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Computational Complexity and Polynomial Time Procedure of
Response Property Problem in Workflow Nets
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SUMMARY Response property is a kind of liveness property. Re-
sponse property problem is defined as follows: Given two activities α and
β, whenever α is executed, is β always executed after that? In this paper, we
tackled the problem in terms of Workflow Petri nets (WF-nets for short).
Our results are (i) the response property problem for acyclic WF-nets is de-
cidable, (ii) the problem is intractable for acyclic asymmetric choice (AC)
WF-nets, and (iii) the problem for acyclic bridge-less well-structured WF-
nets is solvable in polynomial time. We illustrated the usefulness of the
procedure with an application example.
key words: the response property, Petri net, process tree, computational
complexity, polynomial time algorithm

1. Introduction

Response property is a kind of liveness property. The re-
sponse property problem is defined as follows: Given two
activities α and β, whenever α is executed, is β always ex-
ecuted after that? Response property analysis is important
to verify the correctness of a workflow process. As a simple
example, Fig. 1 shows a Petri net [1] representing a work-
flow for an online ordering process. There are two cases
in this workflow. In case 1, if the order is less than $2000
(Price less than $2000), then the ID of the buyer will be
checked by the system. Next, the buyer can proceed to order
(Make Order). Finally, the system will accept the order (In-
stant Acceptance). In case 2, if the order is more than $2000
(Price more than $2000), then the buyer must proceed di-

Fig. 1 A workflow N1 of an online ordering service.
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rectly to order the item (Make Order) and the manager will
manually accept the order (Manager Acceptance). In this
case, whenever Price more than $2000 is executed, is Man-
ager Acceptance always executed? The answer is no. This
is because even if the price is above $2000 (Price more than
$2000), then the system can accept the order (Instant Accep-
tance) instead of the manager. In this situation, the business
rule is violated. Hence, it is important to distinguish the ex-
ecution of each task to verify whether the workflow follows
the business rule or not.

In Ref. [2], Hichami et al. proposed a method to verify
response property based on Petri nets. The feature of the
method is to introduce abstraction technique in order to re-
duce the computation time of model checking. However, the
method lacks formality and did not take account of two or
more firing of transition.

In this paper, we take an analytical approach to the re-
sponse property problem. We first formalize the response
property problem and then reveal the computational com-
plexity of the problem. Then, we propose a polynomial time
procedure to solve the problem with a representational bias
of Petri net called as process tree. This paper is organized as
follows: After the introduction in Sect. 1, Sect. 2 gives the
formal definition and properties of Petri nets. In Sect. 3, we
give the formal definition of the response property problem
in terms of Petri nets. In Sect. 4, we reveal its decidability
and computational complexity. Then, in Sect. 5, we give a
polynomial time procedure to solve the problem and show
an application example of our approach in Sect. 6. Finally,
we give the conclusion and the future work.

2. Preliminaries

(1) Petri nets and workflow nets

A Petri net is a three tuple N=(P,T, A), where P, T , and A
(⊆(P×T )∪(T×P)) are finite sets of places, transitions, and
arcs, respectively. Let x be a node of N.

N•x and x
N• respec-

tively denote {y|(y, x)∈A} and {y|(x, y)∈A}. A marking (or a
state) is a mapping M: P→{0, 1, 2, · · · }. We represent M as a
bag over P: M=[pM(p)|p∈P,M(p)>0]. A transition t is said
to be firable in M if M≥N•t. Firing t in M results in a new
marking M′ (=M∪t

N• − N•t). This is denoted by M[N, t〉M′.
A marking Mn is said to be reachable from a marking M0

if there exists a transition firing sequence σ=t1t2 · · · tn such
that M0[N, t1〉M1[N, t2〉M2 · · · [N, tn〉Mn. M0 denotes the ini-
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tial marking in N. The set of all possible transition firing
sequences from M0 in N is denoted by L(N,M0). The set
of all markings reachable from M0 in (N,M0) is denoted
by R(N,M0). The tree representation of the markings in
R(N,M0) is called the reachability tree [3].

