
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.6 JUNE 2018
1491

PAPER Special Section on Formal Approaches

Static Dependency Pair Method in Functional Programs

Keiichirou KUSAKARI†a), Member

SUMMARY We have previously introduced the static dependency pair
method that proves termination by analyzing the static recursive structure
of various extensions of term rewriting systems for handling higher-order
functions. The key is to succeed with the formalization of recursive struc-
tures based on the notion of strong computability, which is introduced for
the termination of typed λ-calculi. To bring the static dependency pair
method close to existing functional programs, we also extend the method
to term rewriting models in which functional abstractions with patterns are
permitted. Since the static dependency pair method is not sound in general,
we formulate a class; namely, accessibility, in which the method works
well. The static dependency pair method is a very natural reasoning; there-
fore, our extension differs only slightly from previous results. On the other
hand, a soundness proof is dramatically difficult.
key words: functional program, term rewriting system, termination, recur-
sive definition, static dependency pair method

1. Introduction

The static dependency pair method (SDP-method) [13],
[16]–[19], [22] is a powerful method to prove the ter-
mination of various extensions of term rewriting systems
(TRSs) [24] for handling higher-order functions. The
method shows the termination by analyzing a static recur-
sive structure. The principle of the SDP-method is such that
if any recursion is suitably defined, then it must terminate.
To bring the method close to existing functional programs,
we extend the method to term rewriting models for func-
tional programs (TRFPs) in which functional abstractions
with patterns are permitted.

We first consider primitive recursion in higher-order
settings:

prec : Nat→ α→ (Nat→ α→ α)→ α

The function can be represented by the following TRFP:
{

prec 0 z f → z
prec (suc x) z f → f x (prec x z f )

Although it is well-known that the Ackermann function
ack : Nat → Nat → Nat is not primitively recursive in
first-order settings, the following TRFP can represent the
function by using higher-order primitive recursion twice:
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{
iter f x→ prec x ( f (suc 0)) (fn x′ ⇒ fn z⇒ f z)
ack x→ prec x suc (fn x′ ⇒ fn f ⇒ iter f )

In a functional programming way, we implement programs
by defining functions. Hence, the termination of func-
tional programs means that all defined functions are totally
defined.

The SDP-method first analyzes a static recursive struc-
ture. For example, the method reveals that there is only one
recursion,

prec� (suc x) z f → prec� x z f

called the static recursion component, in the TRFP that con-
sists of the above four rules. Then the SDP-method proves
the termination by proving the non-loopingness of the static
recursion components. In this example, we can prove the
non-loopingness because the function “prec” is appropri-
ately recursively programmed on data types, that is, on the
first argument in the underlined position below.

prec� (suc x) z f → prec� x z f

By recapitulating such a termination proof of the SDP-
method, we obtain the following assertion:

The function that is appropriately recursively
programmed is totally defined.

Although it may be very natural reasoning, the assertion
is not correct in general; therefore, the SDP-method is not
sound in general, either. The meaning of the assertion is
such that:

Any part other than the recursive parts never
destroy the termination.

However, we consider a counterexample to this assertion.
For example, Combinatory Logic, which can be represented
as: {

S f g x → f x (g x)
K x y → x

is non-terminating [9], but there exist no recursive structures
because combinators S and K do not occur on the right-hand
sides. On the other hand, typed Combinatory Logic is ter-
minating [9].

Why is untyped Combinatory Logic non-terminating
while typed Combinatory Logic is terminating? From a
technical viewpoint, we can introduce the notion of strong
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computability in typed systems. The notion was introduced
to show the termination of typed λ-calculi [8], [23]. Because
the notion is inductively defined on types, it is well-defined
on typed systems, but not on untyped systems. We note that
a theoretical basis for our SDP-method is also given by the
notion of strong computability.

Therefore, we may assume that the SDP-method is
sound in typed systems. However there exists the follow-
ing counterexample:

foo (bar f )→ f (bar f )

Although this system is typable under foo, f : α → β and
bar : (α → β) → α, it has the self-loop: foo (bar foo) →
foo (bar foo), and hence, is non-terminating. On the other
hand, the SDP-method mistakenly reveals that no recursive
structure exists, and hence, is terminating, because the func-
tion “foo” does not occur on the right-hand side. From a
technical viewpoint, the problem arises because strong com-
putability is not closed under the subterm relation. More
precisely, if a receiving argument (bar t) is strongly com-
putable in evaluating the function “foo”, the subterm t of
(bar t), might not be strongly computable, and t is passed to
the right-hand side. In this paper, we formalize this condi-
tion as accessibility (cf. Definition 4.3), which guards such
passing, and hence, guarantees strong computability of any
term that is passed to the right-hand side through variables.
We also prove the soundness of the SDP-method in the class
of accessible TRFPs.

We note that our SDP-method can prove the termina-
tion of polymorphic-typed Combinatory Logic using the fol-
lowing two easily checked reasons:

• S and K do not occur on the right-hand sides.
• Any variable occurs in an argument position on the left-

hand sides.

Although several proofs of the termination of polymorphic-
typed Combinatory Logic are known [9], we believe that our
proof is very elegant, despite permitting functional abstrac-
tion with patterns.

As discussed previously, the SDP-method is very nat-
ural reasoning so that our extension in this paper may dif-
fer only slightly [19]. On the other hand, the soundness
proof for the SDP-method is dramatically difficult. To show
soundness, it is necessary to wholly rebuild the soundness
proof in [19] (cf. the last half of Sect. 5). From a technical
viewpoint, our soundness proof is an extension of the termi-
nation proof of typed λ-calculi by using the notion of strong
computability. Understandably, a try of such extension is
broken. Under the restriction of accessibility, our soundness
proof characterizes the first break points of the try and then
a recursive structure, which generates an infinite reduction,
emerges by bridging these points.

The remainder of this paper is organized as follows.
Section 2 provides term rewriting models for functional pro-
grams (TRFPs) in which functional abstractions with pat-
terns are permitted. In Sect. 3, we present ways for the tech-
nical decomposition of terms. In Sect. 4, we discuss the

notion of strong computability, which provides a theoreti-
cal basis for the SDP-method. We also show the class of
accessible TRFPs in which the SDP-method is sound. In
Sect. 5, we show the SDP-method on TRFPs. In Sect. 6, we
introduce the notion of the subterm criterion and reduction
pairs that prove the non-loopingness of static recursion com-
ponents. Concluding remarks are presented in Sect. 7.

2. Term Rewriting Model for Functional Programs

We introduced term rewriting models for functional pro-
grams (TRFPs) [19], as an extension of term rewriting sys-
tems [24]. In this paper, we extend TRFP to allow functional
abstraction with pattern. For simplicity, we use the short no-
tation an for a sequence of either a1, . . . , an or a1 · · · an.

The set S of product, ML-polymorphic and algebraic-
data types (types for short) is generated from the set TV
of type variables by the type constructors {→,×} � TC, in
which each symbol c ∈ TC is associated with a natural num-
ber n, denoted by arity(c) = n. Formally, the set S is defined
as the least set satisfying the following properties:

• If α ∈ TV then α ∈ S.
• If σ1, σ2 ∈ S then (σ1 → σ2) ∈ S.
• If σ1, . . . , σn ∈ S then (σ1 × · · · × σn) ∈ S.
• If σ1, . . . , σn ∈ S and c ∈ TC with arity(c) = n then

c(σ1, . . . , σn) ∈ S.

