
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018
2633

PAPER Special Section on Information and Communication System Security

Design and Implementation of SDN-Based Proactive Firewall
System in Collaboration with Domain Name Resolution∗

Hiroya IKARASHI†a), Nonmember, Yong JIN††b), Nariyoshi YAMAI†c), Members,
Naoya KITAGAWA†d), Nonmember, and Kiyohiko OKAYAMA†††e), Member

SUMMARY Security facilities such as firewall system and IDS/IPS (In-
trusion Detection System/Intrusion Prevention System) have become fun-
damental solutions against cyber threats. With the rapid change of cy-
ber attack tactics, detail investigations like DPI (Deep Packet Inspection)
and SPI (Stateful Packet Inspection) for incoming traffic become necessary
while they also cause the decrease of network throughput. In this paper,
we propose an SDN (Software Defined Network) - based proactive firewall
system in collaboration with domain name resolution to solve the problem.
The system consists of two firewall units (lightweight and normal) and a
proper one will be assigned for checking the client of incoming traffic by
the collaboration of SDN controller and internal authoritative DNS server.
The internal authoritative DNS server obtains the client IP address using
EDNS (Extension Mechanisms for DNS) Client Subnet Option from the
external DNS full resolver during the name resolution stage and notifies
the client IP address to the SDN controller. By checking the client IP ad-
dress on the whitelist and blacklist, the SDN controller assigns a proper
firewall unit for investigating the incoming traffic from the client. Conse-
quently, the incoming traffic from a trusted client will be directed to the
lightweight firewall unit while from others to the normal firewall unit. As a
result, the incoming traffic can be distributed properly to the firewall units
and the congestion can be mitigated. We implemented a prototype system
and evaluated its performance in a local experimental network. Based on
the results, we confirmed that the prototype system presented expected fea-
tures and acceptable performance when there was no flooding attack. We
also confirmed that the prototype system showed better performance than
conventional firewall system under ICMP flooding attack.
key words: firewall system, DNS, domain name resolution, EDNS, client
subnet option, SDN, OpenFlow

1. Introduction

Nowadays the cyber attacks happen every second and the
number of cyber attacks continuously increasing. In or-
der to survive the attacks, many organizations introduce
security facilities such as firewall system, UTM (Unified
Threat Management) system and IDS (Intrusion Detection

Manuscript received November 14, 2017.
Manuscript revised May 13, 2018.
Manuscript publicized August 22, 2018.
†The authors are with Tokyo University of Agriculture and

Technology, Koganei-shi, 184–8588 Japan.
††The author is with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
†††The author is with Okayama University, Okayama-shi, 700–

8530 Japan.
∗This paper is a revised version of [1].

a) E-mail: hikarashi@net.cs.tuat.ac.jp
b) E-mail: yongj@gsic.titech.ac.jp
c) E-mail: nyamai@cc.tuat.ac.jp
d) E-mail: nakit@cc.tuat.ac.jp
e) E-mail: okayama@cc.okayama-u.ac.jp

DOI: 10.1587/transinf.2017ICP0014

System)/IPS (Intrusion Prevention System). These security
facilities are usually deployed at the border of network and
the administrators set security policies on them. As the cy-
ber attack tactics are becoming more tricky, detailed inves-
tigations like Stateful Packet Inspection (SPI) [2] and Deep
Packet Inspection (DPI) [3] for the incoming traffic become
necessary on the security facilities. These detail inspections
cause high workload on the security facilities and conse-
quently decrease the network throughput. Therefore, in or-
der to keep the network throughput high, network adminis-
trators have to give up using those security facilities or avoid
the heavy inspections for the incoming traffic. Another crit-
ical issue in the real operation is the burden of configuration
and update for the policies on the security facilities. Net-
work administrators usually manually configure and update
the security policies using the layer 3 or 4 information and
only those pre-defined communications can be controlled.
For example, if a firewall system refers to an external black-
list, the network administrator has to configure and update
its security policies manually whenever the blacklist is up-
dated.

In this paper, we propose an SDN-based proactive fire-
wall system in collaboration with the domain name reso-
lution. The firewall system consists of two firewall units
and a proper one will be selected adaptively for investi-
gating every incoming traffic based on the collaboration of
SDN controller and the internal authoritative DNS server.
Specifically, the client IP address of an incoming traffic will
be obtained in advance by using EDNS Client Subnet Op-
tion [4] of DNS protocol during the name resolution stage
and the SDN controller checks the client IP address on the
whitelist and blacklist. As a result, the incoming traffic from
the trusted clients will be directed to the lightweight fire-
wall unit in order to avoid heavy processes while those from
the unknown clients will be directed to the normal firewall
unit which conducts detail investigations. As well known,
an SDN controller can obtain the source IP addresses of in-
coming traffic without collaboration of DNS. However, the
SDN controller can be easily the bottleneck in an SDN based
system thus additional feature for obtaining and checking
the source IP addresses will increase the workload of SDN
controller much more. By collaboration with DNS, the
incoming traffic with no preliminary name resolution will
be dropped at the SDN switch without triggering packet in
events thus this type of traffic will not increase the workload
of the SDN controller. Moreover, DNS infrastructure has

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



2634
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

been known as one of the largest distributed database sys-
tems over the Internet thus it is expectable to mitigate the
concern of scalability issue by collaboration with DNS. In
addition, network administrators can use the open whitelists
and blacklists for checking the source IP addresses and do
not need to configure the policies in every firewall system
thus the administrative cost can be reduced. For example,
“FireHOL” [5] is one of the open blacklists available for
checking the malicious IP addresses. Finally, as we men-
tioned at the beginning, introduction of SPI and DPI will
decrease the network throughput. In the proposed firewall
system, the decrease of network throughput caused by se-
curity investigation can be mitigated by separating the in-
coming traffic initiated by the trustable clients and that by
unknown or malicious clients.