N is said to be a workflow net (WF-net for short) [4]
if (i) N has a single source place pI and a single sink place
pO and (ii) every node is on a path from pI to pO. Each
transition represents an action. For any WF-net, M0 is given
as [pI]. We make N strongly connected by connecting pO

to pI via an additional transition t∗. The resulting Petri
net is called the short-circuited net of N, and is denoted
by N (=(P,T∪{t∗}, A∪{(pO, t∗), (t∗, pI)})). There are four
important subclasses of WF-nets used in this paper: well-
structured (WS for short), extended free choice (EFC for
short), asymmetric choice (AC for short), and process tree
based (PTB for short). N is said to be WS if there are nei-
ther disjoint paths from a place to a transition nor disjoint
paths from a transition to a place in N. N is said to be EFC
if ∀p1, p2∈P : p1

N•∩p2
N•�∅⇒p1

N•=p2
N•. N is said to be AC if

∀p1, p2∈P : p1
N•∩p2

N•�∅⇒p1
N•⊆p2

N• or p2
N•⊆p1

N•. A WF-net
is a marked graph (MG for short) iff ∀p ∈ P, |N•p|=|pN•|=1.

Soundness is a criterion of correctness for WF-nets.
A WF-net N is said to be sound iff (i) ∀M∈R(N, [pI]):
∃M′∈R(N,M):M′≥[pO]; (ii) ∀M∈R(N, [pI]):M≥[pO]⇒M=
[pO] and (iii) There is no dead transition in (N, [pI]). The
soundness of EFC WF-nets or WS WF-nets can be solved
in polynomial time [4].

(2) Process Tree and Process Tree Based WF-net

A process tree is a tree representation of a process [5]. A
process is represented by an action which is defined by an
atomic action [6]. Each leaf node and each internal node
respectively represents an action and an operator in the pro-
cess.

Definition 1: [7] The set Π of process trees π is as follows:

(i) If α is an action, then α ∈ Π.
(ii) If ⊕ is an operator and α1, α2, · · ·, αn are actions, then
⊕(α1, α2, · · · , αn) ∈ Π.

(iii) If ⊕ is an operator and π1, π2, · · ·, πn ∈ Π, then
⊕(π1, π2, · · · , πn) ∈ Π. �

We use three operators standardized by the Workflow
Management Coalition (WfMC for short) [4], [8]: sequence
(→), exclusive-choice (×), and parallel (∧). Each operator
can be translated to a part of a WF-net (See Fig. 2).

Next, we define a WF-net that can be converted into
process tree called as Process Tree-based WF-net (PTB WF-
net for short) [7], [9]. In PTB WF-net, each transition repre-
sents only unique action.

Definition 2 (PTB WF-net [7]): For any process tree π, let
N be the WF-net itself and Ni (i=1, 2, · · · , n) be the subnet
in N.

(i) If π is an action, a WF-net N which consists of a tran-
sition representing the action and its input and output

Fig. 2 Illustration of PTB WF-net and its equivalent process tree.

places is PTB.
(ii) If π is ⊕(π1, π2, · · · , πn), then let N1,N2, · · · ,Nn be re-

spectively PTB WF-nets representing sub-process trees
π1, π2, · · ·, πn.

a. If ⊕ is sequence, then a WF-net constructed by
concatenating N1,N2, · · · , Nn which connects
the sink place of Ni with the source place of
Ni+1(1≤i<n) is PTB.

b. If ⊕ is exclusive choice, then a WF-net con-
structed by bundling PTB WF-nets N1,N2, · · · ,Nn

which forms a selection of concurrent paths be-
tween their source places and sink places is PTB.

c. If ⊕ is parallel, then a WF-net constructed by join-
ing respectively all source places with a transition
tI , and sink places with a transition tO of PTB WF-
net N1,N2, · · · ,Nn is PTB. �

Noted that a process tree of PTB WF-net is an ordered
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tree. Soundness and well-structuredness are necessary con-
dition to represent process tree [9].

3. Response Property

Response property is a kind of liveness property that given
two transitions t and u, if t is fired, u has to be eventually
fired after that. We restricted the analysis of response prop-
erty to acyclic WF-net. This restriction is reasonable be-
cause acyclic WF-nets are applicable to analyze most actual
workflows.