A functional type or higher-order type is a type of the form
(σ1 → σ2). We denote by Snfun the set of non-functional
types. A product type is a type of the form (σ1 × · · · × σn)
for n ≥ 2. A data type is either a product type or a type of the
form c(σ1, . . . , σn). For c ∈ TC with arity(c) = 0, we simply
denote c() by c. To minimize the number of parentheses, we
assume that → is right-associative and → has lower prece-
dence than ×. We shortly denote σ1 → · · · → σn → σ0 by
σn → σ0. Under these conventions, any type σ is uniquely
denoted by the form σn → σ0 with σ0 ∈ Snfun, which we
call the canonical form. A type σ is said to be closed if no
type variable occurs in σ. A type σ is said to be an instance
of a type σ′, denoted by σ′ 	 σ, if there is a type substitu-
tion ξ such that σ = ξ(σ′).

LetD, C, andV be a set of defined symbols, construc-
tors, and term variables, respectively. A type environment is
a pair (Σ,Γ) of functions Σ : C ∪ D → S and Γ : V → S.
For given type environment (Σ,Γ), we define the set P(Σ,Γ)
of patterns as follows:

• If Γ(x) = σ then xσ ∈ P(Σ,Γ).
• If c ∈ C, Σ(c) 	 σn → σ0 and pσ1

1 , . . . , p
σn
n ∈ P(Σ,Γ)

then (c pσ1
1 · · · pσn

n )σ0 ∈ P(Σ,Γ).
• If pσ1

1 , . . . , p
σn
n ∈ P(Σ,Γ)

then (pσ1
1 , . . . , p

σn
n )σ1×···×σn ∈ P(Σ,Γ).

For given type environment (Σ,Γ), we define the set T (Σ,Γ)
of typed terms (terms for short) as follows:

• If Γ(x) = σ then xσ ∈ T (Σ,Γ).
• If Σ( f ) 	 σ then f σ ∈ T (Σ,Γ).
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• If tσ1
1 , . . . , t

σn
n ∈ T (Σ,Γ)

then (tσ1
1 , . . . , t

σn
n )σ1×···×σn ∈ T (Σ,Γ).

• If pσ1 , . . . , p
σ
m ∈ P(Σ,Γ) and rσ

′

1 , . . . , r
σ′
m ∈ T (Σ,Γ)

then (fn pσ1 ⇒ rσ
′

1 | · · · | p
σ
m ⇒ rσ

′
m )σ→σ

′ ∈ T (Σ,Γ).†

• If tσ1→σ2 , uσ1 ∈ T (Σ,Γ) then (t uσ1 )σ2 ∈ T (Σ,Γ).

For t ≡ (tσ1
1 , . . . , t

σn
n )σ1×···×σn , we identify t as tσ1

1 in case
of n = 1, and t ≡ ()unit in case of n = 0, where unit is
a special type constructor. The α-equivalence of terms is
denoted by ≡. The set of free variables in a term t is de-
noted by FV(t), and the set of bound variables in a term t
is denoted by BV(t). We also define the notions of term/type
substitution and term/type context in the usual way. For
simplicity, we assume that functional application is left-
associative and the body of a functional abstraction extends
as far right as possible. We may drop type information in
a term whenever no confusion arises. We shortly denote
fn p1 ⇒ fn p2 ⇒ · · · ⇒ fn pm ⇒ r by fn pm ⇒ r
or fn p ⇒ r, and u t1 · · · tn by u tn or u t. For conve-
nience, we also introduce the “variable convention”, that is,
we assume that bound variables in a term are all different,
and are disjoint from free variables. Under this convention,
(fn p ⇒ r)θ ≡ fn p ⇒ rθ holds for any term substitution θ.
The set Pos(t) of positions, which are sequences of natural
numbers, in a term t is defined as follows:

• Pos(a tn) = {ε} ∪⋃n
i=1{iq | q ∈ Pos(ti)}

if a ∈ D ∪ C ∪V
• Pos((t1, . . . , tn)) = {ε} ∪⋃n

i=1{iq | q ∈ Pos(ti)}
• Pos(fn p1 ⇒ r1 | · · · | pm ⇒ rm) = {ε} ∪⋃m

i=1{iq | q ∈
Pos(fn pi ⇒ ri)} if m > 1

• Pos(fn p⇒ r) = {ε} ∪ {1q | q ∈ Pos(r)}
• Pos(u tn) = {ε} ∪ {0q0 | q0 ∈ Pos(u) \ {ε}} ∪⋃n

i=1{iq |
q ∈ Pos(ti)} if n > 0 where u ≡ (fn p1 ⇒ r1 | · · · |
pm ⇒ rm)

The prefix order ≺ on positions is defined by p ≺ q iff pw =
q for some w � ε. The position ε is said to be a root position,
and a position q in t is said to be a leaf position if q ∈ Pos(t)
and q1 � Pos(t). A context is said to be a leaf context if any
hole occurs in a leaf position. The subterm of t at position p
is denoted by t|p, and the symbol at position p in t is denoted
by (t)p. For the sake of convenience, we interpret (t)q = tp
whenever t|q ≡ (t1, . . . , tn), and interpret (t)q = fn whenever
t|q is a functional abstraction. Specially, the root symbol
(t)ε is also denoted by root(t). The size |t| of t is defined as
the cardinality of Pos(t). We denote the (proper) subterm
relation by �sub (�sub). We define tσ ∈ Tnfun iff σ is not a
functional type, and t ∈ T cls iff σ is closed for any vσ �sub t.

As a matter of course, we fix a type environment Σ for
defined symbols and constructors. A triple (lσ, rσ,Γ) is said
to be a rewrite rule, denoted by lσ → rσ : Γ (lσ → rσ for
short) if lσ and rσ are terms of the same type σ under the
type environment (Σ,Γ), root(l) ∈ D, and FV(l) ⊇ FV(r).

†In this paper, we only study the termination but not conflu-
ence. Hence, we give no restriction for functional abstractions with
pattern. In order to guarantee the confluence, we need suitable re-
strictions [12].

A term rewriting model for functional programs (TRFP) is
a set of rewrite rules. For any rewrite rule lσ → rσ, we
define the set Act(l → r) of actual rewrite rules as: uσ

′ →
vσ
′ ∈ Act(lσ → rσ) iff there is a type substitution ξ such

that u ≡ lξ zn, v ≡ rξ zn, and ξ(σ) = σn → σ′, where
each zσi

i is a fresh variable. We also denote by Act(R) the set⋃
l→r∈R Act(l → r). The relation −→

R
of a TRFP R is defined

by s −→
R

t iff s ≡ C[lθ] and t ≡ C[rθ] for some actual rewrite
rule l → r ∈ Act(R), leaf context C[ ], and term substitution
θ. We also define s −→

fn
t iff there exists a context C[ ] such

that s ≡ C[(fn p1 ⇒ r1 | · · · | pm ⇒ rm) piθ] and t ≡
C[riθ]. The rewrite relation −−→

R,fn
is the union of −→

R
and −→

fn
.

Especially, we denote s −−→
R,fn
ε t if a rewrite −−→

R,fn
occurs at the

root position; otherwise we denote s −−→
R,fn
�ε t.

Example 2.1 Consider the following TRFP Rlen:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

foldl f e nil→ e
foldl f e (cons (x, xs))→ foldl f ( f (e, x)) xs
len xs→ foldl (fn (x, y)⇒ suc x) 0 xs

The function foldl : (α × β → α) → α → list(β) → α is a
typical higher-order function that is widely used in existing
functional programs, where α and β are type variables, and
list is a type constructor. The TRFP Rlen gives a represen-
tation of a function that calculates the length of lists. We
demonstrate the calculation of len (cons (t, nil)) as follows:

len (cons (t, nil))

−→
R

foldl (fn (x, y)⇒ suc x) 0 (cons (t, nil))

−→
R

foldl (fn (x, y)⇒ suc x)

((fn (x, y)⇒ suc x) (0, t)) nil

−→
fn

foldl (fn (x, y)⇒ suc x) (suc 0) nil

−→
R

suc 0

A term t is said to be terminating if there exists no infi-
nite rewrite sequence of −−→

R,fn
starting from t. We write S N(t)

if t is terminating. A TRFP R is said to be terminating if so
is any t.

