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SUMMARY Analyzing a malware sample requires much more time
and cost than creating it. To understand the behavior of a given malware
sample, security analysts often make use of API call logs collected by the
dynamic malware analysis tools such as a sandbox. As the amount of the
log generated for a malware sample could become tremendously large, in-
specting the log requires a time-consuming effort. Meanwhile, antivirus
vendors usually publish malware analysis reports (vendor reports) on their
websites. These malware analysis reports are the results of careful anal-
ysis done by security experts. The problem is that even though there are
such analyzed examples for malware samples, associating the vendor re-
ports with the sandbox logs is difficult. This makes security analysts not
able to retrieve useful information described in vendor reports. To address
this issue, we developed a system called AMAR-Generator that aims to au-
tomate the generation of malware analysis reports based on sandbox logs
by making use of existing vendor reports. Aiming at a convenient assistant
tool for security analysts, our system employs techniques including tem-
plate matching, API behavior mapping, and malicious behavior database
to produce concise human-readable reports that describe the malicious be-
haviors of malware programs. Through the performance evaluation, we
first demonstrate that AMAR-Generator can generate human-readable re-
ports that can be used by a security analyst as the first step of the malware
analysis. We also demonstrate that AMAR-Generator can identify the ma-
licious behaviors that are conducted by malware from the sandbox logs; the
detection rates are up to 96.74%, 100%, and 74.87% on the sandbox logs
collected in 2013, 2014, and 2015, respectively. We also present that it can
detect malicious behaviors from unknown types of sandbox logs.
key words: sandbox logs, malware analysis, automated report generating,
natural language processing

1. Introduction

Computer malware remains a significant threat to our daily
lives. According to a report by AV-TEST [1], approximately
390,000 types of new malware are detected daily, and the
total number of malware instances detected in 2015 was
approximately 470 million. To mitigate such threats, mal-
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ware analysis is a crucial approach to understand various
malware features that can be used to develop and improve
malware detection systems. Generally, malware analysis
can be categorized into static or dynamic approaches. The
dynamic analysis can leverage the actual controlled envi-
ronment to detect malicious behavior hidden by obfuscation
code, whereas the static analysis cannot.

For security analysts, the dynamic analysis is indis-
pensable for analyzing malware samples. When they inves-
tigate sandbox logs, i.e. the output of the dynamic analy-
sis, for identifying malicious behaviors, it is inefficient to
analyze a large number of sandbox logs manually. Mean-
while, antivirus vendors analyze huge volumes of malware
programs and make the analysis reports open to public ac-
cess via the Internet. In general, malware analysis reports
provided by vendors (vendor reports) are written in natural
languages and do not include details of various API calls or
related arguments. Furthermore, such reports are relatively
independent of one another in terms of malware types, thus
it is difficult to associate sandbox logs with these vendor re-
ports in terms of API calls and corresponding arguments.
Moreover, it is often difficult to extract either the same or
different characteristics from these reports. This makes se-
curity analysts not able to retrieve useful information de-
scribed in vendor reports effectively or efficiently when they
are analyzing sandbox logs, despite that there are a vast
number of vendor reports existed in real world and even
more are generated constantly.

To bridge this gap, we developed a system called
AMAR-Generator to automatically generate malware anal-
ysis reports that can precisely describe the malicious behav-
iors found in sandbox logs based on knowledge presented
in vendor reports. The interpretation of the information de-
scribed in these two types of documents are exploited in the
following steps. First, we replace abstract expressions, such
as “<random number>.exe,” in vendor reports by applying
the template matching and then store the extracted templates
to a malware behavior database. Second, we obtain API
calls and the value names from sandbox logs, using API Be-
havior Map as a searching method. Then, to create a relative
correlation, we adopt the malware behavior database to con-
firm whether the values of API calls extracted from sandbox
logs are malicious or not. Finally, based on matching results
from malware behavior database, we leverage description
extracted from vendor reports to produce concise human-
readable reports about malicious behaviors.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers
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The chief contributions of our work are summarized as
follows:

• We propose a system called AMAR-Generator that au-
tomatically generate the concise human-readable re-
ports for security analysts based on the knowledge de-
scribed in the vendor reports.
• Experimental results demonstrate that from the sand-

box logs, AMAR-Generator can automatically detect
the malicious behaviors that need to be reported to a
security analyst. The detection rates are up to 96.74%,
100%, and 74.87% on the logs collected in 2013, 2014,
and 2015, respectively.