Let L(N, [pI]) (⊆ L(N, [pI])) be the set of any firing
sequence that transforms [pI] to any dead marking. Note
that in any acyclic WF-net N=(P,T, A), each marking in
R(N, [pI]) eventually reaches a dead marking.

Definition 3 (Response Property): For a transition pair t
and u in an acyclic WF-net N, u is said to respond to t if
∀σ ∈ L(N, [pI]) : ∀i ∈ {1, 2, · · · , |σ|}†: (σ{i}=t ⇒ ∃ j ∈
{(i + 1), (i + 2), . . . , |σ|} : σ{ j}=u). �

Definition 4 (Response Property Problem):
Instance: Acyclic WF-net N, Transitions t and u of N.
Question: Does u respond to t? �

Let us consider two instances of the response property
problem as examples. The first instance is shown in Fig. 1.
In this instance, every transition fires at most once. The sec-
ond instance is shown in Fig. 3. In this instance, some of
transitions fire twice or more. The instance in Fig. 1 has
been considered in Sect. 1. We concretely discuss the rea-
son in this section.

Instance 1:
Instance: Acyclic WF-net (N1, [pI]), transitions t1

3 and t1
6

(See Fig. 1).
Question: Does t1

6 respond to t1
3? �

The answer for Instance 1 is no, because t1
6 does not always

fire for [p1
I ][σ,N1〉[p1

O] because there exist firing sequences
t1
1t1

2t1
4t1

5 or t1
3t1

4t1
5 transforming [p1

I ] to [p1
O]. Existence of

place branching at p1
4 allows the t1

6 to be skipped as t1
5 is

fired. Then t1
6 does not respond to t1

3. This means that Petri
net structure plays an important role to the response property
and the reachability of marking is important to the analysis
of response property as discussed in Sect. 1.

Fig. 3 Instance 2: WF-net N2.

†{i, (i + 1), · · · , j} denotes the set of integers from i to j.

Instance 2:
Instance: Acyclic WF-net (N2, [p2

I ]), transitions t2
3 and t2

6
(See Fig. 3).
Question: Does t2

6 respond to t2
3? �

The answer for Instance 2 is yes. t2
6 fires once

for [p2
I ][σ,N2〉[p2

6, p
2
7] when there are firing sequences

t2
1t2

2t2
3t2

4t2
3t2

5t2
6 or t2

1t2
2t2

3t2
5t2

3t2
4t2

6 in L(N2, [pI]). The value of
i of t2

3 is 5 which is lower than the value of j of t2
6 that is

7 for both firing sequences. Then, transition t2
6 is always

fires after transition t2
3 fires. Concretely, the order of transi-

tion firing plays an important role in deciding the response
property.

As a transition t can fire many times, it is important to
check each firing of transition. However, we can simplify
the checking process with the property below:

Property 1: For a transition pair t and u in an acyclic WF-
net N, u is said to respond to t iff ∀σ ∈ L(N, [pI]) : (t ∈ σ
and let imax denote the last position of t in σ⇒ ∃ j ∈ {(imax+

1), (imax + 2), · · · , |σ|} : σ{ j}=u). �

Proof : Let σ be any firing sequence in L(N, [pI]). The
“only-if” part is obvious. We have only to prove the “if”
part. We divide the proof into two cases where t � σ and
t ∈ σ. In the case of t � σ, the “if” part of the definition
of the response property is obviously true. In the other case
(t ∈ σ), t appears in σmore than once. Let k be any position
of t in σ. k � imax is obvious. t at position k is followed by
the last one. From the assumption (∃ j ∈ {(imax + 1), (imax +

2), · · · , |σ|} : σ{ j}=u), the last t is followed by u. From the
transitive law, we have that t at any position is followed by u.

Q.E.D.

4. Computational Complexity and Intractability

Let us consider the decidability of the response property
problem.

Theorem 1: The response property problem is decidable
for acyclic WF-nets. �

Proof : Let N be any acyclic WF-net. Since N is acyclic,
L(N, [pI]) is obviously finite. To check whether a transi-
tion α responds to another transition β in N, we have only
to check the precedence relation between α and β for each
sequence σ of L(N, [pI]): That is, if σ includes α, then β
must appear at a later position than the last α. Q.E.D.

