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SUMMARY A grammar compression is a restricted context-free gram-
mar (CFG) that derives a single string deterministically. The goal of a
grammar compression algorithm is to develop a smaller CFG by finding
and removing duplicate patterns, which is simply a frequent pattern dis-
covery process. Any frequent pattern can be obtained in linear time; how-
ever, a huge working space is required for longer patterns, and the entire
string must be preloaded into memory. We propose an online algorithm
to address this problem approximately within compressed space. For an
input sequence of symbols, a1, a2, . . ., let Gi be a grammar compression
for the string a1a2 · · · ai. In this study, an online algorithm is considered
one that can compute Gi+1 from (Gi, ai+1) without explicitly decompress-
ing Gi. Here, let G be a grammar compression for string S . We say that
variable X approximates a substring P of S within approximation ratio δ
iff for any interval [i, j] with P = S [i, j], the parse tree of G has a node
labeled with X that derives S [�, r] for a subinterval [�, r] of [i, j] satisfying
|[�, r]| ≥ δ|[i, j]|. Then, G solves the frequent pattern discovery problem
approximately within δ iff for any frequent pattern P of S , there exists a
variable that approximates P within δ. Here, δ is called the approximation
ratio of G for S . Previously, the best approximation ratio obtained by a
polynomial time algorithm was Ω(1/ lg2 |P|). The main contribution of this
work is to present a new lower bound Ω(1/ lg∗ |S | lg |P|) that is smaller than
the previous bound when lg∗ |S | < lg |P|. Experimental results demonstrate
that the proposed algorithm extracts sufficiently long frequent patterns and
significantly reduces memory consumption compared to the offline algo-
rithm in the previous work.
key words: grammar compression, online algorithm, approximate frequent
pattern discovery

1. Introduction

1.1 Motivation

A grammar compression of a string is a context-free gram-
mar (CFG) that derives only the string. In recent decades,
various grammar compression algorithms that show good
performance, particularly for a repetitive string in which
multiple long identical patterns (substrings) can be ob-
served, have been proposed. Such data are currently ubiq-
uitous, e.g., in genome sequences collected from sim-
ilar species and in versioned documents maintained by
Wikipedia and GitHub. Because the amount of data that
includes repetitive strings is increasing rapidly, data pro-
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cessing methods based on grammar compression have been
studied extensively as a promising way to address repetitive
strings (e.g., [2]–[11]).

Frequent pattern discovery is a classic problem in pat-
tern mining from sequence data (e.g., [12]), where we focus
on a string and say that a pattern is frequent if it occurs at
least twice. Longer patterns are often the target of discovery
because they seem to better characterize the input string. We
can solve this problem in linear time using the suffix array
(SA) proposed in [13], however, SA requires a huge work-
ing space. Therefore, it is difficult to apply these algorithms
to stream data. A reasonable approach to avoid this diffi-
culty is to find an approximation of such a frequent pattern
represented by a grammar. We consider that a variable X
of a grammar compression G for a string S approximates
a substring P of S within approximation ratio δ iff for any
interval [i, j] with P = S [i, j], the parse tree of G has a
node labeled with X derives S [�, r] for a subinterval [�, r]
of [i, j] satisfying |[�, r]| ≥ δ|[i, j]|. Then, G solves the fre-
quent pattern discovery problem approximately within δ iff
for any frequent pattern P of S , there exists a variable that
approximates P within δ. Here, δ is called the approxima-
tion ratio of G for S . In this framework, an approximated
frequent pattern is found as a frequent subtree in its parse
tree. Then, a suitable parse tree should preserve as many oc-
currences of a common substring as possible. Edit-sensitive
parsing (ESP) proposed in [14] satisfies this condition. ESP
can solves the generalized edit distance problem approxi-
mately, which is known to be NP-hard. The generalized edit
distance measures the similarity between two strings, and
online algorithms and ESP applications have been proposed
(e.g., [15]–[20]).

As seen above, the grammar compression problem is
closely related to approximate pattern discovery because a
good compression ratio is achieved by finding frequent sub-
strings and replacing them with a variable that derives the
substrings. In a previous study (e.g., [21]), ESP was applied
to the approximate frequent pattern discovery. In that work,
they proposed an offline algorithm that computes ESP as a
grammar compression for an input string S with the approx-
imation ratio Ω(1/ lg2 |P|) for any substring P in S . They
also provided experimental results based on real data.

1.2 Contributions

We show a new lower boundΩ( 1
lg∗ |S | lg |P| ) for the approxima-
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tion ratio, which is an improvement of the previous bound
Ω( 1

lg2 |P| ) if lg∗ |S | < lg |P|. Here, lg∗ |S | = min{i | lg(i) |S | ≤
1} for lg(1) |S | = lg |S | and lg(i+1) |S | = lg (lg(i) |S |). A certain
type of frequent subtree in a grammar compression has been
investigated relative to this result. Assuming a condition in
the resulting ESP tree, we can easily show that the previous
bound proved in [16] is transformed to the new lower bound.
In this work, we remove this condition for any string.