To the best of our knowledge, this is the first work that at-
tempts to democratize the generation technology of malware
analysis reports and evaluate it in a scientific manner. We
note that off-the-shelf sandbox products can also generate
a human-readable analysis report. However, such products
are a blackbox, and we need to work on a white-box ap-
proach. Such an approach may enable us to make the re-
sults reproducible for the research community, and lead to
the further improvement of the technology.

The rest of this paper is organized as follows. Section 2
presents the dataset used by AMAR-Generator. Section 3
describes the methodology of AMAR-Generator. Section 4
presents performance evaluation of AMAR-Generator. Sec-
tion 5 summarizes related work and compare them with
AMAR-Generator. Section 6 discusses the limitation of
AMAR-Generator and future research direction. Finally,
Sect. 7 draws the conclusion.

2. Dataset

In this section, we describe the sandbox logs that we used
and how we gathered vendor reports from the real world.

2.1 Sandbox Log

We used the FFRI datasets from 2013 to 2015 provided by
FFRI, Inc. [2]. The FFRI datasets are also part of the MWS
datasets [3] collected by different research institutes and in-
dustries in Japan. The number of malware samples was
8,644. FFRI dataset content was represented as JSON files
that were the output of the cuckoo sandbox [4]. Malware
executed in the cuckoo sandbox is in the PE format with
the maximum execution time of each malware test set to 90
seconds. The resulting JSON files contained scan results
of Virustotal [5], API calls, network traffic, and registry and
file information created or accessed by the malware sample.
API calls were arranged in descending order of time, with
the information associated with each API call described in
detail, including function name, parameters, and category.

2.2 Vendor Reports

Many antivirus vendors, such as Microsoft and Syman-
tec, publish malware analysis reports on their website.

We built a crawler to collect the HTML (HyperText
Markup Language) pages of Microsoft’s reports using
their common URL pattern (i.e., http://www.microsoft.
com/security/portal/threat/encyclopedia/entry.aspx?Name=
“malware type”). We identified 1,299 malware types in the
FFRI datasets. Then, we changed the malware type in the
common URL pattern to crawl 1,678 malware reports. Note
that although the writing style and structure of these reports
differ among antivirus vendors, By only specifying the ex-
tracted information’s HTML tags, the proposed system was
designed to handle different antivirus vendor reports. In this
paper, owing to space limitation, we cannot show all types
of vendor reports. Microsoft’s reports are widely used in
malware analysis; thus, we present Microsoft’s reports as
an example. Microsoft reports consisted of the following
four parts: “Summary,” “what to do now,” “Technical in-
formation,” and “Symptoms.” Note that we only consid-
ered the Technical information because that component pre-
sented details about the malicious behaviors.

3. AMAR-Generator System

In this section, we first present the architecture of our
AMAR-Generator system, and then detail its four core com-
ponents: vendor report preprocessing, malicious behavior
extraction from vendor reports, malicious behavior extrac-
tion from sandbox logs and malware analysis report genera-
tion.

3.1 Overview

An overview of AMAR-Generator is shown in Fig. 1. First,
we preprocess the vendor reports to remove noise. Second,
we extract malicious behavior from the vendor reports to
construct the malicious behavior database. Third, we spec-
ify API call value names described in sandbox logs using a
API behavior Map and then determine if the API call value
names match malicious behavior in the database. Fourth,
malicious behaviors detected by the proposed system are
used to generate a new malware analysis report.

3.2 Vendor Report Preprocessing

As the vendor reports were created by different people, we

Fig. 1 Overview of the AMAR-Generator system.
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Table 1 The list of the procedure of malicious behavior extraction.

NO. Procedure

1 Transform all text into lowercase.
2 Split the file path using the delimiter “\”.
3 If the divided element contains an abstract expression, convert it to a regular expression.
4 Save each element in the database as a nested tag.
5 When saving the final element, create lists of the description of malicious behaviors and malware names as “description” and “malware,”

respectively, and save the description of malicious behaviors and malware names.
6 If each element has been saved in the database, only add the description of malicious behaviors and the malware names.
7 Split the registry key using the delimiter extbackslash
8 Delete the “https://” and “http://” that exsit in front of domain.
9 Split the character string with the delimiter extbackslashhich is closest to the front of string and save the splited two parts to database.

employed the following preprocessing steps to eliminate dif-
ferences.

Step1: Extract the Technical information.
Step2: Convert all extracted data to plain text.
Step3: Unify synonym notations.
Step4: Reconstruct the text format.

Step1: Technical Information Extraction. As mentioned
in Sect. 2, we focus on the descriptions written in the “Tech-
nical Information” part. Note that the “Technical Informa-
tion” is formatted in HTML and stored between div tags
whose id is tab-link-3C, and we use this div tag attribute
to extract the “Technical Information”.