Let us consider the computational complexity of the re-
sponse property problem for a subclass of acyclic WF-nets,
called acyclic AC WF-nets.

We show that an NP-complete problem, called 3-
conjunctive normal form boolean satisfiability problem (3-
CNF-SAT for short), can be transformed to the response
property problem of acyclic AC WF-nets.

Definition 5 (3-CNF-SAT):
Instance: Expression E of 3-conjunctive normal form that
has n boolean variables and m clauses.
Question: Is there an assignment of variables satisfying
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Fig. 4 The acyclic AC WF-net (NE1 , [p1]) corresponding to a 3-CNF-
SAT expression E1 = (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧
(x1∨x2∨x3) ∧ (x1∨x2∨x3). E1 is satisfiable. β does not respond to α in
(NE, [pI ])

E=true? �

Let us consider an acyclic AC WF-nets shown in Fig. 4.
We need to check does β respond to α? The constructed WF-
net shows that if E=true then marking [p2, p4] is reachable
from [pI]. However, β will not always fire because of the
conflict with γ. In this case, β does not respond to α. We
give the following theorem on the complexity:

Theorem 2: The response property problem is co-NP hard
for acyclic AC WF-nets. �

Proof : We prove the NP-hardness by a reduction
from 3-CNF-SAT. Let E be an expression of 3-CNF-SAT
which has n boolean variables x1, x2, · · · , xn and m clauses
c1, c2, · · · , cm. A literal �i is either a variable xi or its nega-
tion xi. Without loss of generality, it can be assumed that E
has all of xi’s and xi’s (1≤i≤n), and m≥3.

We construct a WF-net NE=(PE,TE, AE) with two tran-
sitions α and β, and show that E is satisfiable iff β does not
respond to α in (NE, [pI]). NE=(PE,TE, AE) is given as fol-
lows.

PE = {pI , p1, p2, p3, p4, pO} ∪⋃n
i=1{qi} ∪⋃m

j=1{c j}
TE = {t1, t2, t3, α, β, γ} ∪⋃n

i=1{xi, xi}
AE = {(pI , t1), (t1, p1), (p1, t2), (t3, p2), (p2, γ), (t1, p3),

(p3, α), (α, p4), (p4, γ), (γ, pO), (p4, β), (β, pO)}
∪⋃n

i=1{(t2, qi), (qi, xi), (qi, xi)}
∪⋃3

k=1
⋃m

j=1{(�k, c j)|�k is the k-th literal of clause c j}
∪⋃m

j=1{(c j, t3)}
NE1 is an AC WF-net because places p2 and p4 share an

output transition γ while p4 has another output transition β;
Places c1, c2, · · · , cm share only one output transition t2, and
the other places share no output transition. NE can be con-
structed in polynomial time, because it consists of (n+m+6)
places, (2n+6) transitions, and (3n+4m+12) arcs.

The proof of “if” part: Let μ denote an assignment of
variables satisfying E=true, and let �1, �2, · · · , �n be the lit-
erals mapped to true by μ. By the construction of NE1 , we
have

[p1] [NE, t1t2〉 [q1, q2, · · · , qn, p3]

[NE, �1�2 · · · �n〉M.

Since μ satisfies E, for each clause c j (1≤ j≤m), there
exists a literal �i (1≤i≤n) in c j. Therefore place c j is
marked by firing �i i.e. M � [c1, c2, · · · , cm, p3]. Let M′ =
M−[c1, c2, · · · , cm, p3].