We establish an online variant of previously proposed
algorithm in [21] in compressed space. These algorithms
are based on the compressed index presented in [16]. Note
that the previous algorithms were not online, i.e., the en-
tire string must be preloaded into memory. However, recent
progress obtained in [9] has enabled the offline algorithm of
[21] in compressed space in a streaming fashion. We im-
plement our algorithm and show that the experimental value
of the approximation ratio for real data is sufficiently larger
than the theoretical bound.

2. Definitions

2.1 Notations

A sequence of symbols is called a string. The length of a
string S is denoted by |S |. The cardinality of a set S is also
denoted by |S|. For a fixed integer σ, Σ = {a1, a2, . . . , aσ}
is called an alphabet. Let Σ∗ be the set of all strings over Σ.
An element of Σq is called a q-gram. The empty string ε is a
string of length 0. Let Σ+ = Σ∗−{ε} and a≥2 = {ak | k ≥ 2}. A
string in a≥2 is called a repetition of a. For string S = αβγ,
α, β and γ are called the prefix, substring, and suffix of S ,
respectively. The i-th character of string S is denoted by
S [i] for i ∈ [1, |S |]. For a string S and interval [i, j] (1 ≤ i ≤
j ≤ |S |), let S [i, j] denote the substring of S that begins at
position i and ends at position j, and let S [i, j] be ε when i >
j. For a string S and substring P such that S [i, j] = P, the
interval [i, j] is called an occurrence of P in S . For strings
S and P, let freqS(P) denote the number of occurrences of
P in S . Here, we assume a recursively enumerable set X =
{Xi | i = 1, 2, . . .} of variables with Σ ∩ X = ∅. All elements
in Σ∪X are totally ordered, where all elements in Σmust be
smaller than those in X. Let lg∗ N = min{i | lg(i) N ≤ 1} for
lg(1) N = lg N and lg(i+1) N = lg (lg(i) N), e.g., lg∗ N ≤ 5 for
any N ≤ 265536.

2.2 Grammar Compression

We consider a special type of CFG G = (Σ,V,D, Xs) where
V = {Xi | 1 ≤ i ≤ n} is a finite subset of variables for some
n ≥ 1, D is a finite subset of V × (V ∪ Σ)∗, and Xs ∈ V is
the start symbol. A grammar compression of a string S is a
CFG G deriving only S deterministically, i.e., G derives S
such that for any X ∈ V , there exists exactly one production
rule in D and D is loop-free: there is no variable that can
derive itself by applying at least one production rule.

Because each G has a Chomsky normal form, we can
assume that any grammar compression is a Straight-line

program (SLP) introduced in [22], i.e., any production rule
is in the form of Xk → XiXj where Xi, Xj ∈ Σ ∪ V and
1 ≤ i, j < k ≤ n + σ. The size of an SLP is σ + n.

For any X ∈ V , let val(X) be the string α ∈ Σ∗ derived
from X. For any a ∈ Σ, let val(a) = a. For w ∈ (V ∪ Σ)∗, let
val(w) = val(w[1]) · · · val(w[|w|]).

The parse tree of G is a rooted ordered binary tree such
that (i) the internal nodes are labeled by variables and (ii)
the leaves are labeled by alphabet symbols. In a parse tree,
any internal node Z associated with Z → XY has left and
right children with label X and Y , respectively.

For a production rule X → α ∈ D, the variable X and
string α are called the name and phrase of the production
rule, respectively. A phrase dictionary D is a data structure
used to directly access the phrase for any given name. On
the other hand, a reverse dictionary D−1 is a data structure
used to directly access the name for any given phrase if the
corresponding production rule exists.

We define the problem of online grammar compres-
sion. For an input sequence of symbols, a1, a2, . . ., let Gi

be a grammar compression for the string a1a2 · · · ai. An on-
line grammar compression algorithm is one that can com-
pute Gi+1 from (Gi, ai+1) without explicitly decompressing
Gi.

2.3 Succinct Data Structure

A grammar compression is encoded using succinct data
structures. A rank/select dictionary for a bit string B pro-
posed in [23] supports the following queries: rankc(B, i)
returns the number of occurrences of c ∈ {0, 1} in B[1, i];
selectc(B, i) returns the beginning position of the i-th occur-
rence of c ∈ {0, 1} in B; and access(B, i) returns the i-th bit
in B. Data structures with only |B| + o(|B|) bits storage to
achieve O(1) time rank and select queries have been pre-
sented in [24]. The wavelet tree proposed in [25] is an ex-
tension of the rank/select dictionary to strings over n differ-
ent symbols for any n ≥ 2. GMR presented in [26] is an
improved wavelet tree in n lg n + o(n lg n) bits that supports
both rank and access queries in O(lg lg n) time and select
queries in O(1) time.