Step2: Plain Text Transformation. The collected Mi-
crosoft analysis reports are formatted as HTML pages. Pre-
processing is required because report creators have individ-
ual styles relative to tag use. To simplify preprocessing, we
converted the HTML pages to plain text by recursively pro-
cessing the tag types, such as block-level elements and in-
line elements. Preprocessing proceeded from the head of
the child elements in the “Technical Information.” In the
following, RESULT indicates the text output. HTML ele-
ments are composed of three types of child elements, i.e.,
text, comments, and nested HTML tags.

1. If the element is a comment, delete the comment.
2. If the element is text, concatenate the text to the end of

the RESULT.
3. If the element is an HTML tag, Step 2 is performed

from the head of the child element.
4. When the element corresponds to block-level elements,

i.e., li or br, add a newline character to the end of RE-
SULT.

Step3: Synonym Notation Unification. Due to the differ-
ent writing style in each report, there are differences in nota-
tion even though the same malicious behavior is described.
For example, a registry subkey can be written as “In Sub-
key:” or “To Subkey:.” To reduce the time required to ex-
tract malicious behavior, we unify the notation by defining
a synonym notation list. Part of the synonym notation list is
shown in Table 2.
Step4: Text Reconstruction. Descriptive text related to
malicious behavior includes target files, directories, pro-
cesses, destination domains, and the names of related mal-

Table 2 A part of synonym notation.

Item Notation

Registry key In subkey:, In subkeys:, Under subkey:,
Under subkeys:, To subkey:, To subkeys:,
Within subkey:, Within subkeys:, The sub-
key:, The subkeys:

Registry entry name Sets value:, Sets values:, Modify Registry
value:, Adding the value:, Adding registry
value:, With value:, With values:, Under
value:, Under values:, Changes value:, Mod-
ifies value:, Modify value:

Registry entry value With data:, To data:, From data:
Partition <drive>, <drive:>, <targeted drive>, <drive

root>, <drive letter>

ware. Experts provide additional explanations about mali-
cious behavior at the end of each sentence in such descrip-
tions. Note that such information is not useful for building
our malicious behavior database; therefore, we delete the
additional explanations prior to extracting malicious behav-
ior using a prefix in additional explanations, such as “, for
example”, “(e.g,” and, “where.”

3.3 Malicious Behavior Extraction from Vendor Reports

In this subsection, we present how to extract malicious be-
havior from vendor reports. Note that Malicious behavior
in this paper is defined as a threatening behavior described
in Microsoft’s malware analysis report. Malicious behav-
ior and IOCs have common elements, such as file paths and
registry keys. IOCs are used to indicate an attacker’s modus
operandi, and recognize behaviors that are exclusively asso-
ciated with specific malware. On the other hand, threaten-
ing behaviors include all activities related to a certain mal-
ware. Although some benign behaviors may exist in vendor
reports, our system is not designed to detect malicious be-
haviors from vendor reports. We aim to provide malware
information to malware analysts in the form of a report.

3.3.1 File Operation Extraction

If an element of a block is a file path or a file name, we
classify it as a file operation. The following rules are used to
determine whether the description is a file path or file name.

• A character string starting with an environment vari-
able, as described in the literature [6], [7]
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Table 3 The content of Malicious Behavior Database.

Operation Behavior Description Malware Type

File %windir%\che08.exe

If this worm is executed, this file
copies itself to the Windows folder
as in the following examples: worm:win32/koobface.gen!d

Registry
%appdata%\\microsoft
\\windows\\ieupdate\\randomname.exe

They can also change the following
registry entry so they run each time
you start your PC: trojan:win32/ropest

Network 0.pool.ntp.org

this file connects to the following
servers every 20 seconds to send and
receive messages: trojan:win32/necurs.gen!a

Mutex global\\mp6c3ygukx29gbdk
This threat can create a mutex on your
PC. For example: trojanproxy:bat/dafterdod.a

Table 4 The description method of registry operation.

Description 1 Description 2

In subkey: regkey1 Sets value: value1
. . . With data: data1
In subkey: regkeyX . . .
Sets value: value1 Sets value: valueX
With data: data1 With data: dataX
. . . In subkey: regkey1
Sets value: valueY . . .
With data: dataY In subkey: regkeyY

• A character string starting with either “a∼z” and “: \”
or “<targeted drive>” and “: \”.
• A character string that ends with “.” as a file extension

and does not begin with the registry key prefix.

