u) = λ(�). If � ∈ CS (u), since both
t[u] and T [�] consist of one Σ-node only and λ(u) = λ(�),
t[u] ≡ T [�] holds, i.e., t[u] matches T [�] and d(u) = d(�).
Conversely, for any v ∈ V(T), if t[u] matches T [v] and
d(u) = d(v), since t[u] consists of one Σ-node, v must be
a leaf of T with λ(u) = λ(v). Therefore v ∈ CS (u) holds.

Procedure 2 Inode-CSset(u,T)
Input: u: an internal node of a cotree pattern t inLCTP(Σ,X), T : a cotree

in CT (Σ)
Output: CS : a correspondence set
1: CS := ∅
2: Let Cu = {u1, . . . , uch(u)} be the set of children of u
3: for each internal node v of T such that d(u) = d(v) and λ(u) = λ(v) do
4: Let Cv = {v1, . . . , vch(v)} be the set of children of v
5: Construct a bipartite graph G = (X,Y, E), where X = Cu, Y = Cv,

and E = {{ui, v j} | 1 ≤ i ≤ ch(u), 1 ≤ j ≤ ch(v), v j ∈ CS (ui)}
6: Let m be the size of maximum bipartite graph matching in G
7: if there is a child u′ of u such that u′ is an X-node then
8: if m = ch(u) then
9: CS := CS ∪ {v}

10: end if
11: else if m = ch(u) = ch(v) then
12: CS := CS ∪ {v}
13: end if
14: end for
15: return CS

If u is an X-node, at the lines 10–14 of Matching-
LCTP, CS (u) is computed as the set of all nodes v of T
with d(u) = d(v). Since t[u] consists of one X-node only, for
any cotree T , t[u]{x/T ′} ≡ T holds, where x is the variable
label of u and T ′ is a copy of T . Thus, if v ∈ CS (u), then
t[u] matches T [v] and d(u) = d(v). The converse is obvious.

Inductive Step: We assume that for all u′ ∈ V(t) with
d(u′) > d(u), v ∈ CS (u′) if and only if t[u′] matches T [v]
and d(u′) = d(v). The node u is either a Σ-node or an X-
node or an internal node (i.e., a 0©-node or a 1©-node). If
u is either a Σ-node or an X-node, the proof is the same as
Basis. Then we will prove that when u is an internal node,
v ∈ CS (u) if and only if t[u] matches T [v] and d(u) = d(v).

If u is an internal node, at the lines 15–17 of Matching-
LCTP, CS (u) is computed as the set of all internal nodes v
of T satisfying the following conditions.

1. d(u) = d(v) and λ(u) = λ(v).
2. If there is a child w of u such that w is an X-node, then

ch(v) ≥ ch(u), otherwise ch(v) = ch(u).
3. Let u1, . . . , uch(u) and v1, . . . , vch(v) be the children of

u and v, respectively. Then there is an injection
ξ : {u1, . . . , uch(u)} → {v1, . . . , vch(v)} such that ξ(ui) ∈
CS (ui) for all i (1 ≤ i ≤ ch(u)).

The condition 3 is decided by computing the maximum
graph matching for a bipartite graph B = (U,V, E) where
U = {u1, . . . , uch(u)},V = {v1, . . . , vch(v)}, and E = {(ui, v j) |
1 ≤ i ≤ ch(u), 1 ≤ j ≤ ch(v), v j ∈ CS (ui)} in Inode-CSset
(Procedure 2). The size of maximum graph matching for B
is equal to ch(u) if and only if the condition 3 is satisfied.

Let k be the number of X-nodes in u1, . . . , uch(u). We
will prove the statement when k > 1 and ch(v) > ch(u). The
other cases are easy or similar. Without loss of generality,
we suppose that u1, . . . , uk are X-nodes and uk+1, . . . , uch(u)

are not an X-node. Let x1, . . . , xk be the variable labels of
u1, . . . , uk, respectively.