We naturally assume that there is a closed type other
than the special type unit. Then, since actual rewrite rules
are closed under type substitution, we obtain the following
proposition.

Proposition 2.2 Let R be a TRFP. For any type substitution
ξ, we have s −−→

R,fn
t ⇒ sξ −−→

R,fn
tξ. Hence R is terminating if

any closed-typed term is terminating.

3. Term Decomposition

In order to define various notions and to prove various prop-
erties, we introduce adequate decompositions for terms. In
this section, we present various types of decomposition for
terms.

Since we permit functional abstraction with patterns,
we can bundle several terms into one term. For example, we
can bundle terms (fn 0 ⇒ 0) and (fn suc x ⇒ x) in the term
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(fn 0⇒ 0 | suc x⇒ x). To uncouple a bundle such as:

hdec(fn 0⇒ 0 | suc x⇒ x) = {fn 0⇒ 0, fn suc x⇒ x},

we introduce the notion of the head decomposition.

Definition 3.1 We define the function hdec as follows:

hdec((fn p1 ⇒ r1 | · · · | pm ⇒ rm) t)
=
⋃m

i=1 hdec((fn pi ⇒ ri) t) if m > 1
hdec((fn p⇒ r) t) = {(fn p⇒ r′) t | r′ ∈ hdec(r)}
hdec(t) = {t} otherwise

A term t is said to be a single head binding term if t ∈
hdec(t′) for some t′.

We also introduce the notion of the head part in single
head binding terms.

Definition 3.2 For single head binding terms, we define the
function hd as follows:

• hd((fn p⇒ r) t) = fn p⇒ hd(r)
• hd(t) = t if root(t) � fn

For the proof of the soundness of the dependency
pair method on first-order settings, a term of the form
d(t1, . . . , tn) such that d ∈ D and each argument ti is ter-
minating plays an important role [1]. To extend the depen-
dency pair method onto higher-order settings, that is, to de-
sign the static dependency pair method, we introduce the
notion of strong computability, which is a stronger property
than termination and is closed under functional application:
if t and u are strongly computable, then so is t u. For the
soundness proof of the static dependency pair method with-
out functional abstraction with a pattern, a term of the form
d tn (≡ d t1 · · · tn) such that d ∈ D and each argument ti
is strongly computable also plays an important role [16]–
[19], [22].

In this paper, we permit functional abstraction with pat-
terns so that we need to decompose the terms of the form
fn p⇒ d tn. The most natural way may be to decompose the
terms into fn zn ⇒ fn p⇒ d zn and the arguments t1, . . . , tn.
Then we have (fn zn ⇒ fn p ⇒ d zn) tn

∗−→
fn

fn p ⇒ d tn,
and fn p ⇒ d tn is strongly computable whenever the de-
composed terms are strongly computable. However, such
decomposition has two problems that prevent a soundness
proof for the static dependency pair method. One is that
bound variables in ti by p may become free variables. An-
other problem is that the size of fn zn ⇒ fn p⇒ d zn may be
larger than the size of fn p ⇒ d tn. To avoid such difficul-
ties, we technically interpret fn p⇒ ti (i = 1, . . . , n) as argu-
ments of fn p ⇒ d tn. Indeed, fn p ⇒ d tn is strongly com-
putable whenever fn p ⇒ d and each argument fn p ⇒ ti
are strongly computable (cf. Lemma 5.12 with the empty
substitution). We formalize such arguments as:

args(fn p⇒ d tn) = {fn p⇒ ti | i = 1, . . . , n}

Definition 3.3 The function args is defined as follows:

• args(a tn) = {tn}
• args((t1, . . . , tn)) = {tn}
• args((fn p1 ⇒ r1 | · · · | pm ⇒ rm) tn)

= {tn} ∪
⋃m

i=1{fn pi ⇒ r′i | r′i ∈ args(ri)}

Finally, we introduce the notion of bind preserving sub-
terms, which embody hdec, hd and args.

Definition 3.4 We inductively define the set Subbp(t) of
bind preserving subterms as follows:

• Subbp(a tn) = {a tn} ∪
⋃n

i=1 Subbp(ti)
• Subbp( (t1, . . . , tn) ) = {(t1, . . . , tn)} ∪⋃n

i=1 Subbp(ti)
• Subbp( (fn p1 ⇒ r1 | · · · | pm ⇒ rm) tn )
= {fn pi ⇒ ui | ∃i, ui ∈ Subbp(ri)} ∪

⋃n
i=1 Subbp(ti)

For instance, we consider the following term t such that
ai ∈ D ∪ C ∪V for each i.

t ≡ (fn p1 ⇒ a1 (a2, a3)
| p2 ⇒ (fn p3 ⇒ a4 a5 | p4 ⇒ a6) a7)

(fn p5 ⇒ a8 | p6 ⇒ a9)

Then hdec(t) consists of the following three terms:

t1 ≡ (fn p1 ⇒ a1 (a2, a3)) (fn p5 ⇒ a8 | p6 ⇒ a9)
t2 ≡ (fn p2 ⇒ (fn p3 ⇒ a4 a5) a7)

(fn p5 ⇒ a8 | p6 ⇒ a9)
t3 ≡ (fn p2 ⇒ (fn p4 ⇒ a6) a7)

(fn p5 ⇒ a8 | p6 ⇒ a9)

Each hd(ti) is as follows:

hd(t1) ≡ fn p1 ⇒ a1 (a2, a3)
hd(t2) ≡ fn p2 ⇒ fn p3 ⇒ a4 a5

hd(t3) ≡ fn p2 ⇒ fn p4 ⇒ a6

Then args(t) consists of the following four terms:

t4 ≡ fn p1 ⇒ (a2, a3)
t5 ≡ fn p2 ⇒ fn p3 ⇒ a5

t6 ≡ fn p2 ⇒ a7

t7 ≡ fn p5 ⇒ a8 | p6 ⇒ a9

The set of bind preserving subterms Subbp(t) consists of ten
terms: hd(t1), hd(t2), hd(t3), t4, t5, t6, and two elements of
args(t4):

fn p1 ⇒ a2 fn p1 ⇒ a3

and two elements of hdec(t7):

fn p5 ⇒ a8 fn p6 ⇒ a9

4. Strong Computability and Accessibility

The theoretical basis of the SDP-method is given by the
notion of strong computability, and the soundness of the
SDP-method is guaranteed by the notion of accessibility. In
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this section, we introduce these key notions [19]. By us-
ing these notions, we formulate the class, namely accessi-
ble TRFPs (ATRFPs), in which the soundness of the SDP-
method holds. To increase reusability, we divide an abstract
framework from these constructions. Note that any proof
in the following sections will not refer to any discussion in
the constructing section (Sect. 4.2). It will refer only to the
abstract framework (Sect. 4.1).

4.1 Abstract Framework

Definition 4.1 A predicate P over T cls is said to be a strong
computability predicate if the following properties hold:

(SC1) For any t ∈ T cls, if P(t) then S N(t).
(SC2) For any tσ1→σ2 , uσ1 ∈ T cls, if P(t) and P(u) then

P(t u).
(SC3) For any tσ1→σ2 ∈ T cls, if ∀uσ1 ∈ T cls[P(u)⇒ P(t u)]

then P(t).
(SC4) For any t, u ∈ T cls, if P(t) and t −−→

R,fn
u then P(u).

(SC5) For any t ∈ T cls
nfun, if ∀u ∈ T cls ∩ ({t′ | t −−→

R,fn
t′} ∪

T ).P(u) then P(t), where T = args(t) if root(t) � fn;
otherwise T = ∅.