It should be noticed that the main purpose of this re-
search is to solve the existing issues using EDNS Client
Subnet Option. Therefore the current status of EDNS sup-
port on the external DNS cache servers in the real network
environment is beyond the scope of this paper. In fact,
the networks with EDNS supported DNS full resolver can
achieve benefits from our proposed system thus the deploy-
ment in the entire Internet can be in step by step. The con-
tributions of this paper can be summarized as the follow-
ing points: 1) heavy inspections are applicable for incoming
traffic from suspicious clients without network throughput
reduction; 2) administrative cost for security policy deploy-
ment can be significantly reduced; 3) the effectiveness of
SDN-based firewall system has been confirmed for real net-
work operation.

2. Existing Technologies and Related Work

2.1 Firewall System

Firewall system is an important security solution for all net-
works and so far various versions have been released [6], [7].
Basically, firewall system passes through legitimate traffic
and blocks malicious packets at the border of a network. In
order to be applicable for tricky cyber attacks, recent firewall
systems also have complicated functions such as Web Appli-
cation Firewall (WAF), host inspector and access controller,
etc. By using these functions, each packet can be checked
precisely and can be handled appropriately based on the re-
sults. However, the inspection also consumes much resource
of the firewall system and cuts down network throughput.
Moreover, network administrators need to configure and up-
date the security policies of the firewall system in time man-
ually based on the information source such as whitelist and
blacklist. This burden not only increases the operational cost
but also impacts the performance of firewall system in terms
of real time inspection in case of update delay for the lat-
est security policies. Although there are many ongoing re-
searches for improving firewall system performance [8], [9],
they are still insufficient especially against Distributed De-
nial of Service (DDoS) attacks.

2.2 SDN Technology and OpenFlow Protocol

Dynamic network architecture with multiple switches for
traffic control has been proposed and heartily discussed from
1990s [10] and it influenced some core ideas of SDN tech-
nology. In recent years, with the growth of the demand for
large scale and flexible network architecture, the require-
ment of SDN technology becomes increasing. For example,
SDN has become a key technology to operate NFV (Net-
work Function Virtualization) [11], [12]. Basically, an SDN
based network consists of controllers and switches. As a
popular implementation of SDN technology, OpenFlow pro-
tocol [13] is well used. In OpenFlow protocol, each packet
passing through the switches is controlled (i.e. forward, drop
and store, etc.) based on the flow entry maintained in each
switch and each flow entry consists of rule, action and statis-
tics. For the rule of a flow entry, 12 or more parameters
indicating the information from layer 1 (physical layer) to
layer 4 (transport layer) with the combination of the actions
can be used and the number of available parameters depends
on the version of OpenFlow protocol. OpenFlow protocol is
well used for network traffic control [14], server load bal-
ancing [15] and security purpose. In addition, in the litera-
ture, SDN technology was also confirmed to be applicable
for both physical and virtual network environment [16].

2.3 Related Work

Since we focus on SDN-based firewall system in this pa-
per, we mainly discuss the related work that practically uses
SDN technology for security purposes.

Nugraha et al. [17] proposed a method to detect and
mitigate SYN Flooding attack using OpenFlow technol-
ogy and sFlow methodology. In the method, incoming
traffic will be analyzed by sFlow collector of each Open-
Flow switch and when the packet rate exceeds the indicated
threshold the OpenFlow switch will be notified and the cor-
responding flow table will be updated accordingly to block
the traffic. Accordingly, the administrator needs to main-
tain the parameters for each OpenFlow switch based on the
characteristic of every attack and its applicable target is also
limited.

Yoon et al. [18] implemented four types of security
functions with SDN including “firewall and IPS”, “IDS”,
“scan and DDoS detector” and “stateful firewall and reflec-
tor networks”, etc. In the firewall function, the SDN con-
troller checks the packet in message in the firewall applica-
tion and updates the flow table of the SDN switch based on
the check results. In this method, the administrator needs to
maintain the security policies in the firewall application and
all the investigation will be conducted by the SDN controller
after the packet in event has been triggered. Therefore, the
SDN controller can be the bottleneck of the system which
may cause throughput decrease and the administrative cost
will also be increased.

Kim et al. [19] proposed a method for preventing DNS



IKARASHI et al.: DESIGN AND IMPLEMENTATION OF SDN-BASED PROACTIVE FIREWALL SYSTEM IN COLLABORATION WITH DOMAIN NAME RESOLUTION
2635

Table 1 Brief comparison between existing solutions and the proposal.