M = M′ ∪ [c1, c2, · · · , cm, p3]

[NE, t3〉M′ ∪ [p2, p3]

[NE, αγ〉M′ ∪ [pO]

β is dead in (NE,M′ ∪ [pO]). Thus, β does not respond to α.
The proof of “only-if” part: Let μ denote any assign-

ment of variables satisfying E=false. Since μ does not sat-
isfy E, there exists a clause c j (∈{c1, c2, · · · , cm}) mapped to
false by μ. Let � j

1, �
j
2, �

j
3 denote the literals in c j. Since the

corresponding transitions � j
1, �

j
2, �

j
3 do not fire, their com-

mon output place, i.e. place c j, is never marked. c j is an
input place of transition t3, so t3 is dead. We have

[pI] [NE, t1〉 [p1, p3]

[NE, ∗〉 [p3] ∪ M (∀M ∈ R(NE, [p1]))

[NE, α〉 [p4] ∪ M

[NE, ∗〉 [p4] ∪ M′ (∀M′ ∈ R(NE,M))

[NE, β〉 [pO] ∪ M′

Thus β responds to α. Q.E.D.
This means that the original problem is intractable for

acyclic AC WF-nets. For example, let us consider the fol-
lowing boolean expression:

E1 = (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3)

∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3)

E1 is satisfiable by choosing x1=true, x2=true,
x3=true. Figure 4 shows the Petri net NE1 constructed from
E1. β does not respond to α, because

[pI] [NE1 , t1t2〉 [p1, p3]

[NE1 , x1x2x3〉 [c1
2, c2

1, c3
2, c4, c5

3, p3]

[NE1 , t3〉 [c1, c3, c5
2, p2, p3]

[NE1 , α〉 [c1, c3, c5
2, p2, p4]

[NE1 , γ〉 [c1, c3, c5
2, pO].

5. Polynomial-Time Verification of Response Property

In this section, we propose a polynomial time procedure to
decide response property.

5.1 Structural Analysis for Response Property Problem

A transition with two or more output places is called a
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transition-split, and a transition with two or more input
places is called a transition-join. Similarly, a place with two
or more output transitions is called a place-split, and a place
with two or more input transitions is called a place-join [10].

Acyclic bridge-less WS WF-net has balance structure
of transition/place-splits with transition/place-joins. Two
disjoint paths initiated by a transition-split are joined by a
place-join. Two disjoint paths initiated by a place-split are
joined by a transition-join. The structure of a transition-
split with a transition-join is called the transition split-join
and the structure of a place-split with a place-join is called
the place split-join. Acyclic bridge-less WS WF-nets have
nesting structure of transition split-join structure and place
split-join structure [10]. This enables us to check the re-
sponse property not in the node-level but in those split-join
structure-level.

Let us consider two instances of acyclic bridge-less
WS WF-net shown in Fig. 5 to solve the response property
problem. Both instances have one transition split-join struc-
ture and one place split-join structure. In N1, β responds to
α. α appeared in the disjoint path between place-split p1

and place-join p2. β appeared in the disjoint path between
transition-split t3 and transition-join t5. Since β is included
within a transition split-join structure, β always fire after α.
In N2, β does not respond to α. α appeared in the disjoint
path between transition-split t1 and transition-join t3. β ap-
peared in the disjoint path between place-split p5 and place-
join p6. Place-join p2 allows β to be skipped when t4 is fired.
The result of the response property is changed by the combi-
nation of transition/place split-join structure and the position
of α and β. Therefore, we need to consider the combination
of disjoint path and position of transitions within the WF-
net.

Fig. 5 Examples of acyclic bridge-less WS WF-nets.

5.2 Utilization of Process Tree

Acyclic bridge-less WS WF-net is known as PTB WF-
net [9]. Figure 6 shows the general form of process tree of
PTB WF-net. We can represent transition split-join as par-
allel operator (∧). We can also represent place split-join as
exclusive-choice operator (×). Let vNCA be the nearest com-
mon ancestor node of α and β in a process tree π of a WF-net
N where there exists the shortest path from α via vNCA to β
(See Fig. 6).

First, we consider two cases when vNCA is an exclusive-
choice operator (×) or a parallel operator (∧). If vNCA is an
exclusive-choice operator (×), β does not respond to α. We
can give the following Lemma:

Lemma 1: In a PTB WF-net, if vNCA=×, t j does not re-
spond to ti (See Fig. 2 (b)). �

Proof : See Appendix A.1. Q.E.D.

If vNCA is a parallel operator (∧), β does not respond to
α. We can give the following Lemma:

Lemma 2: In a PTB WF-net, if vNCA=∧, t j does not re-
spond to ti (See Fig. 2 (c)). �

Proof : See Appendix A.2. Q.E.D.