A character string beginning with either “a∼z” and
“: \” or “<targeted drive>” and “: \” indicates an external
storage device, e.g., the C drive and a USB drive in Win-
dows. We use such strings to determine a file path. We
found 19,018 entries beginning with a∼z in the file exten-
sion. We create a file extension list by referring to the liter-
ature [8]. According to the above rule, we extract malicious
behavior of file operations from vendor reports. Because
four types of operation extraction have common procedures,
we summarize all the extraction procedures in Table 1. Re-
garding file operation, the extraction procedure is from 1 to
6.

3.3.2 Registry Operation Extraction

The following rules are used to determine whether each ele-
ment of a block is related to the registry.

• A character string starting with “In subkey:”.
• A character string starting with “Sets value:”.
• A character string starting with “With data:”.

Since the synonym notation list introduced in Sect. 3.2
covers all prefixes of the registry operation description, we
can use these prefixes to identify whether the description
relates to a registry operation. The description of a registry
operation comprises the registry key, entry name, and entry
value. As shown in Table 4, there are multiple description
methods for registry operations.

The sequence of registry key, entry name, and entry
value appearing in vendor reports can be divided into cases

that describe ‘Y’ pairs of entry key names and values af-
ter ‘X’ number of registry keys, and cases that describe ‘X’
pairs of entry names and values followed by ‘Y’ number of
registry keys. In addition, as this sequence can appear in
the reverse order, there are four description methods in to-
tal. The above X and Y are integers greater than 0. The
regular expression used to extract the description method is
as follows.

(s+(vd)+|s+(dv)+|(dv)+s+|(vd)+s+),

where s denotes the registry key, v denotes the entry name,
and d denotes entry value, respectively.

Based on the above rules, the procedure of registry ex-
traction is 1, 7, 3∼6 described in Table 1.

3.3.3 Network Operation Extraction

The following rules are applied to determine whether each
element of the block is a network operation.

• The first element delimited by “/” is a character string
of the IP address.
• The first element delimited by “/” is a character string

ending with a top level domain or “.”.

We also use regular expression to determine whether
a character string is an IP address. In accordance with the
above rules, the procedure of network extraction is 1, 8, 3,
9, 5, 6 described in Table 1.

3.3.4 Mutex Operation Extraction

Microsoft’s analysis reports do not use specific phrases,
such as “In subkey:” and “Sets value” in the registry to
point out a mutex. Furthermore, the mutex does not start
with fixed prefixes, such as the file path (%windir%, %ap-
pdata%), registry (hklm, hkcr), or URL schema (http://,
https://). Therefore, if the character string “mutex” appears
in the description of a malicious behavior, we consider that
description to be related to a mutex. The extraction methods
for malicious behavior used in a file, registry, and network
are not suitable for a mutex; thus, we store the element of
the block to the database without any processing. We save
the list of behavior descriptions and malware names in the
same manner as the other three operations.
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3.3.5 Malicious Behavior Database

We store four types of extracted operation mentioned be-
fore into Malicious Behavior Database which is built in the
JSON format. The content of Malicious Behavior Database
is shown in Table 3. To generate the type of malware, we
not only extract behavior and description, but also malware
type from vendor reports.

3.4 Malicious Behavior Extraction from Sandbox Logs

In this subsection, we present how to extract malicious be-
havior from sandbox logs. Note that we only use labels pro-
vided by Microsoft. Known and unknown specimens exist
in the dataset, where a “known/unknown specimen” repre-
sents a sample that was/was not marked as malware with
the Microsoft anti-virus checker. However, we perform de-
tection for all specimens. With regard to detection, the file,
registry, and mutex operations are based on API calls. On
the other hand, we detect a network operation by compar-
ing the “hosts” and “domains” elements of the sandbox logs
using the domain and IP address stored in the malicious be-
havior database. Note that we do not investigate the purpose
of communication or whether the domain is considered ma-
licious.

The malicious behavior of a registry operation can be
detected both when an entry value is changed and when the
current entry value is confirmed relative to a specific registry
key and entry name because it is not necessary to change
the entry value in an environment wherein the setting has al-
ready been changed. Here we use an API Behavior MAP to
detect file, registry, and mutex operations. The category and
API calls of the API behavior MAP are shown in Table 5.
When detecting malicious behavior, we first specify the API
calls extracted from the sandbox logs using the API Behav-
ior MAP and then query the malicious behavior database us-
ing the selected API calls. All necessary information for the
database query exists in each category of the API Behavior
MAP. All necessary information is listed in Table 6. Most
of the information described in the Table 6 comprises argu-
ments of the API calls. As an exception, only the registry
keys category does not require arguments, such as reg set,
reg query, reg query key. We process the API calls of the
registry operation as follows.