Solutions Applicable Controller based Administrative
targets investigation cost

[17] SYN Flooding No High
attacks (switch based)

[18] Manually Yes High
configured

[19] DNS amplification Yes High
attack

[20] Anomaly detection Yes High
Proposed whitelist and No Low
method blacklist basis (DNS basis)

amplification attacks using the history of DNS queries with
SDN. In the method, all the DNS queries sent out will be
stored in the SDN switch or SDN controller and only the
DNS responses match to the stored DNS queries will be
passed through. This approach needs to add the new fea-
tures for storing the DNS queries sent out and checking all
the incoming DNS responses to all SDN switches and the
applicable target is also limited.

Tang et al. [20] proposed a deep learning approach for
network intrusion detection in SDN environment. In the
method, a deep learning module installed in the SDN con-
troller analyzes and detects the network intrusion using the
traffic statistic information sent from every SDN switch with
a configured interval. Based on the analysis results, the SDN
controller updates the flow table of each SDN switch. This
approach requires high computational capability in the SDN
controller and basically the detection will be conducted after
the network traffic has been passed through.

We briefly compared the characteristics between the
existing solutions and our proposed method. As shown
in Table 1, in the conventional methods, investigations are
mainly conducted by SND controller which may decrease
network throughput and the security policies are maintained
manually which may cause high administrative cost. In our
research, we propose a proactive firewall solution with gen-
eral security purpose based on whitelist and blacklist con-
sidering network throughput and low administrative cost on
security policy as well as the deployment.

3. SDN-Based Proactive Firewall System in Collabora-
tion with Domain Name Resolution

3.1 Design

In this research, we consider a target network topology
consisting of a SDN-based internal network and the Inter-
net. The internal network includes SDN controller, SDN
switches, firewall systems, application servers as well as
DNS servers and the traffic between the internal network and
the Internet can be controlled by the SDN controller. Fig-
ure 1 shows a simple example of the target network topol-
ogy. In general, a network has one firewall system set at
the border in order to check and control all the incoming
and outgoing network traffic. However, as can be seen from

Fig. 1 An example of our target network topology

Fig. 1, there are two firewall units (Firewall1 and 2) set be-
tween the SDN switches (SDN Switch1 and 2). This is
because the proposed system proactively forwards network
traffic to different firewall unit for corresponding check in
order to provide high performance. The “Authoritative DNS
Server” provides authoritative name resolution service for
the domain name which is used in the “Application server”
and the “DNS Cache Server” provides recursive name reso-
lution service to the client in the Internet. As a result, all the
incoming and outgoing traffic of the internal network can be
controlled by the SDN controller and switches.

The key idea of our proposed system is to forward in-
coming traffic to different firewall unit based on the sub-
net information of the client IP address which can be ob-
tained by the collaboration of domain name resolution using
EDNS Client Subnet Option. Specifically, when the external
DNS cache server sends DNS query to the internal authori-
tative DNS server on behalf of the external client, the exter-
nal DNS cache server notifies the subnet information of the
client IP address to the internal authoritative DNS server.
Here, we assume that the external client and DNS cache
server are in the same subnet which is common in almost
all networks. Then the internal authoritative DNS server
sends the client subnet information to the SDN controller
for checking in the whitelist and blacklist and based on the
results the SDN controller updates the flow table of the SDN
Switch1 to forward the traffic to the proper firewall unit.
Recently, public DNS full resolvers such as Google Public
DNS are well used in some networks and in these cases the
external client may have different subnet from the DNS full
resolver. However, what our proposed system needs is that
the public DNS full resolver supports EDNS Client Subnet
Option and this option was originally proposed by Google
Public DNS. Thus with the increase of EDNS Client Sub-
net support in public DNS full resolvers, more networks can
achieve benefits from our proposed firewall system.



2636
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Since almost all Internet users and service providers
use DNS based domain name resolution service, every ac-
cess to the internal application server from the external
clients can be controlled by using the proposed system. Note
that among the two firewall units, one is for just lightweight
check to the clients included in whitelist while the other is
for detail investigation such as DPI (Deep Packet Investiga-
tion) to those unknown or listed on blacklist. Moreover, the
SDN controller only needs to update the rule for a particular
subnet once since the name resolution results can be cached
in the external DNS cache server. Thus the same DNS cache
server will not query the internal authoritative DNS server
until the TTL (Time To Live) of the domain name resolution
result expires and this avoids unnecessary control process.

3.2 Notification of the Client Subnet Information

In the proposed system, we use EDNS Client Subnet Op-
tion to obtain the client subnet information. The EDNS was
introduced for notifying the client subnet information (sub-
net address and net mask of the client) thus it also can no-
tify the entire client IP address by setting the net mask to
32 bits. During the name resolution, when the external DNS
cache server obtains the IP address of the internal authori-
tative DNS server which is authoritative for the target do-
main name, the external DNS cache server sends a query to
the authoritative DNS server with attaching the client sub-
net information. Accordingly the internal authoritative DNS
server can achieve the client subnet information and then no-
tify the SDN controller.