2.4 Approximate Frequent Pattern

A substring P = S [i, j] is said to be frequent if freqS(P) ≥ 2.
We focus on an approximate solution of the problem to find
all frequent patterns. The approximated problem is defined
as follows.

Problem 1: Let T be a parse tree of a grammar compres-
sion deriving S ∈ Σ∗. A symbol X appearing in T is called a
core of a substring P of S iff for each occurrence [i, j] of P,
there exists a node with label X in T that derives substring
S [�, r] for a subinterval [�, r] of [i, j]. Then, P is said to be
approximated by X with δ if |val(X)|

|P| ≥ δ. The approximate
frequent pattern problem (AFP) involves computing T that
guarantees a core X of any frequent pattern P in S with an
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approximation ratio δ > 0.

AFP is well-defined with a small δ because for any S
and its substring P, any alphabet symbol forming P satisfies
the condition with δ = 1/|P|. An offline algorithm with ap-
proximation ratio Ω( 1

lg2 |P| ) has been proposed in [21]. We
aim at constructing the parse tree using an online algorithm
in compressed space with sufficiently large δ. In the pro-
posed algorithm, a grammar compression is represented by
the edit sensitive parsing (ESP) and succinctly encoded in a
post-order SLP (POSLP). We review related techniques in
the following sections.

2.5 Edit Sensitive Parsing

ESP introduced in [14] has been widely applied in data com-
pression and information retrieval (e.g., [15], [17]–[20]).
ESP is intended to efficiently construct a consistent parsing
for common substrings as follows.

Let T be a rooted ordered tree and (u, v) be a pair of
leaves in T . If there is no other leaf between u and v, the pair
(u, v) is said to be adjacent, and if u is the rightmost leaf of
a subtree x and v is the leftmost leaf of a subtree y in T , the
pair (x, y) is also said to be adjacent. Let T be a parse tree
of a string S ∈ Σ∗. A sequence X1, X2, . . . , Xq of symbols
in T is called a decomposition of S if xi is a subtree in T
labeled by Xi (i = 1, 2, . . . , q), each (xi, xi + 1) is adjacent
(i = 1, 2, . . . , q − 1), and val(X1X2 · · · Xq) = S .

For each substring S [i, j], we can decompose the
substring into a sequence of subtrees labeled by symbols
X1, X2, . . . , Xq. For each frequent P (e.g., S [i, j] = S [k, �] =
P), we can find a consistent decomposition for the oc-
currences by a trivial decomposition of X1 = S [i], X2 =

S [i + 1], . . . , Xq = S [ j]. As shown in [21], the parse tree
constructed by ESP (an ESP tree) guarantees better decom-
position, i.e., a common (X1, X2, . . . , Xq) is embedded into
any occurrence of P with q = Ω( |P|

lg2 |P| ). We show another

lower bound Ω( |P|
lg∗ |S | lg |P| ).

If T is an ESP tree for S ∈ Σ∗, any occurrence of P in
S has a common decomposition X1, X2, . . . , Xq for some 1 ≤
q ≤ |P|. Thus, we can employ each Xi in T as a necessary
condition of an occurrence of P in S . Using this fact, we
can find an approximate pattern from the ESP tree. Using
this result, we can efficiently compute a smaller grammar
compression that is closely related to AFP.

In the following, we review the ESP algorithm pro-
posed in [14]. This algorithm, referred to as ESP-comp,
computes an SLP from an input string S . The ESP-comp al-
gorithm (i) partitions S into s1s2 · · · s� such that 2 ≤ |si| ≤ 3
for each 1 ≤ i ≤ �, (ii) if |si| = 2, generates the produc-
tion rule X → AB and replace the AB by X (the binary tree
X(A, B) corresponding to the production rule is referred to
as a 2-tree), and if |si| = 3, generates the production rules
Y → AX and X → BC for si = ABC, and replaces si with Y
(the binary tree Y(A, X(B,C)) corresponding to the two pro-
duction rules is referred to as a 2-2-tree), and (iii) iterates
this process until S becomes a symbol. Finally, ESP-comp

builds an SLP representing the string S .
We focus on how to determine the partition S =

s1s2 · · · s�. A repetition S [i, j] ∈ X≥2 for some X ∈ Σ ∪ V
is called to be maximal if S [i − 1] � S [i] � S [ j + 1]. First,
S is uniquely partitioned to the form w1x1w2x2 · · ·wk xkwk+1

where each xi is a maximal repetition of a symbol in Σ ∪ V ,
and each wi ∈ (Σ ∪ V)∗ contains no repetition. Then, each
xi is called type1, each wi of length at least 2 lg∗ |S | is type2,
and any remaining wi is type3. If |wi| = 1 (i ≥ 2), xi−1wi

is renamed by xi−1, and if |w1| = 1, w1x1 is renamed by x1.
Thus, if |S | > 2, each xi and wi is of length at least two.