Throughout the paper, we use notations TS C = {t |
S C(t)}, T¬S C = {t | ¬S C(t)}, and T args

S C = {t | ∀u ∈
args(t), S C(u)} for each strong computability predicate S C.
We also use notations TS N = {t | S N(t)}, T¬S N = {t |
¬S N(t)}, and T args

S N = {t | ∀u ∈ args(t), S N(u)}.

Definition 4.2 For a strong computability predicate S C, a
function A from T to sets of T is said to be an accessible
function if the following properties hold:

(Acc1) For any t, u ∈ T cls, if u ∈ A(t) and t ∈ T args
S C then

S C(u).
(Acc2) For any t, u ∈ T cls and term substitution θ, if u ∈

A(t) then uθ ∈ A(tθ).
(Acc3) For any t, u ∈ T and type substitution ξ, if u ∈ A(t)

then uξ ∈ A(tξ).

Definition 4.3 A TRFP R is said to be accessible, if there
exist a strong computability predicate S C and an accessible
function Acc such that

• C is accessible, that is, ti ∈ Acc(c tn) for any i and
c ∈ C, and
• for any rule l → r ∈ R and a rn �sub r with a ∈ FV(r),

there exists k (≤ n) such that a rk ∈ Acc(l).

An accessible TRFP is often shortly denoted by ATRFP.

In the introduction, we explained that the SDP-method is not
sound in general. The accessibility gives a sufficient condi-
tion of the soundness of the SDP-method. In the following,
we show that the non-terminating TRFP R = {foo (bar f )→
f (bar f )} displayed in the introduction is not accessible.

Assume that the TRFP is accessible with a strong com-
putability predicate S C and an accessible function Acc.

From the assumption, we have f ∈ Acc(foo (bar f )). Thanks
to (Acc3), we suppose that these terms are in T cls.

In case of S C(bar foo), since foo ∈ Acc(foo (bar foo))
by (Acc2), we have S C(foo) by (Acc1). From (SC2), we
have S C(foo (bar foo)). It is a contradiction with (SC1).

In case of ¬S C(bar foo), we have ¬S C(foo) by
(SC5). From (SC3), there is u ∈ T cls such that S C(u)
and ¬S C(foo u). From (SC5), (SC1) and (SC4), there
is a reduction sequence foo u ∗−−→

R,fn
foo (bar u′) −→

R

u′ (bar u′) such that S C(bar u′) and ¬S C(u′ (bar u′)). Since
u′ ∈ Acc(foo (bar u′)) by (Acc2), S C(u′) follows from
(Acc1). However, ¬S C(u′) follows from (SC2). It is a
contradiction.

4.2 Construction

In order to construct a strongly computable predicate and
an accessible function, we introduced the notion of peeled
subterms [17], which was extended to TRFPs without func-
tional abstractions [19]. The result can be used in this paper
because we do not change the type systems. In this section,
we slightly improve the result by paying attention to features
of product types. The benefit by this improvement will be
demonstrated using an example at the end of this section.

Definition 4.4 We define the function pcomp as follows:

pcomp(σ1 × · · · × σn) =
⋃n

i=1 pcomp(σi) if n ≥ 2
pcomp(σ) = {σ} otherwise

Definition 4.5 A set PT of peeling types is a subset of all
data types. We define PT	 as follows:

{σ | ∃σ′ ∈ PT, σ′ 	 σ} ∪ {σ | σ is a product type}

A well-founded quasi order � on types is said to be a peeling
order if the following properties hold:

• If σ′ � σ then ξ(σ′) � ξ(σ) for any closed-typed sub-
stitution ξ
• σ1 × · · · × σn � σi for any closed types σ1, . . . , σn

• σ1 → σ2 � σi (i = 1, 2) for any closed types σ1 and
σ2, where � is the strict part of �

We define the set S ub�PT (t) of peeled subterms as the smallest
set satisfying the following properties:

• args(t) ⊆ S ub�PT (t),
• if (t1, . . . , tn) ∈ S ub�PT (t) then ∀i, ti ∈ S ub�PT (t), and
• if u ≡ (a uσn

n )σ ∈ S ub�PT (t), σ ∈ PT	, and ∀σ′ ∈
pcomp(σi), σ � σ′ then uσi

i ∈ S ub�PT (t).

Definition 4.6 For a set PT of peeling types and peeling
order �, we define S C(tσ) as follows:

• In case of tσ ∈ T cls
nfun and σ � PT	, S C(t) is defined as

S N(t).
• In case of tσ ∈ T cls

nfun and σ ∈ PT	, S C(t) is defined as

S N(t) and S C(u) for any uσ
′ ∈ T cls ∩ ({t′ | t −→

R
t′} ∪ T )
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such that σ � σ′, where T = args(t) if root(t) � fn;
otherwise T = ∅.
• In case of tσ1→σ2 ∈ T cls, S C(t) is defined as S C(t u)

for all uσ1 ∈ T cls with S C(u).

The well-definedness of S C can be shown as similar to
[19]. We note that the value of S C(t) for non-terminating
term t is set to false, and the value of S C(t) for terminating
term tσ is inductively defined on (σ, t) with respect to the
lexicographic combination of (�, −−→

R,fn
∪ �sub).

Definition 4.7 For a set PT of peeling types and a peeling
order �, we define the function Acc as follows:

Acc(t) = S ub�PT (t) ∪ {u | t �sub uσ ∈ T cls
nfun, σ � PT	}

Theorem 4.8 The predicate S C given in Definition 4.6 is a
strong computability predicate, and the function Acc given
in Definition 4.7 is an accessible function.

Proof. We can prove the claim as similar to Theorem 3.6
and 3.7 in [19]. �

Under S C and Acc introduced in this section, the
TRFP for Ackermann function discussed in Sect. 1 becomes
ATRFP. The TRFP Rlen in Example 2.1 is also ATRFP.

Example 4.9 Consider the TRFP Rlen in Example 2.1.
Since types can be interpreted as first-order terms (we in-
terpret a product type σ1 × · · · × σn as a first-order term
tpn(σ1, . . . , σn)), we construct the peeling order � by using
the recursive path order ≥rpo with the empty precedence [6].
Then the order ≥rpo becomes a peeling order. We take PT
as the set of all data types. Then the TRFP Rlen becomes
accessible. In fact, the first and third rules trivially satisfy
the desired property because all variables occur in argument
positions. Suppose that t ≡ foldl f e (cons (x, xs)). Then:

• we have f , e, cons (x, xs) ∈ S ub�PT (t) because of
args(t) ⊆ S ub�PT (t),
• we have (x, xs) ∈ S ub�PT (t) because of

(cons (x, xs)α×list(α))list(α) ∈ S ub�PT (t), pcomp(α ×
list(α)) = {α, list(α)}, list(α) ≥rpo α and list(α) ≥rpo

list(α), and
• we have x, xs ∈ S ub�PT (t) because of (x, xs) ∈ S ub�PT (t).

Since PT is the set of all data types, we have {u | t �sub uσ ∈
T cls

nfun, σ � PT	} = ∅. Hence we have

Acc(t) = S ub�PT (t) = { f , e, cons (x, xs), (x, xs), x, xs}.

Since FV(foldl f ( f (e, x)) xs) = { f , e, x, xs} ⊆ Acc(t), the
second rule

foldl f e (cons (x, xs))→ foldl f ( f (e, x)) xs

also satisfies the desired property. Therefore Rlen is accessi-
ble.

In this section, we slightly improve the result [19] by

paying attention to feature of product types, that is, a sub-
term tσi

i of a product typed term (. . . , tσi
i , . . .)

···×σi×··· is of syn-
tactical subtypes σi of the product type · · · ×σi × · · · . In the
framework in [19], we had to design a peeling order that sat-
isfies list(α) � α, list(α) � list(α), and list(α) � α × list(α).
Indeed, the above example does not require:

list(α) � α × list(α)

Although designing such orders is possible, it is very cum-
bersome. This is a benefit by our improvement.