Cache function of the external DNS cache server can be
an issue in the proposed firewall system. Once the external
DNS cache server finishes the name resolution, it caches the
obtained information and uses the cache for the next queries
until the TTL expires. In general, the external DNS cache
server is located at the same place with the client thus once
the client subnet information is notified to the SDN con-
troller then the cache function is not an issue in this case.
However, in case of that multiple client segments exist in
an organization and all of them use the same external DNS
cache server, the external DNS cache server may reply for
some queries from other segments using the cache. There-
fore we intend to disable the cache function of the external
DNS cache server partially for this case. Although this ap-
proach may increase the queries to the internal authoritative
DNS server, we consider that only one extra query per client
will not cause attack or affect the effectiveness of the pro-
posed firewall system. The description about the approach
can be found in [21] and we omit the detail in this paper.

3.3 Collaboration of SDN Controller and Internal Author-
itative DNS Server

In our proposed system, the internal authoritative DNS
server obtains the client subnet information during the name
resolution and notifies it to the SDN controller. Basically,
SDN controller runs in event basis thus it cannot monitor

Fig. 2 Collaboration of SDN controller and DNS server

DNS traffic for obtaining the client subnet information. Ac-
cordingly, we add a sub SDN switch between the SDN con-
troller and the authoritative DNS server, and use PacketIn
method of SDN protocol to transfer the notification message
from the authoritative DNS server to the SDN controller.
Note that the SDN controller cannot check the client subnet
information of all incoming traffic since it will be vulner-
able to DDoS attacks. Thus in the proposed system, the
investigation for the client subnet information on the SDN
controller only occurs once the domain name resolution is
finished.

Figure 2 shows an example of network configuration
for the collaboration between the SDN controller and the
internal authoritative DNS server. The SDN Switch port di-
rectly connected to the external DNS Cache Server is set to
“drop all by default” and only DNS packets are allowed to
be forwarded to the internal authoritative DNS server. Note
that the traffic between the SDN Controller and the inter-
nal Authoritative DNS Server uses the Sub SDN Switch.
In fact, it is possible to use the SDN Switch directly in-
stead of adding the Sub SDN Switch. However, consider-
ing that the Authoritative DNS Server may also need other
communication such as Ping and Internet access which use
the SDN Switch, thus for the simplicity we added the Sub
SDN Switch between the Authoritative DNS Server and the
SDN Controller only for the notification of client subnet in-
formation.

We also consider that the external DNS cache server
can possibly attach fake client subnet information on its
DNS query and the SDN controller may accidentally up-
dates the flow table of the SDN switch to allow the mali-
cious accesses. However, this kind of forged IP addresses
can be filtered by other security functions such as ingress
filtering [22] thus we do not consider the feature in the pro-
posed firewall system.

3.4 Procedure of the Proposed Firewall System

Based on the design, we describe the detail procedure of the



IKARASHI et al.: DESIGN AND IMPLEMENTATION OF SDN-BASED PROACTIVE FIREWALL SYSTEM IN COLLABORATION WITH DOMAIN NAME RESOLUTION
2637

proposed firewall system using an example that an external
client accesses the internal application server from the start
of the domain name resolution in the following.

1. In order to access the internal application server, the
external client needs to know the IP address of the in-
ternal application server. Therefore, the external client
sends a recursive name resolution request to its local
DNS cache server (DNS Cache Server in Fig. 1).

2. The external DNS cache server sends the DNS queries
on behalf of the external client. Starting from the root
DNS server, eventually the external DNS cache server
reaches to the authoritative DNS server corresponding
for the target domain name (Authoritative DNS Server
in Fig. 1) and completes the name resolution.

3. After the name resolution is finished, the external DNS
cache server sends the same DNS query with attaching
the client subnet information to the internal authorita-
tive DNS server directly. Note that the notification can
be performed from the first query but considering se-
curity and privacy we decide to notify it only to the
authoritative DNS server of the target domain name.

4. When receives the DNS query from the external DNS
cache server, the internal authoritative DNS server
checks whether the client subnet information is in-
cluded. If it is, the internal authoritative DNS server
notifies the client subnet information to the SDN con-
troller, otherwise replies answers to the external DNS
cache server and the external DNS cache server replies
back the answer to the client.

5. The SDN controller checks the client subnet infor-
mation received from the internal authoritative DNS
server on the whitelist and blacklist stored on its own.
Based on the check result, the SDN controller up-
dates the flow table of the SDN Switch (not Sub SDN
Switch). That is, if the client subnet information is
included in the whitelist, the SDN controller updates
the flow table of the SDN switch to forward the in-
coming packet from the client to the Firewall1 which
only performs lightweight checks; otherwise the SDN
controller makes the SDN switch forward the incoming
packet from the client to the Firewall2 which performs
detailed investigations.

6. Finally, the external client starts access to the internal
application server and the traffic will be handled by the
SDN switch based on the policies set in the step 5.

With the above procedure, the incoming traffic from the
external client can be controlled by the SDN network and
also can be investigated flexibility based on the client subnet
information on an appropriate firewall unit. In the proposal,
we adopt IP address based investigation using whitelist and
blacklist which has the risk of IP address spoofing attack.
Basically, IP address spoofing attack is difficult in TCP com-
munication since it needs session hijack, while for UDP
communication, is common security issue. As a solution,
we can consider to add the IP spoofing investigation feature
into firewall systems and we omit the detail in this paper.