For any v ∈ V(T), if v ∈ CS (u), then d(u) = d(v) and
there is an injection ξ : {u1, . . . , uch(u)} → {v1, . . . , vch(v)} such

SHOUDAI et al.: POLYNOMIAL TIME LEARNING OF COGRAPH PATTERN LANGUAGES
589

that ξ(ui) ∈ CS (ui) for all i (1 ≤ i ≤ ch(u)). Without loss
of generality, we suppose that ξ(u1) = v1, . . . , ξ(uch(u)) =
vch(u). Let T ′1, . . . ,T

′
k−1 be copies of T [v1], . . . ,T [vk−1], re-

spectively, and let T ′k be a copy of the subtree of T [v] in-
duced by {v} ∪ V(T [vk]) ∪ V(T [vch(u)+1]) ∪ · · · ∪ V(T [vch(v)]).
From the induction hypothesis and the definition of binding,
t[u]{x1/T ′1, . . . , xk/T ′k} ≡ T [v] holds, i.e., t[v] matches T [v].

Conversely, for any v ∈ V(T), we assume that t[u]
matches T [v] and d(u) = d(v). Then there is a substitution
θ = {x1/T ′1, . . . , xk/T ′k} such that t[u]θ ≡ T [v] holds. Let
ψ be an isomorphism from t[u]θ to T [v]. By using ψ, we
define a function ξ : {u1, . . . , uch(u)} → {v1, . . . , vch(v)} as fol-
lows. According to the label of u, we have two cases. We
assume that u is a 0©-node. For any ui (1 ≤ i ≤ ch(u)), if
1 ≤ i ≤ k and the root of T ′i is a 0©-node, from the defini-
tion of binding, the children of the root of T ′i are mapped
into {v1, . . . , vch(v)} by ψ. Then we define ξ(ui) as one of
the nodes in {ψ(w) ∈ V(T) | w is a child of the root of T ′i }.
Thus d(ui) = d(ξ(ui)) > d(u) holds. Since ui is an X-
node, t[ui] matches T [ξ(ui)]. For any ui (1 ≤ i ≤ ch(u)),
if k + 1 ≤ i ≤ ch(u) or the root of T ′i is a 1©-node, since
ui is a child of the root of t[u]θ, we define ξ(ui) = ψ(ui).
Since t[u]θ is isomorphic to T [v] by the isomorphism ψ, t[ui]
matches T [ξ(ui)]. In both cases, from the induction hypoth-
esis, ξ(ui) ∈ CS (ui) holds. Since ξ defined above is an in-
jection from {u1, . . . , uch(u)} to {v1, . . . , vch(v)}, the conditions
1–3 hold, and then we have v ∈ CS (u). When u is a 1©-node,
in a similar way, we show that v ∈ CS (u) holds.

Finally we conclude that for any u ∈ V(t), v ∈ CS (u) if
and only if t[u] matches T [v] and d(u) = d(v). �

Lemma 3: Given a cotree pattern t ∈ LCTP(Σ,X) and a
cotree T ∈ CT (Σ), Matching Problem for LCTP(Σ,X) is
solvable in O(nN1.5) time, where n = |V(t)| and N = |V(T)|.

Proof. From Lemma 2, Matching-LCTP correctly com-
putes the correspondence sets of all nodes in V(t). Here,
we show the time complexity of Matching-LCTP. Let ni

and Ni be the numbers of nodes of depth i of t and T , re-
spectively. For a node u ∈ V(t) of depth i, if u is either a
Σ-node or an X-node, lines 5–14 of Matching-LCTP work
in O(Ni) time to compute the set CS (u). If u is an internal
node, we construct a bipartite graph and compute a max-
imum graph matching of it. Hopcroft and Karp [7] pre-
sented a maximum graph matching algorithm which runs
in O(|E(G)|

√
|V(G)|) time for a given bipartite graph G. By

using their algorithm, we need O(ch(u)ch(v)
√

ch(u) + ch(v))
time to decide whether or not an internal node v ∈ V(T)
is in CS (u). Let Ki,max = max{ch(v) | v is an internal
node of depth i in V(T)}. Accordingly, the time complex-
ity of Inode-CSset is O(ch(u)Ni+1

√
Ki,max). Therefore, we

need O(ni+1Ni+1
√

Ki,max) + O(Ni) time to compute corre-
spondence sets of all nodes of depth i of t. Let d be the
height of t. Since a node of depth d of t is either a Σ-node
or an X-node, the total time for computing CS (u) for all
nodes u ∈ V(t) is O(