Next, ESP-comp parses each substring v depending on
the type. For type1 and type3 strings, the algorithm per-
forms the left-aligned parsing as follows. If |v| is even,
the algorithm builds a 2-tree from v[2 j − 1, 2 j] for each
j ∈ {1, 2, . . . , |v|/2}; otherwise, the algorithm builds a 2-tree
from v[2 j − 1, 2 j] for each j ∈ {1, 2, . . . , �(|v| − 3)/2�} and
builds a 2-2-tree from the last trigram v[|v| − 2, |v|]. If v is
type2, the algorithm further partitions it into short substrings
of length two or three using the following alphabet reduc-
tion.

Alphabet reduction: Given a type2 string v, consider
v[i] and v[i − 1] as binary integers. Let pi be the position
of the rightmost 1 in the binary string v[i] ⊕ v[i − 1] and
let bit(p, v[i]) be the bit of v[i] at the p-th position. Then,
L(v)[i] = 2pi + bit(pi, v[i]) is defined for any i ≥ 2. Because
v is repetition-free (i.e., type2), the label string L(v)[2, |v|]
is also type2. Assume that any symbol in v is an inte-
ger in {0, . . . ,N}, and L(v)[2, |v|] is a sequence of integers
in {0, . . . , 2 lg N + 1}|v|−1. If we apply this procedure lg∗ N
times, we obtain L∗(v)[lg∗ N + 1, |v|] (a sequence of inte-
gers in {0, . . . , 5}|v|−lg∗ N), where L∗(v)[1, lg∗ N] is undefined†.
When L∗(v)[i−1, i+1] is defined, v[i] is called the landmark
if L∗(v)[i] > max{L∗(v)[i − 1], L∗(v)[i + 1]}.

The iteration of alphabet reduction transforms v
into L∗(v) satisfying the condition that any substring of
L∗(v)[lg∗ N + 1, |v|] of length at least 12 contains at least
one label L∗(v)[i] such that v[i] is a landmark because
L∗(v)[lg∗ N + 1, |v|] ∈ {0, . . . , 5}|v|−lg∗ N−1 is also type2. Us-
ing this characteristic, ESP-comp determines the bigram
v[i, i + 1] to be replaced by a 2-tree for each landmark v[i],
where any two landmarks are not adjacent. Then, the re-
placement is deterministic. After replacing all landmarks,
any remaining maximal substring s is replaced by the left-
aligned parsing, where, if |s| = 1, it is attached to its left or
right block. In summary, Theorem 1 holds for type2 strings:

Theorem 1: ([14]) For type2 string v, whether v[i] is a
landmark or not is determined by only v[i−(lg∗ |S |+5), i+5].
In addition there is at least one landmark for every lg∗ |S |+12
positions in v.

An example of ESP of an input string is shown in
Figs. 1-(i) and (ii). For type2 substring v (Fig. 1-(i)), v is
parsed according to landmarks. For simplicity, landmarks

†The number of iterations of alphabet reduction should not be
changed arbitrarily according to each v. Thus, N is set in advance
to be a sufficiently large integer, e.g., N = Θ(|S |).



596
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 2 Examples of POSLP, parse tree, post-order partial parse tree (POPPT), and a succinct represen-
tation of POPPT.

Fig. 1 ESP. In (i), an underlined v[i] means a landmark. In (i) and (ii), a
dashed node corresponds to the intermediate node in a 2-2-tree.

are determined by performing alphabet reduction twice.
Any other remaining substrings, including type1 and type3,
are parsed by left-aligned parsing (Fig. 1-(ii)). In Fig. 1, a
dashed node indicates an intermediate node in a 2-2-tree.
Originally, an ESP tree is a ternary tree in which each node
has at most three children. The intermediate node is intro-
duced to represent an ESP tree as a binary tree.

Since a single ESP application shrinks the length of a
string by a factor of at least two, the number of ESP iter-
ations is bounded by O(lg |S |); thus, the following theorem
holds.

Theorem 2: ([14]) The height of the ESP tree of S is
O(lg |S |).

2.6 Succinct Encoding

A partial parse tree introduced in [5] is a binary tree built by
traversing a parse tree in a depth-first manner and pruning
all descendants under every node of a variable that appears
previously. Post-order SLP (POSLP) and post-order partial
parse tree (POPPT) introduced in [8] are defined as follows.

Definition 1 (POSLP and POPPT): A POSLP is an SLP
whose parse tree’s internal nodes have post-order variables.
A POPPT is a partial parse tree of POSLP.