Fig. 3 Domain name resolution and client subnet option notification.

4. Implementation of Prototype System

Based on the design of our proposed system, we imple-
mented a prototype system using OpenFlow architecture and
DNS protocol. Since real firewall systems are too expen-
sive to be used for academic experiments, we used two ap-
plication servers instead for confirming the traffic control
function and switching performance. In this section, we de-
scribe the detail of domain name resolution part and Open-
Flow network configuration in the prototype system.

4.1 DNS Servers and Client Subnet Notification

For the sake of simplicity, instead of directly customiz-
ing DNS server program, we implemented the exter-
nal DNS cache server by combining a DNS proxy and
BIND (Berkeley Internet Name Domain) [24] which are
running on port 53 and 10053 respectively. The DNS
proxy consists of two Perl modules “Net::DNSServer” and
“Net::DNSServer::Proxy” [23]. Figure 3 shows the config-
uration of the domain name resolution part of the prototype
system. In the external DNS cache server, when the DNS
proxy receives a query from the client, it forwards the query
to the BIND for recursive name resolution. By receiving the
DNS response from the BIND (A in Fig. 3), the DNS proxy
can obtain the IP address of the authoritative DNS server of
the target domain name. Then the proxy initializes another
same query with attaching the client subnet information to
the authoritative DNS server directly which eventually per-
forms the client subnet information notification (B in Fig. 3).
Note that although BIND supports EDNS Client Subnet Op-
tion there is no feature of attaching the client subnet infor-
mation only on the query to the authoritative DNS server of
the target domain name. As we described, considering se-
curity and privacy the client subnet information will be only
notified to the target authoritative DNS server.

For the implementation of the authoritative DNS server
(for domain name “example.com” in Fig. 3), we used Perl



2638
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Fig. 4 Configuration of the local experimental network.

module “Net::DNS::Nameserver” [25] by listening on port
53. When receives a DNS query for A records of the domain
name “www.example.com”, the authoritative DNS server
checks if the DNS query has client subnet option attached.
If it does, the authoritative DNS server do both of replying
the query and registering the client subnet information to the
database running on the SDN controller. Otherwise, the au-
thoritative DNS server only answers for the DNS query. For
the database software, we used MySQL†.

Finally, we used UDP (User Datagram Protocol) packet
rather than TCP (Transmission Control Protocol) connec-
tion for the client subnet option notification in order to sim-
plify the data transmission using the PacketIn method in the
OpenFlow network. Therefore in the implementation of the
prototype system we used the exact client IP address (the
client subnet with 32-bit net mask) as the client subnet in-
formation.

4.2 OpenFlow Architecture Based Experimental Network

We constructed a local experimental SDN network using
OpenFlow protocol version 1.0. Trema [26] and Open
vSwitch [27] were used for the OpenFlow controller and
OpenFlow switches respectively. The network configura-
tion is shown in Fig. 4. The application servers “Server1”
and “Server 2” play the roles of firewall units instead of
real firewall systems. We consider that the main purpose of
the proposed system is to mitigate the throughput reduction
caused by the traffic congestion on a specific firewall sys-
tem thus the “Server1” and “Server 2” are capable enough
to simulate the performance of the proposed firewall system.
Among the clients, the “Client1” is assumed to be trustable
while others are unknown or malicious. For the network
configuration, the application servers, clients, authoritative
DNS server and DNS cache server are connected to the same
Open vSwitch using the subnet 192.168.1.0/24 while the

†MySQL - https://www-jp.mysql.com/

Table 2 The specs of each component.

Component CPU/Main Memory OS

Client1 Core i5-4z 2.60GHz/8GB Windows10 Pro
Client2,3 Core 2 Duo 2.66GHz/2GB Debian GNU 8.3.0
Server1,2 Core i5-4210M 2.60GHz/8GB Debian GNU 8.3.0

DNS servers Core 2 Duo 2.66GHz/2GB Debian GNU 8.3.0
OpenFlow Xeon E31245 3.30GHz Debian GNU 8.3.0
controller 8GB

Open vSwitch Pentinum 1403v2 2.60GHz/2GB Debian GNU 8.3.0
Sub Core 2 Duo 2.66GHz Debian GNU 8.3.0

Open vSwitch 2GB

OpenFlow controller, Open vSwitch and sub Open vSwitch
are connected using another subnet 192.168.2.0/24. On
the other hand, the authoritative DNS server and sub Open
vSwitch are configured using a third subnet 192.168.3.0/24
for their independent communication (registration of the
client subnet information from the authoritative DNS server
to the OpenFlow controller). Considering that the network
traffic to the firewall system will not be high, we configured
the links to the application servers to 100Mbps while for
others to 1Gbps. The specs of each component are listed in
Table 2.

5. Evaluations and Results

We evaluated the prototype system using the OpenFlow ar-
chitecture based experimental network. In prior to the de-
tailed evaluation, we describe the pre-configuration of the
prototype system in the following.