∑d−1
i=0 (ni+1Ni+1

√
Ki,max+Ni)) time. Since∑d

i=0 ni = n,
∑d

i=0 Ni ≤ N, max{Ki,max | 0 ≤ i ≤ d} ≤ N, we

Algorithm 3 Matching-LCGP(g,G)
Input: g: a cograph pattern in LCGP(Σ,X), G: a cograph in CG(Σ)
Output: “yes” or “no”
1: if |V(g)| > |V(G)| or |E(g)| > |E(G)| then
2: return “no”
3: end if
4: Construct a cotree pattern T [g] of g
5: Construct a cotree T [G] of G
6: return Matching-LCTP(T [g],T [G])

need O(nN1.5) time to compute the Matching Problem for
LCTP(Σ,X). �

4.2 Polynomial Time Matching Algorithm for Linear Co-
graph Patterns

In Algorithm 3, we give a polynomial time algorithm
Matching-LCGP for solving Membership Problem for
LLCGP(Σ,X), which calls Matching-LCTP as a procedure.
Firstly, we will prove the following lemma.

Lemma 4: For a cograph pattern g ∈ LCGP(Σ,X) and a
substitution θ = {x1/g1, . . . , xn/gn}, T [gθ] ≡ T [g]θT holds,
where θT = {x1/T [g1], . . . , xn/T [gn]}.

Proof. From Propositions 3 and 4, it is sufficient to show
that the next equation holds for any two vertices u and v in
(V(g) \ H(g)) ∪ V(g1) ∪ · · · ∪ V(gn):

λ(lcaT [gθ](u, v)) = λ(lcaT [g]θT (u, v)) (1)

We have four cases.

1. u, v ∈ V(g) \ H(g): It is easy to see that
λ(lcaT [gθ](u, v)) = λ(lcaT [g](u, v)) = λ(lcaT [g]θT (u, v)).

2. u, v ∈ V(gi) for some i (1 ≤ i ≤ n): Since {u, v} ∈
E(gi) if and only if {u, v} ∈ E(gθ), λ(lcaT [gθ](u, v)) =
λ(lcaT [gi](u, v)) holds. From the definition of a binding,
λ(lcaT [gi](u, v)) = λ(lcaT [g]θT (u, v)) holds. This leads to
Eq. (1).

3. u ∈ V(g) \ H(g) and v ∈ V(gi) for some i (1 ≤ i ≤ n):
For a binding xi/T [gi] in θT , let hi be an X-node with
λ(hi) = xi. From the definition of a variable replace-
ment, {u, hi} ∈ E(g) if and only if {u, v} ∈ E(gθ).
Thus, λ(lcaT [g](u, hi)) = λ(lcaT [gθ](u, v)). We have
λ(lcaT [g](u, hi)) = λ(lcaT [g]θT (u, v)), since all leaves of
T [gi] are descendants of p(hi). Accordingly, we get
Eq. (1).

4. u ∈ V(gi) and v ∈ V(g j) for some i and j (1 ≤ i �
j ≤ n): For bindings xi/T [gi], x j/T [g j] in θT , let hi

and h j be X-nodes with λ(hi) = xi and λ(h j) = x j, re-
spectively. From the definition of a variable replace-
ment, {hi, h j} ∈ E(g) if and only if {u, v} ∈ E(gθ).
Thus, λ(lcaT [gθ](u, v)) = λ(lcaT [g](hi, h j)). Since all
leaves of T [gi] and T [g j] are descendants of p(hi)
and p(h j), respectively, we have λ(lcaT [g](hi, h j)) =
λ(lcaT [g]θT (u, v)). Accordingly, we get Eq. (1).

Therefore, we conclude that T [gθ] ≡ T [g]θT holds. �

590
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

We can directly prove the following lemma from
Lemma 4.

Lemma 5: For a cograph pattern g ∈ LCGP(Σ,X) and a
cograph G ∈ CG(Σ), L(g) contains G if and only if the cotree
pattern T [g] matches the cotree T [G].

The following lemmas show the time complexity of
Matching-LCGP.

Theorem 5 ([6]): For a cograph G = (V(G), E(G)), T [G]
can be constructed from G in O(|V(G)| + |E(G)|) time.