1. Open the registry key specified by the category
reg open (reg create)

2. Process the handle, entry name, and entry value related
to reg set (reg query, reg query key)

3. Close the registry key specified by the close handle cat-
egory.

Only reg open and reg create are explicitly provided
with arguments. We extract other API calls of a registry
operation using the handle obtained from reg open and
reg create. Moreover, reg open and reg create are some-
times used as nested elements. In this case, the full path can

Table 5 API Behavior MAP.

Category API

close handle RegCloseKey, NtClose

reg open
RegOpenKeyExA, RegOpenKeyExW,

NtOpenKey, NtOpenKeyEx

reg create
RegCreateKeyExA, RegCreateKeyExW,

NtCreateKey

reg enumerate NtEnumerateKey

reg set
NtSetValueKey, RegSetValueExA,

RegSetValueExW,

reg query key NtQueryKey

reg query

RegQueryValueExA, RegQueryValueExW,

RegQueryInfoKeyExA,

RegQueryInfoKeyExW, NtQueryValueKey

reg del

RegDeleteKeyA, RegDeleteKeyW,

NtDeleteKey, RegDeleteValueA,

RegDeleteValueW, NtDeleteValueKey

open file NtOpenFile

create file

NtCreateFile, CreateFile,

CreateFileA, CreateFileW,

CreateFile2,CreateFileTransacted

copy file
CopyFile, CopyFile2, CopyFileA,

CopyFileW, CopyFileExA, CopyFileExW

create dir

CreateDirectoryExW, CreateDirectoryA,

CreateDirectoryW, CreateDirectoryEx,

CreateDirectoryExA, CreateDirectory

mutex NtCreateMutant, NtOpenMutant

Table 6 Necessary Information for the detection of malicious behaviors.

Category Necessary Information

copy file copied file name
open file opened file name
create file created file name
create dir directory name
reg open registry key
reg create registry key
reg set key, entry name, entry value
reg query key, entry name
mutex mutex name
Others Not detected

be obtained by concatenating each category the of registry
key. By preserving the full path and handle in the malicious
behavior database, we can identify the registry key required
by reg set, reg query, reg query key.

3.5 Malware Analysis Report Generation

In this subsection, we describe a method to automatically
generate a new malware analysis report based on summariz-
ing the detected malicious behaviors described in Sect. 3.4.
The malware analysis report includes the file name and type
name of the detected malware, all malicious behaviors re-
lated to the detected malware, a list of actually detected ma-
licious behaviors, the name of malware with the same de-
tected malicious behaviors, and a list of the regular expres-
sions used to detect those malicious behaviors.

The report generation procedure is described as fol-
lows.

1. Extract and obtain the type name of Microsoft’s speci-
men from FFRI datasets.
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2. Summarize malicious behaviors using dictionary ob-
jects. The key is the regular expression and the value is
the malicious behavior matched with the corresponding
regular expression.

3. Select the most suitable descriptive text in each regular
expression.

4. List the type name of the malware with the same de-
tected malicious behavior.

5. If the malware specimen is labeled, list all malicious
behaviors of that specimen.

The rules for the above selection method are described
as follows.

• If the specimen is known, select a description extracted
from its own type.
• If there are multiple descriptions in one specimen, se-

lect the one with the fewest characters.
• If there is no description extracted from its own type,

select the one with fewest characters from similar spec-
imens. Note that the descriptions extracted for each
category have similar meanings. To improve the read-
ing speed of generated reports, we selected the descrip-
tion with the fewest characters.

4. Evaluation

In this section, we first present that our methodology can
automatically extract malicious behaviors from vendor re-
ports. We then show that the AMAR-Generator system can
detect corresponding malicious behaviors from the sandbox
logs with high detection rates. Finally, we demonstrate that
the AMAR-Generator system can generate human-readable
malware analysis reports.

4.1 Malicious Behaviors Extracted from Vendor Reports

Using the techniques described in Sect. 3.3, we present how
the AMAR-Generator system extracts the malicious behav-
iors from vendor reports. We extracted 9,177 malicious be-
haviors from 1,678 vendor reports and stored these mali-
cious behaviors in our database. Our extraction approach
takes advantage of the information described in the vendor
reports. We randomly selected 100 extracted behaviors from
each type of operation for manual inspection. If the ex-
tracted information is consistent with its regular expression,
we label it as correct. We confirmed that all the sampled be-
haviors were correctly extracted. The number of malicious
behaviors in each operation is listed in Table 7.