When the OpenFlow controller is initialized, it deploys
the pre-configuration to the Open vSwitches. Table 3 shows
the flow entries in the pre-configuration which will be added
to the Open vSwitches when the OpenFlow controller re-
ceives “switch ready” event from them. The “switch ready”
event occurs when the Open vSwitch is successfully au-
thenticated by the OpenFlow controller. We used the pa-
rameters of IP packet such as source and destination IP ad-
dresses, port numbers and IP protocol version in the pre-
configuration. By default, all connections to the “Port1”
which is the entry to the internal network are denied ex-
cept those for operating the proposed firewall system it-
self. Therefore the internal communications (flows 1 and
2), name resolution related traffic (flows 3, 4 and 5) will
be added by the network administrator in advance. Note
that only flow 5 will be added to the sub Open vSwitch and
others will be added to the main Open vSwitch. Here, the
OpenFlow controller identifies the Open vSwitches using
64-bit DPID (Data path ID) which is defined by the network
administrator. Other traffic from the external network is de-
fined by default in the flow 6 with lowest priority as “drop”
and especially ARP (Address Resolution Protocol) packets
are defined as flood with the highest priority in the flow 7.

5.1 Feature Evaluation

In the feature evaluation, we considered a scenario that all



IKARASHI et al.: DESIGN AND IMPLEMENTATION OF SDN-BASED PROACTIVE FIREWALL SYSTEM IN COLLABORATION WITH DOMAIN NAME RESOLUTION
2639

Table 3 Pre-configured flow entries of the Open vSwitch.

Flow No. From To Action Priority

1, 2 Server1, 2 Port1 Send out 1
3 DNS Client DNS Server Send out 2
4 DNS Server DNS Client Send out 2
5 DNS Server Any PacketIn 1
6 Other in Port1 Any Drop 0
7 (ARP from any) Any Flood MAX

the three clients attempt to access the server1 and only the
client1 will success while others will be forwarded to the
server2 by the OpenFlow controller. As we mentioned, only
the client1 plays as a trusted client while the other two play
as unknown or malicious.

As the detail procedure, first, we started the OpenFlow
controller, Open vSwitches including the sub Open vSwitch,
the authoritative DNS server, the DNS cache server and
all clients. These startup operations can be in any or-
der. Next, we checked the OpenFlow controller received
“switch ready” events from the Open vSwitches and con-
firmed that they were connected successfully. At this phase,
the PacketIn method of running in the main Open vSwitch
only handles the packets from the authoritative DNS server
since other packets will be dropped by default based on the
pre-configured flow entries. The OpenFlow controller also
checks the source and destination IP addresses, DPID and
communication protocol when receiving the PacketIn mes-
sage in order to protect itself from attacks. When the Open-
Flow controller receives the client subnet information from
the authoritative DNS server, the client subnet will be inves-
tigated on the whitelist and blacklist and based on the re-
sult the OpenFlow controller sends instructions to the Open
vSwitches. Finally, the Open vSwitch updates the destina-
tion IP address, MAC address and output port for the in-
coming packet based on the instructions from the OpenFlow
controller. As a result, if the source IP address of the incom-
ing packet is not included in the whitelist, the packet will be
forwarded to the server1 otherwise to the server2.

Based on the above procedure, we make all the three
clients access the server1 as following: 1) the client1 (in-
cluded in the whitelist) accessed the server1 using its FQDN
(Fully Qualified Domain Name); 2) the client2 (not included
in the whitelist or blacklist) accessed the server1 using its
FQDN; 3) the client3 (not included in the whitelist or black-
list) accessed the server1 using its IP address directly. All
the accesses were performed by sending ICMP (Internet
Control Message Protocol) [28] packets using PING com-
mand. Figure 5 shows the flow entries added to the flow
table of the Open vSwitch after the three clients sent ICMP
packets but it does not include the pre-configured flow en-
tries shown in Table 3. The table shows two flow en-
tries line1 and line2 which corresponding to the client1 and
client2 respectively. The line1 indicates that the packet sent
from “192.168.1.1” to “192.168.1.4” will be sent out from
the port2 of the Open vSwitch. Similarly, the line2 indicates
that the packet sent from “192.168.1.2” to “192.168.1.5”

Fig. 5 Flow entries created based on the traffic from the clients.

will be sent out from the port3 of the Open vSwitch. Conse-
quently, we confirmed that the ICMP packets sent from the
client1 were forwarded to the server1 and those sent from
the client2 were forwarded to the server2. On the other hand,
the flow entry corresponding to the client3 was not created
in the flow table which means that all the ICMP packets sent
from the client3 were dropped on the Open vSwitch since
the client3 attempted to access the server1 using its IP ad-
dress directly without domain name resolution.

5.2 Performance Evaluation

We also conducted performance evaluation using the same
local experimental network. In order to measure and com-
pare the performance of the prototype system with the con-
ventional systems, we considered five different network con-
ditions by generating background network traffic as follow-
ing: 1) “no flood” which means there are no attack traffic;
2) “one flood” which means generating attack traffic from
one client; 3) “two floods” which means generating attack
traffic from two clients; 4) “one random” which means gen-
erating attack traffic from one client using random source
IP address; 5) “two randoms” which means creating attack
traffic from two clients using random source IP address.