Lemma 6: Given a cograph pattern g ∈ LCGP(Σ,X) and
a cograph G ∈ CG(Σ), Algorithm Matching-LCGP solves
Membership Problem for LLCGP(Σ,X) in O(nN1.5 + M) time,
where n = |V(g)|, N = |V(G)|, and M = |E(G)|.
Proof. From Lemma 5, Matching-LCGP correctly decides
whether or not G ∈ L(g). From Theorem 5, we can con-
struct T [G] from G and T [g] from g in O(N + M) time.
Since |V(T [G])| = O(N) and |V(T [g])| = O(n), by using
Matching-LCTP(±,X) (Procedure 1), line 4 of Matching-
LCGP is executed in O(nN1.5) time from Lemma 3. Hence,
Matching-LCGP decides whether or not G ∈ L(g) in
O(nN1.5 + M) time. �

Hence, we have proven Theorem 2 in Sect. 3.

5. Polynomial Time Algorithm for Solving MINL
Problem for Linear Cograph Patterns

In this section, we assume that |Σ| = ∞. For g ∈ CGP(Σ,X),
C(g) denotes the number of connected components of a co-
graph pattern (V(g), E(g)). For example, in Fig. 7, C(g1) = 1
and C(g0) = 2. For any vertex label a ∈ Σ, we denote by
Ga = ({v}, ∅) a single-vertex cograph pattern such that the
label of v is a. We call a cograph pattern consisting of only
one single variable a single-variable cograph pattern. We
have the following proposition.

Proposition 5: Let θ be any substitution for g ∈
LCGP(Σ,X). Then C(gθ) ≥ C(g). If there is no single-
variable cograph pattern in the connected components of g,
then C(gθ) = C(g).

Proof. It is sufficient to prove that C(g{x/ f }) ≥ C(g) for any
x/ f ∈ θ. Since g is linear, there is a unique variable h whose
variable label is x. If there is a vertex u ∈ V(g) such that
{u, h} ∈ E(g), from the definition of a variable replacement,
C(g{x/ f }) = C(g) holds. If there is no vertex in V(g) that is
adjacent to h, C(g{x/ f }) = C(g − {h}) + C(f) ≥ C(g) holds.
Accordingly, C(gθ) ≥ C(g) holds. �

Algorithm MINL-LCGP (Algorithm 4) solves MINL
problem for LLCGP(Σ,X). Lines 5–15 extend a cograph pat-
tern g by adding variables as much as possible while S �
L(g) holds (Fig. 7). Lines 18–25 try to replace each variable
in g with a labeled vertex if it is possible.

Lemma 7: Let g ∈ LCGP(Σ,X) be the output of Algo-
rithm MINL-LCGP(±,X) for an input S . Let g′ be a co-
graph pattern in LCGP(Σ,X) satisfying S � L(g′) � L(g).

Fig. 7 Two refinement operators on Algorithm MINL-LCGP (Algo-
rithm 4).

Algorithm 4 MINL-LCGP(S)
Input: S : a set of cographs in CG(Σ)
Output: g: a minimally generalized cograph pattern w.r.t. LCGP(Σ,X)

explaining S
1: Let g be a cograph pattern with one unmarked variable
2: if S contains both connected and unconnected cographs then
3: return g
4: end if
5: for unmarked variable h in g do
6: Let x be the variable label of h
7: Let g 1© (resp., g 0©) be a connected (resp., unconnected) cograph

with two new unmarked variables (Fig. 7)
8: if Matching-LCGP(g{x/g 1©},G)=“yes” for any G ∈ S then
9: g := g{x/g 1©}

10: else if Matching-LCGP(g{x/g 0©},G)=“yes” for any G ∈ S then
11: g := g{x/g 0©}
12: else
13: mark h
14: end if
15: end for
16: Unmark all variables of g
17: Let Σ(S) be the set of all labels in Σ that appear in S
18: for each unmarked variable h in g do
19: Let x be the variable label of h
20: if there is a label a ∈ Σ(S) such that Matching-LCGP(g{x/Ga},G)

=“yes” for any G ∈ S , where Ga = ({v}, ∅, ∅) such that the label of v
is a then

21: g := g{x/Ga}
22: else
23: mark h
24: end if
25: end for
26: return g

Then, g′ � g.

Proof. It is easy to see that |V(g′)| ≥ |V(g)|, since if it is not
the case, L(g) does not contain the cograph obtained from
g′ by replacing all variables in g′ with single vertices. Let
m = minG∈S C(G).