5. Static Dependency Pair Method

The SDP-method was introduced on simply-typed term
rewriting systems (STRSs) by us [16], [17]. Then we ex-
tended the method on higher-order rewrite systems (HRSs)
by Nipkow [20] in which functional abstraction restricted to
β-normal η-long forms is permitted [18], [22]. Moreover,
to bring the method close to the existing functional pro-
grams, we extend the method onto term rewriting models
for functional programs with product, algebraic data, and
ML-polymorphic types [19]. In this section, we extend the
SDP-method on TRFPs in which functional abstraction with
pattern is permitted. We note that our extension permits the
representation for higher-order primitive recursion in Sect. 1
although it could not be represented in [19].

Firstly, we introduce the notion of static dependency
pairs, which is the most basic notion in the static depen-
dency pair method. In the following, we assume that there
exist strongly computable predicate S C and accessible func-
tion Acc.

Definition 5.1 For each f ∈ D, we provide a new function
symbol f �, called the marked-symbol of f . For each t ≡ a tn
with a ∈ D, we define the marked term t� by a� tn. We
assume that the marking does not change the type informa-
tion, that is, t and t� have the same type. For tσ, we may
write t� : σ instead of t�σ in order to avoid any confusion.

A pair 〈 l�, a� rn 〉 is said to be an outer static depen-
dency pair in R if there exists a rule l → a rn ∈ R satisfying
the following conditions:

• a ∈ D
• a rk � Acc(l) for all k (≤ n)

A pair 〈 l�, a� rn 〉 is said to be an inner static dependency
pair in R if it is not an outer static dependency pair and there
exists a rule l→ r ∈ R satisfying the following conditions:

• fn p⇒ a rn ∈ Subbp(r)
• a ∈ D
• a rk � Acc(l) for all k (≤ n)

A static dependency pair in R is an outer or inner static de-
pendency pair. We denote by S DP(R) the set of static de-
pendency pairs in R. We may denote a static dependency
pair 〈 l�, r� 〉 by l� → r�.

Example 5.2 Consider the TRFP Rack displayed in Sect. 1.
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Fig. 1 static dependency graph in Rack

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

prec 0 z f → z
prec (suc x) z f → f x (prec x z f )
iter f x→ prec x ( f (suc 0)) (fn x′ ⇒ fn z⇒ f z)
ack x→ prec x suc (fn x′ ⇒ fn f ⇒ iter f )

Then the set S DP(Rack) of static dependency pairs consists
of the following four pairs:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

prec� (suc x) z f → prec� x z f
iter� f x→ prec� x ( f (suc 0)) (fn x′ ⇒ fn z⇒ f z)
ack� x→ prec� x suc (fn x′ ⇒ fn f ⇒ iter f )
ack� x→ iter� f

We note that the second and third pairs are outer static de-
pendency pairs, and the first and fourth pairs are inner static
dependency pairs.

Definition 5.3 For any outer static dependency pair u� →
v�, we define the set Act(u� → v�) of actual outer static
dependency pairs as: s� → t� ∈ Act(u� : σ → v� : σ)
iff s�, t� ∈ T cls, and there is a type substitution ξ such that
s� ≡ u�ξ zn, t� ≡ v�ξ zn, where the canonical form of ξ(σ) is
τn → τ and each zτi

i is a fresh variable.
For any inner static dependency pair u� → v�, we define

the set Act(u� → v�) of actual inner static dependency pairs
as: s� → t� ∈ Act(u� : σ′ → v� : σ) iff s�, t� ∈ T cls, and there
is a type substitution ξ such that s� ≡ u�ξ z′n, t� ≡ v�ξ zm,
where the canonical forms of ξ(σ′) and ξ(σ) are τ′n → τ′
and τm → τ, respectively, and each z′i : τ′i and zi : τi are
fresh variables.

An actual static dependency pair in R is an ac-
tual outer/inner static dependency pair. We denote by
Act(S DP(R)) the set of actual static dependency pairs in R.

Definition 5.4 A sequence u�1 → v�1, u
�
2 → v�2, . . . of static

dependency pairs in R is said to be a static dependency chain
in R if there exist s�1 → t�1 ∈ Act(u�1 → v�1), s�2 → t�2 ∈
Act(u�2 → v�2), . . ., and term substitutions θ1, θ2, . . . such that

for any i, t�i θi
∗−−→

R,fn
s�i+1θi+1, and siθi, tiθi ∈ T args

S C ∩ T¬S C

We give the fundamental theorem of the SDP-method.
Its proof is mentioned later.

Theorem 5.5 Let R be an ATRFP. If there exists no infinite
static dependency chain then R is terminating.

Each static dependency pair expresses nothing but the

local dependency of functions based on dependency rela-
tionships displayed in rules. To analyze the global depen-
dency of functions, in other words, to analyze the static
recursive structure, we introduce notions of a static depen-
dency graph and a static recursion component.

Definition 5.6 The static dependency graph in R is a di-
rected graph, in which nodes are S DP(R) and there exists
an arc from u� → v� to u′� → v′� if u� → v�, u′� → v′� is a
static dependency chain.

A static recursion component in R is a set of nodes ei-
ther in a finite strongly connected subgraph, or in an infinite
path that include infinitely many kind of static dependency
pairs.

Using S RC(R) we denote the set of static recursion
components in R.

Example 5.7 The static dependency graph of the TRFP
Rack is shown in Fig. 1. The static dependency graph in Rack

has only the static recursion component:

{prec� (suc x) z f → prec� x z f }

Similar to other dependency pair methods, the static
dependency pair method proves the termination by proving
the non-loopingness of each static recursion component.

Definition 5.8 A static recursion component C in a TRFP
R is said to be non-looping if there exists no infinite static
dependency chain such that only pairs in C occur, and either
C is infinite or every u� → v� ∈ C occurs infinitely many
times.

As a corollary of Theorem 5.5, we obtain the following:

Corollary 5.9 Let R be an ATRFP. If any static recursion
components in R is non-looping then R is terminating.

We will discuss in the next section how to show the
non-loopingness.

At the front in Sect. 1, we stated that the principle of
the SDP-method is that if any recursion is suitably defined,
then it is terminating. This corollary is a formulation of this
principle.

We also obtain the following corollary of Theorem 5.5
by considering the case of R = ∅.
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Corollary 5.10 If C is accessible then λ-calculi with pattern
is terminating.

Here λ-calculi with pattern denotes the rewrite relation
−→
fn

. We note that it may not be terminating in case that C is
not accessible. In fact, the rule foo (bar f ) → f (bar f ) dis-
cussed in Sect. 1 is not terminating. By using functional ab-
straction with pattern, this function “foo” can be represented
as the term “fn bar f ⇒ f (bar f )”. They indicate that the
empty TRFP ∅ may be non-terminating, and so is λ-calculi
with pattern. Note that the SDP-method cannot apply to this
example, since the constructor “bar” is not accessible.

Soundness Proof

In the remainder of this section, we show the soundness of
the SDP-method on ATRFPs, that is, we give a proof of The-
orem 5.5. With the introduction of functional abstraction
with pattern, it is necessary to wholly rebuild the soundness
proof in [19]. For strong computability and accessibility,
it will refer only to the abstract framework (Definition 4.1
and 4.2). Through the section, we assume that any TRFP is
accessible and any term is of closed types.

Firstly we present basic properties of strong com-
putability. Here, we define hargs(t) = {rm} and targs(t) =
{un} if t ≡ (fn p1 ⇒ r1 | · · · | pm ⇒ rm) un; otherwise
hargs(t) = ∅ and targs(t) = args(t).

Lemma 5.11

(1) If t ∈ T¬S C , targs(t) ⊆ TS C and hargs(t) ⊆ TS N then
there exist u ∈ TS C and v such that t u ∗−−→

R,fn

�ε−−→
R,fn
ε v ∈

Tnfun ∩ T¬S C .
(2) If t ∈ TS C then (t) ∈ TS C and a t ∈ TS C for any a ∈
C ∪V.