5.2.1 Delay of Adding a Flow Entry in Open vSwitch with
Collaboration of Domain Name Resolution

First, we measured the delay of creating one flow entry on
the Open vSwitch, from the point when the Open vSwitch
forwards a DNS query to the authoritative DNS server to
the point when the OpenFlow controller finished adding the
flow entry on the Open vSwitch. We synchronized the sys-
tem clock of the authoritative DNS server and the Open-
Flow controller using NTP (Network Time Protocol) [29]
and measured the delay using Perl and Ruby scripts. By
measuring the delay for 100 times, we obtained the average
delays and standard deviations in the five different patterns
as shown in Table 4. From the results, we can see that even
with the critical attack traffic on the background (two ran-
doms) the success rate of dig command reached to 62% with
the delay less than 8 milliseconds and we consider the value
is acceptable for a flow entry creation on a Open vSwitch.



2640
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

Table 4 Pre-configured flow entries of the Open vSwitch.

no one two one two
Patterns flood flood floods random randoms

Min delay (ms) 2.21 2.13 2.33 2.19 2.37
Max delay (ms) 3.00 2.94 2.80 41.63 48.32

Average delay (ms) 2.51 2.50 2.59 7.21 7.62
Standard dev. (ms) 0.24 0.28 0.08 6.12 6.53

dig success rate (%) 100 100 100 77 62

5.2.2 Throughput Comparison of Prototype and Conven-
tional Systems Considering Network Conditions

In the performance evaluation, we measured the throughput
in two patterns independently: between a client on whitelist
and the server1 and between an unknown client and the
server1. In the two patterns, the client1 was used for the
client on whitelist and unknown client correspondingly and
in both cases the client2 and 3 were used for generating
ICMP attack traffic to the server1 using its IP address di-
rectly as described in Sect. 5.1. With no doubt, the ICMP
attack traffic from the client2 and 3 were dropped on the
Open vSwitch since no corresponding flow entries will be
created for those attack packets. We used “iPerf”† on the
client1 and server1 for 5 times with 10 seconds per time
and measured the average throughput. For the ICMP traffic
from the client2 and 3, we used “Hping3”†† with “–flood”
option which indicates sending packets as fast as possible.
In addition, in order to reproduce DDoS like attack, we also
used “–rand-source” option which sets sender IP address
randomly in IPv4 protocol. We evaluated and compared the
performance with the following different system configura-
tions.

1 Normal switch: Used normal layer 2 switch in the ex-
perimental network without using any SDN protocol.

2 CL to Sv1/Atk to Sv1 (only for the client on whitelist):
All traffic is forwarded to the server1 (CL to Sv1) and
attack traffic targets on the server1 (Atk to Sv1).
CL to Sv1/Atk to Sv2 (only for the client on whitelist):
All traffic is forwarded to the server1 (CL to Sv1) and
attack traffic targets on the server2 (Atk to Sv2).

3 CL to Sv2/Atk to Sv1 (only unknown client): All traffic
is forwarded to the server1 (CL to Sv1) and the attack
traffic targets on the server1 (Atk to Sv1).
CL to Sv2/Atk to Sv2 (only for the unknown client):
All traffic is forwarded to the server1 (CL to Sv2) and
the attack traffic targets on the server2 (Atk to Sv2).

4 No name resolution/Atk to Sv1: Assign firewall unit
by checking the client IP address on the whitelist using
SDN without using domain name resolution. This con-
figuration creates flow entries for all packets arriving
at Open vSwitch using PacketIn method and the attack
traffic targets on the server1 (Atk to Sv1).

5 No name resolution/Atk to Sv2: The same as 4 ex-

†iPerf - https://iperf.fr/
††Hping - http://www.hping.org/

Fig. 6 Throughput comparison: prototype and conventional systems.

cept that the attack traffic targets on the server2 (Atk
to Sv2).

6 Prototype/Atk to Sv1: Use the prototype system
(OpenFlow protocol and domain name resolution) and
the attack traffic targets on the server1 (Atk to Sv2).
Note that the incoming traffic without domain name
resolution will be dropped in this configuration.

7 Prototype/Atk to Sv2: The same as 6 except that the
attack traffic targets on the server2 (Atk to Sv2).

Using the above seven different system configurations,
we measured and compared the throughput in the different
five patterns described in Sect. 5.2 (no flood, one flood, two
floods, one random and two randoms) and Fig. 6 shows the
measurement results. We performed the evaluation for both
clients on whitelist and unknown. From the graphs we can
see the following points.

First, we can confirm that under “normal switch” or “no
flood” condition, all system configurations provide similar
throughput without significant performance decrease since
there are no security check or attack traffic on the back-
ground. Then we also can summarize that when the target of
attack traffic on the background differs from the communi-
cation destination of the clients such as the cases of “CL to
Sv1/Atk to Sv2” and “CL to Sv2/Atk to Sv1”, the results did
not show significant throughput decrease in all five patterns.