The numbers of file and network operations are 4,416
and 3,505, respectively, and these operations account for ap-
proximately 86% of the extracted malicious behaviors. Note
that the abuse of file and network operations is a major
modus operandi of malware. Malware must expand infec-
tion by copying itself or refreshing itself by downloading a
new version over the Internet. Registry operations are com-
monly used because malware attempts to hide itself to evade

Table 7 Number of extracted malicious behaviors.

Type of malicious behaviors Number of extracted malicious behavior

File operation 4,416
Registry operation 1,100
Network operation 3,505
Mutex operation 156

Table 8 Number of detected malicious behaviors in each FFRI Dataset.

Data set Min. Max. Ave. Percentage of logs
detected with ma-
licious behaviors

FFRI Dataset 2013 0 63 9.53 96.74%
FFRI Dataset 2014 1 875 30.07 100%
FFRI Dataset 2015 0 320 4.64 74.87%

Fig. 2 The CDF of number of malicious behaviors included in one spec-
imen (0 ≤ x ≤ 100).

identification.

4.2 Malicious Behaviors Detected from Sandbox Logs

Using the techniques described in Sect. 3.4, we present how
the AMAR-Generator system extracts the malicious behav-
iors from sandbox logs. We used 8,640 sandbox logs as
input to evaluate the detection performance of the proposed
system.

Table 8 shows the number of detected malicious be-
haviors in each FFRI dataset. As can be seen, the minimum,
maximum, and average numbers of detected malicious be-
haviors are 0, 875, and 14.96, respectively, in these three
datasets. The proposed system can detect all malicious be-
havior in the sandbox logs without bias. Moreover, our sys-
tem achieves very high detection rates of malicious behav-
iors reported in the vendor reports; i.e., 96.74% and 100%
with the 2013 and 2014 FFRI datasets, respectively. Note
that the detection rate conveys the coverage ratio of sand-
box logs in our proposed system. On the other hand, the
proposed system can identify malicious behaviors in most of
the sandbox logs from the 2015 FFRI dataset. We leverage
the knowledge in vendor reports to specify malicious be-
haviors, as all extracted malicious behaviors are described
in vendor reports. Thus, the false positive rate is 0. This
proves that our system is effective for discovering malicious
behavior from sandbox logs.

Figure 2 shows the Cumulative Distribution Function
(CDF) of the number of malicious behaviors that can be de-
tected from each specimen. The red dotted line in Fig. 2
expresses the average number of malicious behaviors. By
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Table 9 Top 10 malware types undetected in FFRI Dataset 2015.

Malware type Number of specimens (Percentage) Number of behavior extracted
from vendor reports

Only exists in FFRI Dataset
2015

unknown 259 (34.35) 0 unknown
virtool:win32/ceeinject.gen!kk 103 (13.66) 0 False
virtool:win32/obfuscator.wt 45 (5.97) 0 False
trojan:win32/dynamer!ac 25 (3.32) 0 False
trojandownloader:win32/small.gen!i 20 (2.65) 0 True
trojandropper:win32/bunitu.c 15 (1.99) 33 True
backdoor:win32/kelihos!rfn 14 (1.86) 0 True
trojan:win32/ropest.j 13 (1.72) 0 True
vrogue:win32/trapwot 11 (1.46) 7 True
backdoor:win32/kelihos 10 (1.33) 7 True

Fig. 3 CDF of number of malicious behaviors in unknown type of logs.

Fig. 4 CDF of number of malicious behaviors in known type of logs.

comparing the CDF of the number of malicious behaviors
to the minimum number of detected malicious behaviors,
we observed that the malicious behaviors cannot be discov-
ered from 20% of the sandbox logs. It turns out that most of
these logs belong to the 2015 FFRI dataset.

Figures 3 and 4 show the CDF of the number of mali-
cious behaviors in unknown and known specimen logs, re-
spectively. The red dotted lines in Fig. 3 and 4 express the
average number of malicious behaviors. We found that mali-
cious behaviors were detected from 83.37% unknown speci-
men logs and 78.56% known specimen logs. Note that there
are existing malicious behaviors in unknown specimen logs,
and the proposed system is effective for detecting malicious
behaviors from such logs.