For a POSLP of n variables, the number of nodes in

the POPPT is 2n + 1 because the numbers of internal nodes
and leaves are n and n + 1, respectively. Figures 2-(i) and
(iii) show POSLP and POPPT examples, respectively. The
resulting POPPT (Figs. 2 (iii)) has internal nodes consisting
of post-order variables.

FOLCA proposed in [9] is a fully-online algorithm for
computing succinct POSLP represented by (B, L). Here, B
is the bit string obtained by traversing POPPT in post-order,
and putting 0 if a node is a leaf and 1 otherwise. The last
bit 1 in B represents the super root. L is the sequence of
leaves of the POPPT. The dynamic sequences B and L are
encoded using the succinct data structure proposed in [27].
Then, FOLCA achieved the following performance.

Theorem 3 ([9]): A POSLP of n variables and σ alpha-
bet symbols supporting the phrase and reverse dictionar-
ies can be constructed in O( |S | lg n

α lg lg n ) expected time using
(1 + α)n lg(n + σ) + n(3 + lg(αn)) bits of memory, where
α (1/α > 1) is the load factor of a hash table.

In this paper, we present a new lower bound for the ap-
proximation ratio of the AFP. Experimental results obtained
with read data demonstrate that the expected ratio is suffi-
ciently large. The implementation of the algorithm is real-
ized by modifying FOLCA using novel data structures.

3. Algorithms

3.1 Offline Algorithm

Here, we review the offline construction of ESP presented
in [16] applied to the offline AFP in [21]. Given a string
S ∈ Σ∗, an AFP algorithm constructs an ESP tree T for S
and finds all frequent variables as cores in T that approx-
imately represent all frequent patterns in S . Relative to a
relation between pattern and its cores, the following result
was shown.

Theorem 4: ([16]) Let T be the ESP tree for string S . For
any substring P of S , there is a sequence Q of cores with
val(Q) = P that can be decomposed as Q = Q1Q2 · · ·Qk,
where each Qi is a sequence of cores of P consisting of ei-
ther a repetition of the form Qi ∈ c≥2

i (ci ∈ Σ∪V) or a string
of length O(lg∗ |S |) and k = O(lg |P|).

Here, we note that k in Theorem 4 is not |Q| itself.
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When |Qi| = O(lg∗ |S |) for any i, the result of Theorem 4
is nearly equivalent to the result we attempt to prove in this
study. To show the general case, we begin with the following
outline of the algorithm proposed in [16] and its correctness.

Let P = αβγ where α is the first type string and γ is the
last type string. When α, γ � ε, the pair (C,C′) of strings of
cores is defined as follows.

(1) If α is type2, C = α[1, i − 1] where i is the smallest
integer satisfying the condition that α[i] is a landmark
and i > lg∗ |S | + 5; otherwise, C = α.

(2) If γ is type2, C′ = γ[|γ| − j, |γ|] where j is the small-
est integer satisfying the condition that α[|γ| − j] is a
landmark and j > 5; otherwise, C′ = γ.

(3) For the determined partition P = CP′C′, let P1 be the
substring in the next level of the ESP deriving exactly
P′. Continue the above process for P′ while |P′| > 1.

When P is formed by a single type string i.e., P = α,
if α is type2, the pair (C,C′) is similarly defined by (1) and
(2); otherwise, (C,C′) = (α, ε).

Let (Ci,C′i ) be the pair obtained in the i-th iteration. It
is guaranteed that any symbol forming (Ci,C′i ) is a core of
P because the parsing of a type string α starts at the first
symbol and whether α[i] is a landmark is determined by
α[i − (lg∗ |S | + 5), i + 5] (Theorem 1). Note that Ci is ei-
ther a short string of length at most O(lg∗ |S |) or a type1
string, as is C′i , for each i. Moreover, the number of (Ci,C′i )
is O(lg |P|) because |P′| < |P|/2 in each iteration. Thus, we
obtain the sequence Q = C1 · · ·C�C′� · · ·C′1 = Q1Q2 · · ·Qk

for some Qi and k = O(lg |P|) in Theorem 4. We extend this
theorem by deriving the new lower bound of a maximal core
and propose an online algorithm to extract each Qi.

3.2 OAFP Algorithm

We propose an online algorithm for AFP by a modification
of FOLCA with a compressed space. We show the new
lower bound of the size of the extracted core as well as the
time and space complexities.

The proposed algorithm is summarized as follows. Let
S i (i = 0, 1, . . . , �lg |S |�) be the resulting string of the i-th
iteration of ESP, where S 0 = S . The algorithm simulates
ESP using a queue qi for each level i. The queue qi stores a
substring of S i of length at most O(lg∗ |S |) in FIFO manner.