Claim 1. C(g) = m.
Proof of Claim 1. From Proposition 5, if C(g) > m, L(g) can-
not contain a cograph G ∈ S with C(G) = m. If C(g) < m,
g must contain a single-variable cograph pattern as a con-
nected component. This contradicts the fact that line 7 of
MINL-LCGP(±,X) increases C(g) by g 0© . (End of Proof
of Claim 1)

SHOUDAI et al.: POLYNOMIAL TIME LEARNING OF COGRAPH PATTERN LANGUAGES
591

Claim 2. C(g′) = C(g) = m.
Proof of Claim 2. It is straightforwardly proven from Propo-
sition 5 and Claim 1. (End of Proof of Claim 2)

Claim 3. Let g1, . . . , gm be the connected components of
g, and g′1, . . . , g

′
m those of g′. There is a permutation π of

(1, . . . ,m) such that L(g′i) � L(gπ(i)) for all i (1 ≤ i ≤ m).
Proof of Claim 3. Since |Σ| = ∞, there is a vertex la-
bel c that does not appear in S . Let σ′ be a substitution⋃

x′∈X(g′){x′/Gc} for g′. Since L(g′) � L(g), there is a permu-
tation π of (1, . . . ,m) such that g′iσ

′ ∈ L(gπ(i)) for all i (1 ≤
i ≤ m). Therefore, there is a substitution σ =

⋃
x∈X(g){x/Fx}

where each Fx is a (possibly single-vertex) cograph such
that g′iσ

′ � gπ(i)σ. Since there is no occurrence of c in gπ(i),
all c’s must appear in Fx’s. Let fx = (V(Fx), E(Fx)) and
H(fx) = {v ∈ V(Fx) | ϕ(v) = c}. We assume that the vari-
ables in H(fx) of fx are labeled with mutually distinct new
variable labels in X. Then we see that g′i � gπ(i)ρ holds,
where ρ =

⋃
x∈X(g){x/ fx}. Therefore, L(g′i) � L(gπ(i)) for all

i (1 ≤ i ≤ m). (End of Proof of Claim 3)

Claim 4. Let π be the permutation of Claim 3. Then g′i �
gπ(i) holds for any i (1 ≤ i ≤ m).
Proof of Claim 4. We consider variable replacements x/ fx in
ρ of Claim 3. If |V(fx)| = 1 for all x ∈ X(g), then g′i � gπ(i)

(1 ≤ i ≤ m) holds. Otherwise, there is a cograph pattern
fx for some x ∈ X(g) such that |V(fx)| > 1. If fx is not
connected, L(g′i) � L(gπ(i){x/g 0©}) holds. Then we assume
that fx is connected. Since fx is a cograph pattern, it is con-
structed from some cographs fx,1, . . . , fx,k (k ≥ 2) by join
operations. Therefore, for any pair of i and j (1 ≤ i < j ≤ k),
all vertices in fx,i connect to all vertices in fx, j in fx. Thus,
fx ∈ L(g 1©) holds, and therefore L(g′i) � L(gπ(i){x/g 1©})
holds. Consequently, since S � L(g′) � L(g), we have ei-
ther S � L(g{x/g 1©}) or S � L(g{x/g 0©}). Since g is an
output of Algorithm MINL-LCGP, this contradicts lines 6
and 7 of the algorithm. (End of Proof of Claim 4)

From Claim 4, we conclude that g′ � g. �

Lemma 8: Given a set of cographs S � CG(Σ), Algo-
rithm MINL-LCGP solves MINL Problem for LLCGP(Σ,X)

in O(N4.5
max|S |) time, where Nmax = maxG∈S |V(G)|.

Proof. Let g be an output of MINL-LCGP(±,X). Let
Nmin = minG∈S |V(G)|, Mmin = minG∈S |E(G)|, and Mmax =

maxG∈S |E(G)|. Since |V(g)| ≤ Nmin and the lines 5–15 of
MINL-LCGP(±,X) try to divide one variable into two vari-
ables, Matching-LCGP(±,X) is called O(Nmin|S |) times at
lines 5–15. Let Σ(S) be the set of all labels that appear in all
cographs in S . Since |Σ(S)| ≤ Nmin, Matching-LCGP(±,X)
is called O(N2

min|S |) times at lines 18–25. From the proof
of Lemma 6, one call for Matching-LCGP(±,X) takes
O(NminN1.5

max) time, except for the time needed for construct-
ing the cotree and the cotree pattern. The total time com-
plexity except for the constructions of the cotrees and cotree
patterns is O(N4.5

max|S |) time. From Theorem 5, constructing
the cotrees of all cographs in S takes O((Nmax +Mmax)|S |) =
O(N2

max|S |) time. Moreover, we need to construct the cotree
pattern of a temporary cograph pattern at most O(N2

min)

times. We need totally O(N2
min(Nmin + Mmin)) time to con-

struct all temporary cograph patterns. Thus, we conclude
that the whole algorithm runs in O(N4.5

max|S |) time. �

Theorem 3 in Sect. 3 follows from Lemmas 7 and 8.