To provide more insight about uncovered sandbox logs,
we summarized the type of malware that could not be de-
tected in the 2015 FFRI dataset. As shown in Table 9, most
of the malicious behaviors of malware could be extracted
from the vendor reports and most malware types only exist
in the 2015 FFRI dataset. Note that many undetected speci-
mens in the 2015 FFRI dataset are new malware; therefore,
the malicious behaviors related to such malware are not de-
scribed in the vendor reports. We also consider that dynamic

Fig. 5 An excerpt of generated report for “Worm:Win32/Nuqel.H”.

analysis systems, such as cuckoo, may not capture malicious
behaviors due to the evasive nature of some malware.

4.3 Auto-generated Malware Analysis Report

Using the techniques described in Sect. 3.5, we demon-
strate how the AMAR-Generator system generates human-
readable reports from the sandbox logs. As an example,
we make use a pair of a vendor report and a sandbox log.
Both the report and the log are associated with a type of
malware named “Worm:Win32/Nuqel.H.” Note that the en-
vironments used to obtain the vendor report and the sandbox
log are different, indicating that there should be intrinsic dif-
ference between the two information sources. Nevertheless,
we see the our approach can successfully generate a report
that contains similar information found in the vendor report.

Figures 5 and 6 present the generated report and the
vendor report. Due to the space limitation and conciseness,
we show only excerpts of the reports, containing file oper-
ation and registry operation. Other operations such as net-
work and mutex are omitted. We notice that the descrip-
tion of malicious behaviors in the auto-generated report is
concise and human-readable like the vendor report. Several
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Fig. 6 An excerpt of vendor report for “Worm:Win32/Nuqel.H”.

common malicious behaviors, i.e., copying itself, dropping
files can be found in the two reports. There are some gram-
matical errors in the our auto-generated reports, such as “It
then” in the first sentence of description and the first low-
ercase character of the sentence. Although such errors may
not have the effect on the understanding of our reports, we
can easily fix them by introducing simple heuristics. We
also notice that the auto-generated report did not provide
the additional description like vendor reports; i.e, the de-
scription in the last part of the vendor report shown in Fig. 6.
We leave adding those additional descriptions for our future
work.

4.4 Readability and Helpfulness

The design’s goal is to evaluate and compare the readability
and helpfulness of our reports with vendor reports. Herein,
we perform a user study on our generated reports, described
in Sect. 4.3, using Google Forms [9]. The user study ques-
tionnaire includes two parts: scale-based questions and a
written response.

With respect to the scale-based questions, we randomly
select 10 of our generated reports and 10 vendor reports, and
then shuffle these two types of reports together in random
order. For each report, we ask the following two questions:

• Do you think this report is readable?
• How helpful is this report for malware analysis?

We use a 5-scale rating for answering these two questions,

Fig. 7 CDF of average score and standard deviation of readability.

Fig. 8 CDF of average score and standard deviation of helpfulness.

where a rating of 5 means the best readability or helpfulness
and a rating of 1 means the worst readability or helpfulness.
At the end of the questionnaire, we ask participants to an-
swer the following written response: “Please briefly state
how these reports are useful for malware analysis.”

We hired 10 participants who have at least two years of
experience in malware analysis to answer our questionnaire.
Note that we randomly sort the order of our reports and ven-
dor reports, and do not specify which reports are generated,
so that the participants can evaluate these two types of re-
ports without bias.

Figures 7 and 8 present the CDF of the average score
and standard deviation of readability and helpfulness. For
the scale-based question, we calculated the average score
and standard deviation of our generated reports and vendor
reports, separately. We observed that slight differences be-
tween the average score of our generated reports and ven-
dor reports; however, the standard deviation of both types
of reports is less than 1.0. Such results indicate that our
generated reports are extremely close to vendor reports in
terms of readability and helpfulness, thus the analyst can
use our generated reports for malware analysis instead of
vendor reports. Additionally, we summarize the answers of
10 participants’ questionnaire. The participants claimed that
when conducting static code analysis, they could quickly
and easily locate the analysis part in malware samples with
the hints and features of our reports. Moreover, they were
able to build an automatic detection system using the behav-
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iors stated in the reports.

5. Related Work

Many analysis methods related to our system have been pro-
posed in recent years. Such methods can be classified into
two categories depending on the research objective. In this
section, we review related work relative to these two cate-
gories and compare them to the proposed system.
Malware detection and classification