Each S i has its decomposition S i = αi1αi2 · · ·αin where
αi� is the �-th type string in S i. If αi� is other than type2, it
is parsed in left-aligned manner in O(lg∗ |S |) space because
we can determine the type of αi� in O(lg∗ |S |) space. If αi�
is type2, each block αi� [ j, j′ − 1] is parsed in left-aligned
manner, where j is the position of a landmark and j′ is the
position of the next landmark. The space of qi for this case
is also O(lg∗ |S |) because we can decide whether αi� [ j] is a
landmark by at most αi� [ j− (lg∗ |S |+ 5), j+ 5] (Theorem 1).
After left-aligned parsing each case, the processed string is
dequeued from qi and the generated string is enqueued in
qi+1. Here, note that i = O(lg |S |) because the number of
queues is bounded by the height of the corresponding ESP

Algorithm 1 to compute core X of any frequent P in S . T :
POSLP for the ESP tree of S ; B: succinct representation of
the skeleton of T ; L: a sequence of leaves of T , FB: bit
vector storing FB[i] = 1 iff freqT (Xi) ≥ 2; D−1: reverse
dictionary for production rules; qk: queue in the k-th level.
1: function ComputeAFP(S )
2: B := ∅; L := ∅; FB := ∅; initialize qk; u := max{5, lg∗ |S |}
3: for i := 1, 2, . . . , |S | do
4: BuildESPTree((S [i], 0, 0, 0, 0), q1)

5: function BuildESPTree(X, qk)
6: 	 X is a tuple (s, ib, �1, �2, �lg∗ |S |) where s is a symbol, ib is 1 if s is

an internal node otherwise 0 and �i(i ∈ {1, 2, lg∗ |S |}) is a label applied
i-th alphabet reduction for s.

7: qk.enqueue(X)
8: compute qk[qk.length()].�i(i ∈ {1, 2, lg∗ |S |})
9: if qk.length() = u then

10: if Is2Tree(qk) then
11: Y := Update(qk[u − 1], qk[u])
12: qk .dequeue(); qk .dequeue()
13: BuildESPTree(Y, qk+1)

14: else if qk .length() = u + 1 then
15: Y := Update(qk[u], qk[u + 1]); Z := Update(qk[u − 1],Y)
16: qk.dequeue(); qk.dequeue(); qk.dequeue()
17: BuildESPTree(Z, qk+1)

18: function Is2Tree(qk)
19: if (qk[u − 4].s = qk[u − 3].s)&(qk[u − 3].s � qk[u − 2].s) then
20: return 0
21: else if (qk[u − 3].s � qk[u − 2].s)&(qk[u − 2].s = qk[u − 1].s) then
22: return 0
23: else if (qk[u − 3].�lg∗ |S | < qk[u − 2].�lg∗ |S |)&(qk[u − 2].�lg∗ |S | >

qk[u − 1].�lg∗ |S |) then
24: return 0
25: else
26: return 1
27: function Update(X,Y)
28: z := D−1(X.s, Y.s)
29: if z is a new symbol then
30: UpdateLeaf(X); UpdateLeaf(Y)
31: B.push back(1); FB.push back(0)
32: return (z, 1, 0, 0, 0)
33: else
34: GetAFPNode(z)
35: return (z, 0, 0, 0, 0)
36: function UpdateLeaf(X)
37: if X.ib = 0 then
38: L.push back(X.s); B.push back(0)

39: function GetAFPNode(Xi)
40: if FB[i] = 0 then
41: FB[i] := 1
42: Output Xi

tree. When a bigram XY in S i is parsed by an implicit 2-tree
Z → XY , it is encoded in the corresponding POSLP T rep-
resented by (B, L), where B is a bit sequence that represents
the skeleton of T , and L is the sequence of leaves of T . The
pseudo code is shown in Algorithm 1.

We next show that the ESP tree of S contains a suf-
ficiently large core for any substring P that guarantees the
approximation ratio of our algorithm.

Theorem 5: Let T be the ESP tree of a string S and P be a
substring of S . There exists a core of P that derives a string
of length Ω( |P|

lg∗ |S | lg |P| ).
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Fig. 3 The flow of the proposed online algorithm. For the input string S = ababa received so far,
the illustrated SLP is directly encoded in B = 0001101 and L = abaX1. Here, FB[i] = 1 iff Xi is
frequent, and H is the hash function for naming of variables. When the string baaba is appended to S ,
the algorithm updates B, L, and FB for the corresponding SLP.

proof. By Theorem 4, we can obtain a sequence
Q1Q2 · · ·Qk such that each Qi is a sequence of cores of
P consisting of either a repetition of the form Qi ∈ c≥2

i
(ci ∈ Σ ∪ V) or a string of length O(lg∗ |S |).