6. Conclusion and Future Work

In this paper, first, we introduced a cograph pattern and a co-
graph pattern language, and proved that the classLLCGP(Σ,X)

of linear cograph pattern languages has finite thickness.
Next, we gave two polynomial time algorithms for solv-
ing the membership problem for LLCGP(Σ,X) and the MINL
problem for LLCGP(Σ,X). Finally, by using these results, we
showed that the class LLCGP(Σ,X) is polynomial time induc-
tively inferable from positive data.

As future work, we will improve our algorithms in or-
der to propose fully effective data mining methods for graph
structured data. For example, the membership problem for
LLCGP(Σ,X) might be solved faster than the running time of
our algorithm by using an idea in [11]. Several practical ap-
plications in computer science and computational linguis-
tics suggest the study of graphs with few P4’s, and some
NP-complete problems for general graphs can be solved
efficiently for these graphs [3], [4]. We are now studying
the polynomial time learnability problems for the classes of
graph languages defined by graphs with few P4’s. Further-
more, we are developing general data mining techniques for
various real world data that can be modeled by these graph
classes.

Acknowledgments

We thank the anonymous referees for helpful comments and
detailed suggestions that helped to improve this article. This
work was partially supported by Grant-in-Aid for Scientific
Research (C) (Grant Numbers JP15K00312, JP15K00313,
JP17K00321) from Japan Society for the Promotion of Sci-
ence (JSPS).

References

[1] T.R. Amoth, P. Cull, and P. Tadepalli, “On Exact Learning
of Unordered Tree Patterns,” Machine Learning, vol.44, no.3,
pp.211–243, 2001.

[2] D. Angluin, “Inductive Inference of Formal Languages from Posi-
tive Data,” Information and Control, vol.45, no.2, pp.117–135, 1980.

[3] L. Babel and S. Olariu, “On the structure of graphs with few P4s,”
Discrete Applied Mathematics, vol.84, no.1-3, pp.1–13, 1998.

[4] L. Babel, T. Kloks, J. Kratochvı́l, D. Kratsch, H. Müller, and S.
Olariu, “Efficient algorithms for graphs with few P4’s,” Discrete
Mathematics, vol.235, no.1-3, pp.29–51, 2001.

[5] D.G. Corneil, H. Lerchs, and L.S. Burlingham, “Complement
Reducible Graph,” Discrete Applied Mathematics, vol.3, no.3,
pp.163–174, 1981.

[6] D.G. Corneil, Y. Perl, and L.K. Stewart, “A Linear Recognition Al-
gorithm for Cographs,” SIAM Journal on Computing, vol.14, no.4,
pp.926–934, 1985.

[7] J.E. Hopcroft and R.M. Karp, “An n5/2 algorithm for maximum
matching in bipartite graphs,” SIAM Journal on Computing, vol.2,

http://dx.doi.org/10.1023/a:1010971904477
http://dx.doi.org/10.1016/s0019-9958(80)90285-5
http://dx.doi.org/10.1016/s0166-218x(97)90120-7
http://dx.doi.org/10.1016/s0012-365x(00)00258-2
http://dx.doi.org/10.1016/0166-218x(81)90013-5
http://dx.doi.org/10.1137/0214065
http://dx.doi.org/10.1137/0202019

592
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

no.4, pp.225–231, 1973.
[8] B. Jamison and S. Olariu, “P-Components and the Homogeneous

Decomposition of Graphs,” SIAM Journal on Discrete Mathematics,
vol.8, no.3, pp.448–463, 1995.

[9] T. Miyahara, T. Shoudai, T. Uchida, T. Kuboyama, K. Takahashi,
and H. Ueda, “Discovering New Knowledge from Graph Data Using
Inductive Logic Programming,” Proc. 9th Int. Conf. Inductive Logic
Programming (ILP-99), Springer, LNAI, vol.1634, pp.222–233,
1999.