In [9], Ahmed et al. combined a time series and the inputs
and outputs of API calls as classifier features, proving that
their features can contribute to malware detection in this su-
pervised machine learning method. Previous work [10], [11]
treated the information of API calls obtained from the IDA
Pro disassembler as natural language, then applied an n-
gram as feature extraction approach for detecting malware
samples. Nakazato et al. [12] proposed a new classifica-
tion approach that can achieve effective and efficient clas-
sification of malware using a sequence of Windows API
calls captured by a micro analysis system. Bayer et al. [13]
developed an unsupervised machine learning technique for
clustering malware samples based on the behaviors gleaned
from dynamic analysis logs in a scalable manner. Further-
more, Li et al. [14] evaluated and compared the performance
of previous methods related to the use of cluster analysis,
including the work of Bayer et al. Their finding was that
the ground truth of the analysis data has a significant effect
on cluster analysis accuracy. Inoue et al. [15] proposed a
method to fully automate large-scale malware analysis in a
virtual Internet environment. Their system can hook API
calls by overwriting the Import Address Table. Mohaisen et
al. [16] compared the analysis results of different antivirus
vendors to that of their own system to evaluate the correct-
ness of the antivirus vendors’ analysis results.

Our system also treats sandbox logs as input, but we
aim to automatically interpret the API calls and parameters
for security analysts, based on the knowledge described in
the vendor reports. We believe that the proposed system
can serve as an important complement to previous research
outcomes regarding the analysis and detection of malware.
Text Generation

Zhang et al. [17] developed a novel approach that can use
the result of static program analysis to automatically pro-
duce security-centric android application descriptions. Yu
et al. [18] designed AutoPPG to automatically generate cor-
rect and readable privacy policy for Android applications by
applying natural language processing techniques on the re-
sult of static code analysis.

In our study, we have attempted to automatically gen-
erate human-readable malware analysis reports by leverag-
ing the results of dynamic program analyses. Our system
produced the description of Windows malware, which had
not been previously done. Our goal is to improve the ef-
fectiveness and efficiency of malware analysis for security
analysts.

6. Discussion

In this section, we discuss the limitations of our work.
Mis-detection of Malicious Behaviors

We assume that all the behaviors saved in the malicious be-
havior database are in fact malicious. However, some be-
haviors are stored in the form of regular expressions; thus, it
is possible that some normal behaviors are detected as ma-
licious behaviors. The purpose of our work is to provide
all possible useful information, including suspicious infor-
mation, to security analysts in the form of human-readable
reports and accelerate the malware analysis process as much
as possible. A security analyst can refer to our report for fur-
ther malware analysis, such as static analysis. Through fur-
ther malware analysis, the security analysts may find such
misdetections and previously unknown malicious behaviors
from suspicious behaviors.
Type of malicious behavior

In this paper, we have focused on extracting four kinds of
malicious behaviors, i.e., file, registry, network, and mutex
operations. Since the description of these operations has a
specific format in the vendor reports, it is possible to extract
the malicious behavior of such operations. However, there
are other types of behaviors that are abused by malware in
the sandbox logs. For example, SetWindowsHookEx and
CreateRemoteThread can be used to accomplish code in-
jection, and the proposed system cannot identify such mali-
cious behavior at this point. We think that this limitation can
be resolved using analysis reports created by other antivirus
vendors because the formats of the analysis reports created
by each vendor differ, and other types of malicious behav-
iors may be described in a specific format. We leave the
challenge of expanding the different types of malicious be-
havior the proposed system can handle as the focus of future
work.
Dependence on cuckoo sandbox
As mentioned in Sect. 2, the input to the proposed system
(i.e., sandbox logs) is the analysis result of the cuckoo sand-
box, and the number of malicious behaviors captured by the
cuckoo sandbox has an impact on the performance of the
system. There are many factors that can lead to this limi-
tation. For example, the malware can use a timer to trigger
malicious behaviors after a maximum execution time set by
cuckoo sandbox, or some types of malicious behaviors can
only be captured in a specific operating system. Thus, it is
very difficult to obtain all malicious behaviors using only
one combination of settings. However, we believe that our
generated report is valuable feedback for the analysis results
of the cuckoo sandbox, and a security analyst can adjust the
cuckoo sandbox settings by referring to our report.

7. Conclusion

We proposed the AMAR-Generator system, which can au-
tomatically generate malicious behavior-related reports us-
ing reports provided by antivirus vendors for security ana-
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lysts. The system comprises of several techniques, template
matching, API-behavior mapping, and malicious-behavior
database. Our experimental results demonstrated that it can
generate malware analysis report that helps a security ana-
lyst as the first step to analyze a given malware. We also
demonstrated that the proposed method achieved high de-
tection rates of malicious behaviors from sandbox logs; i.e.,
detection rates up to 96.74%, 100%, and 74.87% on the
2013, 2014, and 2015 FFRI datasets, respectively. We also
reported that the AMAR-Generator system can effectively
and efficiently identify malicious behaviors from unknown
types of sandbox logs.
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