We show that for any 1 ≤ i ≤ k, there exists a core
Xi in Qi with |val(Xi)| = Ω( |val(Qi)|

lg∗ |S | ). If the length of Qi is
O(lg∗ |S |), the claim is immediate according to the pigeon-
hole principle. Otherwise, Qi ∈ c≥2

i . Any maximal repeti-
tion is parsed in left-aligned manner; thus, a type2 sequence
of bigrams c2

i is created over Qi (except for the last one,
which may be a 2-2-tree deriving c3

i ). Iterating the parsing
of the type2 sequence, we obtain a large and complete bal-
anced binary tree of ci. Assuming that a largest core covers
2h ci’s in Qi, we observe that the number of ci’s in Qi is less
than 5 ·2h, i.e., there is a node that covers at least one-fifth of
the ci’s in Qi. The maximum length of Qi is achieved when
Qi is parsed into ABCh−1 · · ·C0, where A contains 2h−1 ci’s,
B contains 2h ci’s, and, for any 0 ≤ h′ < h, Ch′ contains 3·2h′

ci’s. A and its preceding character c � ci (that must be the
first character in the entire string) form a node with 2h char-
acters, B composes the largest complete binary tree with 2h

ci’s, and, for any 0 ≤ h′ < h, Ch′ forms a 2-2-tree over three
complete binary trees with 2h′ ci’s. Adding even a single ci

to Qi results in creating a complete binary tree with 2h+1 ci’s
(which may appear in a 2-2-tree over three complete binary
trees with 2h ci’s); thus, the maximum number of ci’s in Qi

is 2h − 1 + 2h +
∑h−1

h′=0 3 · 2h′ < 5 · 2h. Therefore, there exists
a variable Xi in Qi with |val(Xi)| = Ω( |val(Qi)|

lg∗ |S | ).
There is at least one Qj such that |val(Qj)| ≥ |P|/k ≥

|P|/ lg |P|; therefore, there exists a core of P that derives a
string of length Ω( |val(Q j)|

lg∗ |S | ) = Ω( |P|
lg∗ |S | lg |P| ). �

Theorem 6: Algorithm 1 solves the AFP problem approxi-
mately at a ratio δ = Ω( 1

lg∗ |S | lg |P| ) in O( |S | lg n
α lg lg n ) expected time

and O(n + lg |S |) space.

proof. The algorithm simulates the ESP of S using queues
qi (i = 0, 1, . . . , |S |). Here, qi stores a substring of S i to
determine whether S i[ j] is a landmark. According to The-
orem 1, the space occupied by each qi is O(lg∗ |S |). We
can reduce this space to O(1) using a table of size at most
lg∗ |S | lg lg lg |S | bits as follows. By applying two iterations

of alphabet reduction, each symbol A is transformed into
a label LA of size at most lg lg lg |S | bits. Whether the A
is a landmark or not depends on its consecutive O(lg∗ |S |)
neighbors. Thus, the size of a table storing a 1-bit answer
is at most lg∗ |S | lg lg lg |S | bits. It follows that the space for
parsing S is O(lg |S |). On the other hand, according to The-
orem 3, the POSLP T of S is computable in O( |S | lg n

α lg lg n ) ex-
pected time. By Theorem 5, for each frequent P, T contains
at least one core X of P satisfying |val(X)| = Ω( |P|

lg∗ |S | lg |P| ).
Thus, finding all variables X appearing at least twice in T
solves AFP problem approximately with the lower bound.
Whether freqT (Xi) ≥ 2 can be stored in n bits for all i be-
cause an internal node i of T indicates the position of the
first occurrence of Xi. Therefore, we obtain the complexi-
ties and approximation ratio. �

By Theorem 5, any pattern P in S is approximated by
a variable in ESP tree of S with the ratio. By Theorem 6,
AFP is online computable in a compressed space. Next, we
demonstrate the proposed algorithm with real data.

4. Experimental Results

We evaluated the performance of the proposed online AFP
(OAFP) algorithm on one core of a quad-core Intel Xeon
Processor E5540 (2.53GHz) machine with 144GB memory.
We adopted a lightweight version of fully-online ESP, i.e.,
FOLCA proposed in [9], as a subroutine for grammar com-
pression algorithm.

We used several benchmarks from a text collec-
tion (http://pizzachili.dcc.uchile.cl/repcorpus.html). More-
over, we use text collections from Wikipedia dump files
(https://dumps.wikimedia.org) and source programs from
GitHub (https://github.com). For these texts, we examined
the practical approximation ratio of the algorithm as follows.
For each text S , we obtained the set of frequent substrings
by the compressed SA proposed in [13], and we selected the
top-100 longest patterns so that any two P and Q are not
dominant over each other, where a substring P is considered
dominant over Q if, for any occurrence [i, j] of Q, there ex-
ists an occurrence [�, r] of P such that [�, r] is a subinterval
of [i, j]. We removed such Q from the candidates. For each
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Table 1 SA and OAFP (max.) is the length of longest frequent pattern in top-100 extracted by
SA and the proposed OAFP algorithm, respectively, and SA and OAFP (min./mean) are analogous.