(3) For any pattern p, if pθ ∈ TS C then xθ ∈ TS C for all
x ∈ FV(p).

(4) If fn p⇒ r ∈ TS C then r ∈ TS C .
(5) If r ∈ TS C and FV(p)∩FV(r) = ∅ then fn p⇒ r ∈ TS C

(6) fn pm ⇒ x ∈ TS C for any x ∈ V.

Proof.

(1) From (SC3), there exists u ∈ TS C such that t u ∈ Tnfun∩
T¬S C . Then the existence of a desired sequence follows
from (SC4), (SC1) and (SC5).

(2) Assume that a t ∈ T¬S C for some a ∈ C ∪ V. From
t ∈ TS C and (1), there exist a sequence a t u ∗−−→

R,fn

�ε

a t′ u′ −−→
R,fn
ε v. Since ∀l → r ∈ R, root(l) ∈ D, we have

a ∈ D. It is a contradiction. As similar, we can also
prove (t) ∈ TS C .

(3) It is easily proved by induction on pattern p with the
accessibility of C.

(6’) The assumption x � TS C derives a contradiction with
(1). Hence the claim (6) holds for m = 0.

(4) Since (fn p ⇒ r) p −→
fn

r, thanks to (SC2) and (SC4),
it suffices to show that any pattern p is strongly com-
putable, which is easily proved by induction on p by
using (6’) and (2).

(5) Assume that fn p ⇒ r � TS C . From (SC1), (1) and
FV(p) ∩ FV(r) = ∅, there exist u, v ∈ TS C such that
(fn p ⇒ r) u v ∗−−→

R,fn
(fn p ⇒ r′) pθ v′ −→

fn
r′ v′ � TS C .

Then we have r v ∗−−→
R,fn

r′ v′. From (SC4), we have
r v � TS C . On the other hand, r v ∈ TS C follows from
(SC2). This is a contradiction.

(6) We proceed by induction on m. The case m = 0 has
already shown in (6’). Suppose that (fn pm ⇒ x) ≡
(fn p⇒ fn q⇒ x).
Assume that fn p ⇒ fn q ⇒ x ∈ T¬S C . From fn q ⇒
x ∈ TS N and (1), there exist u ∈ TS C such that (fn p⇒
fn q ⇒ x) u ∗−−→

R,fn
(fn p ⇒ fn q ⇒ x) pθ w −→

fn
(fn q ⇒

xθ) w � TS C . In case of xθ ≡ x, we have fn q ⇒ xθ ≡
fn q⇒ x ∈ TS C from the induction hypothesis. In case
of xθ � x, we have xθ ∈ TS C by (SC4) and (3), and
hence fn q ⇒ xθ ∈ TS C from the variable convention
and (5). In both cases, (fn q ⇒ xθ) w ∈ TS C follows
from (SC4) and (SC2). This is a contradiction. �

For the soundness of the SDP-method, we require the
accessibility of C. The property of Lemma 5.11 (3) is the
essence of such a requirement.

Next, we show the property that fn p⇒ t un is strongly
computable whenever fn p ⇒ t and each fn p ⇒ ui are
strongly computable (cf. Lemma 5.12 with the empty substi-
tution). We define a single head binding context as a context
generated by the grammar: H ::= � | (fn p⇒ H) t.

Lemma 5.12 For any strongly computable substitution θ,
(i.e. ∀x ∈ V. xθ ∈ TS C) such that (fn pm ⇒ tαn→β)θ ∈ TS C ,
and (fn pm ⇒ uαi

i )θ ∈ TS C (i = 1, . . . , n), we have (fn pm ⇒
t un)θ ∈ TS C .

Proof. We proceed by induction on m. The case m = 0
follows from (SC2). In case of m > 0, we suppose that
(fn pm ⇒ t un)θ ≡ (fn p ⇒ fn q ⇒ t un)θ ≡ (fn p ⇒ fn q ⇒
tθ unθ). Assume that (fn p ⇒ fn q ⇒ tθ unθ) is not strongly
computable.

From Lemma 5.11 (4), fn q ⇒ tθ and each fn q ⇒ uiθ
are strongly computable. From the induction hypothesis,
fn q ⇒ tθ unθ is strongly computable. From (SC1) and
Lemma 5.11 (1), there exist v,w ∈ TS C such that (fn p ⇒
fn q ⇒ tθ unθ) v w ∗−−→

R,fn
(fn p ⇒ t′) pθp w′ −→

fn
t′θp w′ ∈

T¬S C . From (SC4) and Lemma 5.11 (3), θp is strongly com-
putable. Thanks to the variable convention, we can define
the substitution θ′ = θ ∪ θp, which is strongly computable.
Then we have (fn q⇒ tθ unθ)θp w ∗−−→

R,fn
t′θp w′. From (SC4),

we have (fn q ⇒ tθ unθ)θp w ≡ (fn q ⇒ tθ′ unθ′) w ∈ T¬S C .
From (SC2), we have fn q⇒ tθ′ unθ′ ∈ T¬S C .

Since (fn p ⇒ fn q ⇒ tθ) and v are strongly com-
putable, strong computability of (fn p ⇒ fn q ⇒ tθ) v fol-
lows from (SC2), and hence strong computability of fn q⇒
tθ′ follows from (SC4). As similarity, each fn q ⇒ uiθ

′ is
strongly computable. Hence we have fn q⇒ tθ′ unθ′ ∈ TS C

from the induction hypothesis. It is a contradiction. �

We have shown the basic properties for strong com-
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putability. We now prove the soundness of the static
dependency pair method. First we will characterize mini-
mal counterexamples for termination (cf. Lemma 5.18).

Lemma 5.13 If t′θ ∈ TS C for any t′ ∈ hdec(t) then tθ ∈
TS C .

Proof. We proceed by induction on |t|. Since the case t ∈
hdec(t) is trivial, it suffices to show the case that t has the
form of H′[(fn p1 ⇒ r1 | · · · | pm ⇒ rm) u] with m > 1,
where H′[ ] is a single head binding context. Suppose that
H[ ] ≡ H′[ ]θ.

Assume that tθ � TS C . From (SC3), there exist
v ∈ TS C such that tθ v ∈ Tnfun ∩ T¬S C . Since hdec(t) =⋃m

i=1 hdec(H′[(fn pi ⇒ ri) u]), we have ∀i,H[(fn pi ⇒
riθ) uθ] ∈ TS C from the induction hypothesis. From (SC2)
and (SC1), each H[(fn pi ⇒ riθ) uθ] v is terminating. Hence
it is obvious that tθ v ≡ H[(fn p1 ⇒ r1θ | · · · | pm ⇒
rmθ) uθ] v is also terminating. From (SC4) and (SC5), there
exists a sequence tθ v ∗−−→

R,fn
w � TS C with root(w) � fn. Since

H[ ] is a single head binding context, there exists i such that
H[(fn pi ⇒ riθ) uθ] v ∗−−→

R,fn
w � TS C . It is a contradiction

with (SC4). �

Lemma 5.14 Let fn pm ⇒ ti ∈ TS C (i = 1, . . . , n). Then
fn pm ⇒ (t1, . . . , tn) ∈ TS C and fn pm ⇒ a tn ∈ TS C for any
a ∈ C ∪V.