Next, if vNCA is a sequence operator (→) and the parent
of α and β, β responds to α. However, if vNCA is a sequence
operator (→) and not the parent of α and β, β does not al-
ways respond to α. Also, if the position of α is on the left of
β in πN , then β responds to α because α will fire before β in
the sequence construct in N. However, if α is on the right of
β, then β does not respond to α because β will fire before α.

Let us consider again the two instances of acyclic
bridge-less WS WF-net shown in Fig. 5. We converted both
instances into process tree (See the right side of Fig. 5). Let
us focus on the dotted line on both process tree. For pro-
cess tree of N1, we find that if parallel operator (∧) exists
between vNCA and β, then β responds to α. Otherwise, for
process tree of N2, we find that if exclusive-choice operator
(×) exists between vNCA and β, then β does not respond to α.
We can give the following theorem:

Theorem 3: For a PTB WF-net N with transitions α and β,
β responds to α iff in the process tree ΠN

Fig. 6 General form of process tree for a PTB WF-net. vNCA denotes the
nearest common ancestor node, ⊕α denotes the ancestor node of α and ⊕β
denotes the ancestor node of β which are the descendants of vNCA.
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(i) The nearest common ancestor vNCA of α and β is a se-
quence operator (→);

(ii) The position of α is on the left side of β†; and
(iii) There is no exclusive-choice operator (×) on the path

between vNCA and β. �

Proof : The proof of the “if” part: Conditions (i), (ii) and
(iii) can be illustrated by the process treeΠN shown in Fig. 6.
⊕α denotes the ancestor nodes of α and the descendants of
vNCA. ⊕β is defined similarly as ⊕α. ΠN can be illustrated
with the WF-net N shown in Fig. 7. N consists of NA, NB,
and NC . If vNCA is a non-parent node, then α and β is in a
different connected subnets in N. α is in NA, β is in NB, and
NC connects NA and NB. tI of NB can always fire after α
and β can always be enabled after tI since NB has no choice.
WF-net N is sound. Therefore, N can be regarded as an
interconnection of MG components and from the property
of MG, there exists a path connecting α and β. Hence, β
responds to α in N.

The proof of the “only-if” part: We show the proof
using a process tree ΠN which has a subtree πφ with root
vNCA where α and β are the leaf nodes.

In Condition (i), if vNCA=×, based on Lemma 1, the
firing is selective where only either transition in the subtree
πα or πβ will fire. If vNCA=∧, based on Lemma 2, there exist
partial firing sequences ασβ and βσα where there is a case
when β can fire before α.

In Condition (ii), if α is on the right of β then i> j.
Therefore, there exists a case where β fires before α in
N. N is acyclic, therefore the firing of each transitions is
only once where there exists no firing sequence that satisfies
∀imax ∈ {1, 2, · · · , |σ|} : σ{imax}=α⇒ ∃ j ∈ {(imax+1), (imax+

2), · · · , |σ|} : σ{ j}=β once β fires before α.
In Condition (iii), if there exists an exclusive-choice

operator between the path from vNCA to β such that ⊕β=×,
then β is in an exclusive-choice construct. Therefore, there
exists a case where β will not fire. Q.E.D.

Theorem 3 implies the condition to decide the response
property problem. So we construct a polynomial time proce-
dure based on Theorem 3. The process tree can be traversed
with Breadth-first Search (BFS) [11]. We give the procedure

Fig. 7 Illustration of the proof of “if” part of Theorem 3.

†Noted that a process tree is an ordered tree.

as follows:

�Decision of Response Property�
Input: PTB WF-net N (=(P,T, A)), transitions α, β ∈ T .
Output: Does β respond to α?

1◦ Convert N into process tree Π with �Process Tree
Conversion Algorithm� [9].

2◦ Check Conditions (i), (ii) and (iii) of Theorem 3.

2-1◦ 	 Check Condition (i).
Let the ρα be the path from root to α and ρβ be the
path from root to β. Let ρC be the common part of
ρα and ρβ. If the last node of ρC is not sequence
operator (→), then output no and stop.