Approx (max.) is the largest approximation ratio
|val(Q j)|
|Pi | (%) such that Q j is a core of Pi, and Approx

(min./mean) are analogous.

data einstein cere kernel english dna sources wikipeida GitHub
(MB) 446 446 246 200 200 200 5,523 8,180

SA 935, 920 303, 204 2, 755, 550 98, 7770 97, 979 307, 871 N/A N/A
max. OAFP 342, 136 58, 906 662, 630 16, 1320 24, 834 57, 508 855262 6724671

Approx 50.0 62.1 52.8 50.8 63.9 51.7 - -
SA 198, 606 4, 562 442, 124 43, 985 3, 271 4, 776 N/A N/A

min. OAFP 18, 625 4, 096 37, 205 3, 382 268 477 4096 11396
Approx 7.6 2.3 6.9 7.3 7.1 7.3 - -

SA 259, 451 111, 284 727, 443 116, 920 8, 241 14, 498 N/A N/A
mean OAFP 56, 584 12, 723 152, 903 24, 703 1, 926 3, 279 33345 133654

Approx 21.6 11.0 20.0 23.0 22.9 22.0 - -

Fig. 4 Memory consumption (MB)

frequent substring P and variable X reported by the algo-
rithm, we estimated the cover ratio |val(X)|

|P| : Let Pi and Qj be
one of the top-100 patterns extracted by the SA and the pro-
posed OAFP algorithm, respectively. When Xi is a core of
Pi such that val(Xi) = Qi, the approximation ratio |val(Xi)|

|Pi | was
evaluated. However, as shown in the result below (Fig. 4),
the SA cannot be executed for larger S due to memory con-
sumption. In addition, we examined the time and memory
consumption of the offline AFP algorithm proposed in [21].

Table 1 shows a summary of the longest top-100 fre-
quent patterns extracted by the SA and the proposed OAFP
algorithm using benchmark data from various domains. We
also show the approximation ratio |val(Xi)|

|Pi | for the pattern Pi

extracted by the SA and a corresponding core found by
OAFP algorithm. For example, the length of a longest fre-
quent pattern P in einstein was 935,920 and the correspond-
ing length of Q obtained by OAFP algorithm is 343,136.
The approximation ratio in this case was not the ratio of P
and Q because this Q is a substring of other frequent pattern

in this case. We evaluated the exact ratio according to the
definition of the extracted patterns. As a result, the proposed
OAFP algorithm extracted sufficiently large cores for each
benchmark because |Q|/|P| was considerably larger than the
theoretical bound 1

lg∗ |S | lg |P| .
Figure 4 shows the memory consumption for repetitive

strings (Figs. 4 (a)–4 (c)) and normal strings (Figs. 4 (d)–
4 (f)). The working space was significantly saved by our
online strategy, whereas offline and SA algorithms were ex-
ecuted for each static size of data noted in the figures.

Figure 5 shows the computation time for each bench-
mark. Due to the time-space tradeoff of a succinct data
structure, the proposed algorithm was 2.48–6.82 times
slower than the SA and the offline algorithm.

5. Conclusion and Future Work

We have proposed an online approximation algorithm in
compressed space for the problem of finding frequent pat-
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Fig. 5 Time consumption (sec)

terns. The proposed algorithm is an improvement of the
FOLCA algorithm, which is a fully-online grammar com-
pression algorithm. We derived a new theoretical lower
bound of the approximation ratio, that is larger than the pre-
vious bound under an assumption of input string, and pre-
sented experimental results that demonstrate efficiency for
highly repetitive texts. The new lower bound holds on the
previous offline algorithms in [16] and [21] because the pro-
posed online algorithm simulates the offline construction of
ESP tree. However, relative to the approximation ratio, a
large gap between theory and practical results. Thus, im-
proving the lower bound is important future work.

Another approach to solve the problem in compressed
space is to use the run-length encoded Burrows-Wheeler
Transform (RLBWT) of a string S , which takes space lin-
ear to the number r of runs in the BWT of S of length
n. Given the RLBWT of S , we can simulate the enumer-
ation of all nodes of the suffix tree of S (e.g., Sect. 9.4.1
in [28]) and thus solve the frequent pattern discovery prob-
lem exactly. Although there is an implementation of the on-
line construction of RLBWT that runs in O(n lg r) time and
O(r lg n) space proposed in [29], preliminary experiments
showed that its execution time is slow compared to our pro-
posed approach. Therefore, in future, it would be interesting
to engineer the RLBWT approach to realize faster execution
times.
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