Proof. First we show that fn pm ⇒ (tn) ∈ TS C by induction
on m. The case of m = 0 follows from Lemma 5.11 (2).
Suppose that fn pm ⇒ (tn) ≡ fn p ⇒ fn q ⇒ (tn). From the
induction hypothesis, we have fn q ⇒ (tn) ∈ TS C . Assume
that fn p ⇒ fn q ⇒ (tn) ∈ T¬S C . Then, from (SC1) and
Lemma 5.11 (1), there exist u,w ∈ TS C such that (fn p ⇒
fn q⇒ (tn)) u w ∗−−→

R,fn
(fn p⇒ fn q⇒ (t′n)) pθ w′ −→

fn
(fn q⇒

(t′nθ)) w′ ∈ T¬S C . From (SC4) and (SC2), we have fn q ⇒
(t′nθ) ∈ T¬S C . Since (fn p ⇒ fn q ⇒ ti) u ∗−−→

R,fn
fn q ⇒ t′iθ,

it follows from (SC2) and (SC4) that fn q ⇒ t′iθ ∈ TS C

for each i. Hence, from the induction hypothesis, we have
fn q⇒ (t′nθ) ∈ TS C . It is a contradiction.

Next we show that fn pm ⇒ a tn ∈ TS C . The case a ∈ C
can be proved as similar to the above case. In case a ∈ V,
we have fn pm ⇒ a tn ∈ TS C from Lemma 5.11 (6) and
Lemma 5.12 with the empty substitution. �

Lemma 5.15 Let t be a single head binding term. If
hd(t)θ ∈ TS C and t′θ ⊆ TS C for any t′ ∈ args(t) then
tθ ∈ TS C .

Proof. We proceed by induction on |t|.
In case that t has the form of fn p ⇒ t′ with root(t′) �

fn, the desired property follows from t ≡ hd(t).
In case that t has the form of s un with n > 0. Since

hd(s) ≡ hd(t) and args(s) ⊆ args(t), we have sθ ∈ TS C

from the induction hypothesis. Hence tθ ≡ sθ unθ ∈ TS C

follows from (SC2).
In the remaining case, t has the form of fn p⇒ (fn q⇒

r) un with n > 0. Then we have hd(t) ≡ hd(fn p⇒ fn q⇒ r)
and args(t) = args(fn p ⇒ fn q ⇒ r) ∪ {fn p ⇒ ui | i =
1, . . . , n}. From the induction hypothesis, we have fn p ⇒
fn q ⇒ r ∈ TS C . Hence, by considering Lemma 5.12 with
the empty substitution, we obtain fn p ⇒ (fn q ⇒ r) un ∈
TS C . �

Lemma 5.16 Suppose that for any fn p ⇒ a un ∈ Subbp(t)
with a ∈ FV(t), there exists k ≤ n such that fn p⇒ (a uk)θ ∈
TS C . If tθ ∈ T¬S C then there exist fn p ⇒ d vm ∈ Subbp(t)
such that d ∈ D, fn p ⇒ viθ ∈ TS C for any i, and fn p ⇒
d vkθ ∈ T¬S C for any k ≤ m.

Proof. We proceed by induction on |t|.
In case of |hdec(t)| > 1, we have |s| < |t| for any s ∈

hdec(t). From Lemma 5.13, there exists s ∈ hdec(t) such
that sθ ∈ T¬S C . Hence the desired property follows from the
induction hypothesis.

Suppose that hdec(t) = {t}. From Lemma 5.15, there
exists u ∈ {hd(t)} ∪ args(t) such that uθ ∈ T¬S C . In case
of u ∈ args(t), the desired property follows from the induc-
tion hypothesis because of |u| < |t|. In case of u ≡ hd(t)
and |hd(t)| < |t|, the desired property follows from the in-
duction hypothesis as similar. Hence it suffices to show the
case hd(t) ≡ t under the assumption tθ ∈ T args

S C . Thanks to
Lemma 5.14 and tθ ∈ T args

S C , we can denote t ≡ fn p⇒ a vm

with aθ ∈ D. Then a ∈ D ∪ FV(t) and each fn p ⇒ viθ is
strongly computable.

Assume that there exists k ≤ n such that fn p ⇒
(a vk)θ ∈ TS C . From Lemma 5.12, we have tθ ∈ TS C . It
is a contradiction. Moreover a ∈ D follows from the as-
sumption for free variables. �

Lemma 5.17 If fn pm ⇒ d v ∈ T args
S C ∩ T¬S C with d ∈ D

then there exist w ∈ TS C and a strongly computable substi-
tution θ such that d vθ w ∈ Tnfun ∩ T args

S C ∩ T¬S C .

Proof. We proceed by induction on m. The case m = 0 di-
rectly follows from (SC3) with the empty substitution. Sup-
pose that (fn pm ⇒ d v) ≡ (fn p⇒ fn q⇒ d v).

In case of fn q ⇒ d v ∈ T¬S C , the desired property
follows from the induction hypothesis, because fn q⇒ d v ∈
T args

S C follows from Lemma 5.11 (4).
Suppose that fn q ⇒ d v ∈ TS C . From (SC1) and

Lemma 5.11 (1), there exist u,w ∈ TS C such that (fn p ⇒
fn q ⇒ d v) u w ∗−−→

R,fn
(fn p ⇒ v′) pθ′ w′ −→

fn
v′θ′ w′ ∈ T¬S C .

Then (fn q ⇒ d vθ′) w ∗−−→
R,fn

v′θ′ w′. From (SC4) and

(SC2), we have fn q ⇒ d vθ′ ∈ T¬S C . From fn p ⇒ q ⇒
d v ∈ T args

S C , we have fn p ⇒ q ⇒ vi ∈ TS C for each i.
From (SC2) and (SC4), we have (fn p ⇒ q ⇒ vi) u ∗−−→

R,fn

fn q ⇒ viθ
′ ∈ TS C . Hence fn q ⇒ d vθ′ ∈ T args

S C ∩ T¬S C .
From the induction hypothesis, there exist a strongly com-
putable substitution θ′′ and w′′ ∈ TS C such that d vθ′θ′′ w′′ ∈
Tnfun ∩ T args

S C ∩ T¬S C . Here, strong computability of θ′ fol-
lows from Lemma 5.11 (3). Thanks to the variable con-
vention, the substitution θ = θ′ ∪ θ′′ satisfies the desired
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property. �

Lemma 5.18 If ATRFP R is not terminating then {d t ∈
T cls

nfun ∩ T
args
S C ∩ T¬S C | d ∈ D} � ∅.

Proof. From Proposition 2.2, we have T cls ∩ T¬S N � ∅.
From (SC1), we have T cls ∩ T¬S C � ∅. Let t be a minimal
size term in T cls ∩ T¬S C .

From Lemma 5.11 (6) and the minimality, the term t
with the empty substitution satisfy the condition of Lemma
5.16. Hence there exist d ∈ D and fn p ⇒ d v ∈ Subbp(t)
such that fn p⇒ d v ∈ T args

S C ∩ T¬S C . Therefore the desired
property follows from Lemma 5.17. �

This lemma characterizes minimal counterexamples
for termination. Next, we bridge such counterexamples.
Then an infinite static dependency chain emerges.

Lemma 5.19 Let R be an ATRFP. For any d ∈ D and d t ∈
T cls

nfun ∩ T
args
S C ∩ T¬S C , there exist u� → v� ∈ Act(S DP(R))

and term substitution θ such that d� t ∗−−→
R,fn

u�θ and uθ, vθ ∈
T cls

nfun ∩ T
args
S C ∩ T¬S C .