[10] T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, and H. Ueda,
“Polynomial Time Matching Algorithms for Tree-like Structured
Patterns in Knowledge Discovery,” Proc. 4th Pacific-Asia Conf.
Knowledge Dicovery and Data Mining (PAKDD 2000), Springer,
LNAI, vol.1805, pp.5–16, 2000.

[11] R. Shamir and D. Tsur, “Faster Subtree Isomorphism,” Journal of
Algorithms, vol.33, no.2, pp.267–280, 1999.

[12] T. Shinohara, “Polynomial Time Inductive Inference of Extended
Regular Pattern Languages,” RIMS Symposia on Software Science
and Engineering, LNCS, vol.147, pp.115–127, 1982.

[13] Y. Suzuki, T. Shoudai, T. Uchida, and T. Miyahara, “Ordered Term
Tree Languages Which Are Polynomial Time Inductively Inferable
from Positive Data,” Theoretical Computer Science, vol.350, no.1,
pp.63–90, 2006.

[14] R. Takami, Y. Suzuki, T. Uchida, and T. Shoudai, “Polynomial Time
Inductive Inference of TTSP Graph Languages from Positive Data,”
IEICE Trans. Inf. & Syst., vol.E92-D, no.2, pp.181–190, 2009.

[15] H. Yamasaki and T. Shoudai, “A Polynomial Time Algorithm for
Finding a Minimally Generalized Linear Interval Graph Pattern,”
IEICE Trans. Inf. & Syst., vol.E92-D, no.2, pp.120–129, 2009.

[16] Y. Yoshimura, T. Shoudai, Y. Suzuki, T. Uchida, and T. Miyahara,
“Polynomial Time Inductive Inference of Cograph Pattern Lan-
guages from Positive Data,” Proc. 21st Int. Conf. Inductive Logic
Programming (ILP2011), Springer, LNAI, vol.7207, pp.389–404,
2012.

Takayoshi Shoudai received the B.S. in
1986, the M.S. degree in 1988 in Mathematics
and the Dr. Sci. in 1993 in Information Science
all from Kyushu University. Currently, he is
a professor of Faculty of Contemporary Busi-
ness, Kyushu International University. His re-
search interests include graph algorithms, com-
putational learning theory, and data mining.

Yuta Yoshimura received the B.S. and
the M.S. degrees in Informatics all from Kyu-
shu University, in 2011 and 2013, respectively.
He is currently with the CAE Solutions Depart-
ment, Engineering Solutions Unit, Fujitsu Kyu-
shu System Services Limited. His research in-
terests include graph algorithms and machine
learning.

Yusuke Suzuki received the B.S. degree
in Physics, the M.S. and Dr. Sci. degrees in In-
formatics all from Kyushu University, in 2000,
2002 and 2007, respectively. He is currently
a research associate of Graduate School of In-
formation Sciences, Hiroshima City University,
Hiroshima, Japan. His research interests include
machine learning and data mining.

Tomoyuki Uchida received the B.S. degree
in Mathematics, the M.S. and Dr. Sci. degrees
in Information Systems all from Kyushu Uni-
versity, in 1989, 1991 and 1994, respectively.
Currently, he is an associate professor of Grad-
uate School of Information Sciences, Hiroshima
City University. His research interests include
data mining from semistructured data, algorith-
mic graph theory and algorithmic learning the-
ory.

Tetsuhiro Miyahara is an associate pro-
fessor of Graduate School of Information Sci-
ences, Hiroshima City University, Hiroshima,
Japan. He received the B.S. degree in Mathe-
matics, the M.S. and Dr. Sci. degrees in Informa-
tion Systems all from Kyushu University, Fuku-
oka, Japan in 1984, 1986 and 1996, respectively.
His research interests include algorithmic learn-
ing theory, knowledge discovery and machine
learning.

http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/s0895480191196812
http://dx.doi.org/10.1007/3-540-48751-4_21
http://dx.doi.org/10.1007/3-540-45571-x_4
http://dx.doi.org/10.1006/jagm.1999.1044
http://dx.doi.org/10.1007/3-540-11980-9_19
http://dx.doi.org/10.1016/j.tcs.2005.10.022
http://dx.doi.org/10.1587/transinf.e92.d.181
http://dx.doi.org/10.1587/transinf.e92.d.120
http://dx.doi.org/10.1007/978-3-642-31951-8_32