2-2◦ 	 Check Condition (ii).
Let i be the position of α and j be the position of
β. If i> j, then output no and stop.

2-3◦ 	 Check Condition (iii).
Backtrack from β to vNCA. If a visited node is
exclusive-choice operator (×), then output no and
stop.

3◦ Output yes and stop.

Property 2: The following problem can be solved in poly-
nomial time: Given a PTB WF-net N with two transitions α
and β, to decide whether β responds to α. �

Proof : The �Process Tree Conversion Algorithm� takes
O(|P| + |T |) and response property check takes O(|T |) based
on BFS. Q.E.D.

6. Application Example

In this section, we show an application example by showing
the response property analysis of a secure online shopping
process (see Fig. 1). We assume that we need to check the
responsiveness between these two important activities of the
online shopping process which is “Price more than $2000”
and “Manager Acceptance”. Let us verify the instance using
our procedure.

In Step 1◦, we convert N1 to process tree ΠN1 (See
Fig. 8). In Step 2◦, we check the Condition (i), (ii) and
(iii) of Theorem 3. In Step 2-1◦, we check the nearest com-
mon node vNCA of α and β. We obtained that ρα=t1

3× →,
ρβ=t1

6× →, and ρC= →, hence vNCA= →. In Step 2-2◦, we
check Condition (ii). From i=3 and j=6, we obtained that

Fig. 8 Process tree ΠN1 representing N1. The bold area shows that t16
does not respond to t13. The grey area shows an exclusive choice part which
will cause restriction of nodes to be selected.
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i < j. t1
3 is on the left side of t1

6. Then, in Step 2-3◦ we
check Condition (iii). We backtrack from t1

6 to vNCA and
found × → on the path. There is a × on the path. In N1,
there is a place p1

3 which constructs exclusive-choice opera-
tor (×). Either t1

5 or t1
6 will be fired. So, t6 does not always

fire. Finally, in Step 3◦, the procedure outputs no. Thus, we
obtained that t1

6 does not respond to t1
3.

7. Conclusion

In this paper, we gave the formal definition of the response
property problem. We also showed that the problem is de-
cidable. We also revealed the intractability for AC WF-nets.
We constructed a polynomial time procedure for PTB WF-
nets based on the given theorem. Response property anal-
ysis is important in terms of analyzing the execution of an
action whenever another action is executed in order to adapt
to specifications in systems and business processes. In our
future work, we plan to investigate the response property
problem for cyclic WF-nets.
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Appendix

A.1 Proof of Lemma 1 : If vNCA=×, then the PTB WF-
net N is constructed by bundling N1,N2, · · · ,Nn which
forms a selective concurrent paths between their source
places and sink places. In Nn, pI=p(1)

I =p(2)
I = · · ·=p(n)

I and
pO=p(1)

O =p(2)
O = · · ·=p(n)

O . Note that only one path will allow
the transition tn in Nn to fire. Therefore there exists different
firing sequences σ1, σ2, · · ·, σn for each path in N1, N2, · · ·,
Nn for [pI][Nn, σn〉[pO]. Hence, only either ti or t j will fire.

Q.E.D.

A.2 Proof of Lemma 2 : If vNCA=×, then the PTB WF-net
N is constructed by joining respectively all source places
of the concurrent paths with a transition tI , and sink places
with a transition tO of PTB WF-net N1,N2, · · · ,Nn. Since
N1, N2, · · · , and Nn are sound, [p(1)

O , p
(2)
O , · · ·, p(n)

O ] is reach-
able from [p(1)

I , p
(2)
I , · · ·, p(n)

I ]. p(1)
O , p(2)

O , · · ·, and p(n)
O are con-

nected to pO via another additional transition tO. Therefore
there exist partial firing sequences σ=tiσ1t j and σ=t jσ1ti
where σ1 is all possible firing sequences of transitions in
T for [p(1)

I , p
(2)
I , · · · , p(n)

I ][Nn, σ〉[p(1)
O , p

(2)
O , · · · , p(n)

O ]. Hence,
based on σ, t j will not always fire after ti. Q.E.D.
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