Proof. From (SC1) and Lemma 5.11 (1), there exists a se-
quence: d t �ε−−→

R,fn
∗ d t′ ε−→

R
t′′ ∈ T¬S C . Hence there exist

l → r ∈ Act(R) and θ′ such that d t′ ≡ lθ′ and t′′ ≡ rθ′.
From (SC4), we have lθ′ ∈ T args

S C . Since R is accessible,
it follows from the axiom of accessible function, the vari-
able convention and Lemma 5.11 (5) that r and θ′ satisfy
the condition of Lemma 5.16. Hence there exist g ∈ D and
fn p ⇒ g vm ∈ Subbp(r) such that fn p ⇒ viθ

′ ∈ TS C

for any i, and fn p ⇒ g vkθ′ ∈ T¬S C for any k ≤ m.
From Lemma 5.17, there exist θ′′ and wn ∈ TS C such that
g vmθ′θ′′ wn ∈ Tnfun∩T args

S C ∩T¬S C . We define θ as θ(zi) = wi

for fresh variables zn; otherwise θ(x) = θ′′(θ′(x)). From
Lemma 5.11 (4), we have viθ ≡ viθ

′ ∈ TS C for any i. Then
we have l� → g� vm zn ∈ Act(S DP(R)) and (g vm zn)θ ∈
T cls

nfun ∩T
args
S C ∩T¬S C . Since lθ ≡ lθ′ ∈ T cls

nfun ∩T
args
S C ∩T¬S C ,

the desired property holds. �

All preparations are complete so that we can now
show the fundamental theorem of the static dependency pair
method.

Proof of Theorem 5.5. Assume that R is not terminating.
From Lemma 5.18, there exists t ∈ T cls

nfun ∩ T
args
S C ∩ T¬S C .

By applying Lemma 5.19 repeatedly, we obtain an infinite
static dependency chain. This is a contradiction. �

6. Proving Non-Loopingness

When proving termination by dependency pair methods, not
only our static dependency pair methods, non-loopingness†

†In the research area of term rewriting systems, there is a dif-
ferent use for the term “non-loopingness”: there is no reduction
sequence such as t +−→ C[tθ].

should be shown for each recursion component (cf. Corol-
lary 5.9). To prove the non-loopingness, the notions of
subterm criterion and reduction pair have been proposed.
The subterm criterion was introduced on TRSs [10], and
slightly improved by extending the subterms permitted by
the criterion on simply-typed TRSs (STRSs) [16], and ex-
tended on higher-order rewrite systems (HRSs) [18]. Re-
duction pairs [15] are an abstraction of the notion of the
weak-reduction orders [1]. In [19], we extended both no-
tions to TRFPs without functional abstraction. This result
also works well on TRFPs. In this section, we introduce
these notions.

Intuitively, a static recursion component whose non-
loopingness is proved by the subterm criterion guarantees
that the function is explicitly recursively programmed on
data types, while a component whose non-loopingness is
proved by a reduction pair guarantees that the function is
appropriately recursively programmed by using a decreas-
ing function.

Definition 6.1 A pair (�, >) of relations on terms is a re-
duction pair if � and > satisfy the following properties:

• > is closed under term substitutions,
• � is closed under contexts, type substitutions and term

substitutions, and
• � · > · � is well-founded.

Definition 6.2 A set C of static dependency pairs satisfies
the subterm criterion if there exists a function π from D to
non-empty sequences of positive integers such that:

(i) u|π(root(u)) �sub v|π(root(v)) for some u� → v� ∈ C, and
(ii) the following conditions hold for any u� → v� ∈ C:

• u|π(root(u)) �sub v|π(root(v)),
• (u)p � V ∪ {fn} for all p ≺ π(root(u)), and
• q � ε⇒ (v)q ∈ C ∪ {tp} for all q ≺ π(root(v)).

Theorem 6.3 Let R be a finite ATRFP. Then, C ∈ S RC(R)
is non-looping if C satisfies one of the following properties:

• There is a reduction pair (�, >) such that R ⊆ �,
Act(C) ⊆ � ∪ >, and Act(u� → v�) ⊆ > for some
u� → v� ∈ C.
• C satisfies the subterm criterion.

Proof. Based on Theorem 5.5, we can prove the claim as
similar to Theorem 5.3 in [19].

Example 6.4 As finale of the running example, we will
prove the termination of ATRFP Rack. We take π(prec) = 1.
Then the only static recursion component satisfies the sub-
term criterion in the underlined position below.

{prec� (suc x) z f → prec� x z f }

Hence from Theorem 6.3, the static recursion component is
non-looping. Therefore the termination of Rack follows from
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Corollary 5.9.

Example 6.5 We will prove the termination of ATRFP Rlen

given in Example 2.1. Then the static dependency pairs
S DP(Rlen) consist of the following two pairs:
{

foldl� f e (cons (x, xs))→ foldl� f ( f (e, x)) xs
len� xs→ foldl� (fn (x, y)⇒ suc x) 0 xs

We take π(foldl) = 3. Then the only static recursion compo-
nent satisfies the subterm criterion in the underlined position
below.

{foldl� f e (cons (x, xs))→ foldl� f ( f (e, x)) xs}

Hence from Theorem 6.3, the static recursion component is
non-looping. Therefore the termination of Rlen follows from
Corollary 5.9.

Example 6.6 We will prove the termination of TRFP R,
which represents a typical higher-order function “filter” and
its application.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

filter p nil→ nil
filter p (cons (x, xs))→

if p x then cons (x,filter p xs) else filter p xs
plist xs→ filter (fn 0⇒ false | suc x⇒ true) xs

Here, the expression

if e1 then e2 else e3

is a syntax sugar for the following term:

(fn true⇒ e2 | false⇒ e3) e1

Similar to Example 4.9, we can show that TRFP R is ac-
cessible. Then the static dependency pairs consist of the
following two pairs:
{

filter� p (cons (x, xs))→ filter� p xs
plist� xs→ filter� (fn 0⇒ false | suc x⇒ true) xs

We take π(filter) = 2. Then the only static recursion compo-
nent satisfies the subterm criterion in the underlined position
below.

{filter� p (cons (x, xs))→ filter� p xs}

Hence from Theorem 6.3, the static recursion component is
non-looping. Therefore the termination follows from Corol-
lary 5.9.

In Sect. 1, we said that the polymorphic-typed Combi-
natory Logic, in which functional abstraction with pattern
is permitted, is an example that shows the strong efficacy
of the SDP-method. Finally together with other well-known
combinators [2], we give an elegant termination proof by the
SDP-method.

Example 6.7 Let R be the following TRFP:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(S f α→β→γ gα→β xα)γ → f x (g x)
(K xα yβ)α → x

(I xα)α → x
(B xα→β yγ→α zγ)β → x (y z)

(B′ xα→β yβ→γ zα)γ → y (x z)
(C xα→β→γ yβ zα)γ → x z y

(J xα→β→β yα zβ wα)β → x y (x w z)
(W xα→α→β yα)β → x y y

Since any variable occurs in an argument position on the
left-hand sides, TRFP R is trivially accessible. Since
S DP(R) = ∅ and hence S RC(R) = ∅, the termination of
R follows from Corollary 5.9.

7. Concluding Remarks

In this paper, we have extended the SDP-method onto
TRFPs, in which functional abstraction with pattern is per-
mitted. Since the syntax of TRFP is very close to SML-like
functional programs, from our result we expect the effective
applicability to verification for existing functional programs.

On the other hand, in order that the SDP-method gives
full play to its ability, it is indispensable to design reduc-
tion orders, the argument filtering method, and the notion of
usable rules.

An effective and practicable reduction order, namely
higher-order recursive path orderings, was introduced [4],
[5], [11]. Since these orderings do not handle functional
abstraction with pattern, we will extend these orderings to
TRFPs in the future.

The argument filtering method generates reduction
pairs from reduction orders. The method was introduced
for TRSs [1], and extended to STRSs [14], [17], and to
HRSs [22]. Since these results do not handle functional ab-
straction with pattern and polymorphic type systems, we
will extend the method to TRFPs in the future.

The notion of usable rules optimizes the constraints
generated by the dependency pair methods. This analysis
was first conducted for TRSs [7], [10], and has been ex-
tended to STRSs [17], [21], and to HRSs [22]. Since these
results do not handle functional abstraction with pattern and
polymorphic type systems, we will extend the notion to
TRFPs in the future.
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