Next, when the target of the attack traffic on the back-
ground is the same as the communication destination of the
client such as the cases of “CL to Sv1/Atk to Sv1” and “CL
to Sv2/Atk to Sv2”, the results show significant through-



IKARASHI et al.: DESIGN AND IMPLEMENTATION OF SDN-BASED PROACTIVE FIREWALL SYSTEM IN COLLABORATION WITH DOMAIN NAME RESOLUTION
2641

Fig. 7 CPU and memory status of OpenFlow controller and vSwitch.

put decrease in the patterns of “one random” and “two ran-
doms” for the client on whitelist. For the unknown client,
in all patterns except “no flood”, the results show the same
throughput decrease. We consider the reason is that the
check and drop process for the attack traffic on the Open
vSwitch cause high workload and consequently the through-
put was decreased.

Continuously, when there was no name resolution pro-
cess, only the two patterns “one flood” and “two floods” in
the case of “No name resolution/Atk to Sv1” show simi-
lar results while all other cases show no traffic. Note that
we used downward diagonal on other three cases which
are “No name resolution/Atk to Sv2” for the clients on the
whitelist, “No name resolution/Atk to Sv1” and “No name
resolution/Atk to Sv2” for the unknown client. These down-
ward diagonal bars mean that when we added the flow en-
tries for the client1 manually under the attack traffic, the
client1 showed the throughputs since during the attack traf-
fic the Open vSwitch cannot create the flow entries due to
the heavy workload.

Finally, except the pattern “two randoms”, the proto-

type system shows almost the same throughput for both
clients on whitelist and unknown. We consider the reason of
the performance deterioration in the pattern “two randoms”
is that the prototype system works by software unlike the
“Normal switch” which is hardware basis. Thus we also
consider that it is worth taking other advantages even if the
performance may be lower than the “Normal switch”.

From the above performance evaluation results, we can
confirm that the proposed method can be expected to pro-
vide both lightweight and detail inspections for network
traffic without throughput reduction and be applicable for
real network environment with acceptable administrative
cost.

5.3 Investigation of the Performance Deterioration

In order to investigate the reason of performance deteriora-
tion (in the “two randoms”), we measured the free memory
size and CPU idle percentage of the OpenFlow controller
and Open vSwitch using “vmstat” command. Consider-
ing the change of network condition, we measured under
the same five patterns described in Sect. 5.2 (no flood, one
flood, two floods, one random and two randoms). We per-
formed the measurement with 1 second interval for 20 sec-
onds and the results are shown in Fig. 7. From the results,
we can confirm that DoS attacks (one random and two ran-
doms) will not cause significant memory consumption on
both of the OpenFlow controller and Open vSwitch. On the
other hand, although the CPU idle percentage of the Open-
Flow controller had no change during the ICMP flooding
attack, the Open vSwitch was affected significantly. Espe-
cially when both clients used random source IP addresses in
the ICMP flooding attack, the CPU idle percentage of the
Open vSwitch was almost zero. Based on the result of CPU
usage in the Open vSwitch, we consider that CPU resource
exhaustion can be the reason of the performance deterio-
ration. We consider that the sharp decrease of CPU idle
percentage in Open vSwitch happened because the Open
vSwitch (“ovs-vswitchd” and “ovs-dbserver”) is software
basis. Therefore we expect that it is possible to improve
the performance of the proposed firewall system even under
DoS attacks by using hardware based OpenFlow controller
and switches. Many hardware based approaches to improve
the performance of OpenFlow systems (RAM, processor,
BUS, etc.) have been proposed [30]. Moreover, by using
multiple OpenFlow controllers for redundancy and load bal-
ancing, the performance can be improved further [31], [32].

6. Conclusion

In this paper, we proposed an SDN-based proactive fire-
wall system in collaboration with domain name resolution.
The proposed firewall system includes two sub firewall units
and the SDN controller forwards the incoming traffic to the
proper one based on the client subnet information obtained
from the internal authoritative DNS server using EDNS
Client Subnet Option. Among the two sub firewall units, one



2642
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.11 NOVEMBER 2018

performs lightweight check for the incoming traffic while
the other performs detailed investigations. By separating the
incoming traffic based on the client subnet information, the
proposed firewall system not only can inspect all the incom-
ing traffic appropriately but also can keep the performance.
We implemented a prototype system using OpenFlow pro-
tocol and Perl modules as well as BIND name server. Us-
ing the prototype system, we evaluated itsperformance of
our proposed firewall system under several patterns of net-
work condition. According to the evaluation results, we con-
firmed that the prototype firewall system worked correctly as
we designed and can provide better performance compare to
conventional systems. We also observed performance dete-
rioration of the prototype system under some specific DoS
attacks and we consider that the problem can be solved by
using hardware based SDN architecture. The future work
includes evaluations using real firewall facilities and perfor-
mance analysis in real network environment.

Acknowledgements

This work was partially supported by JSPS Grants-in-
Aid for Scientific Research (KAKENHI) Grant Number
JP25330105.

References

[1] T. Otsuka, N. Yamai, K. Okayama, Y. Jin, H. Ikarashi, and N.
Kitagawa, “Design and Implementation of Proactive Firewall Sys-
tem in Cooperation with DNS and SDN,” The 31st Int’l Tech. Conf.
on Circuits/Syst., Comput. and Commun. (ITC-CSCC 2016), Naha,
Japan, pp.25–28, July 2016.

[2] J. Verdú, M. Nemirovsky, and M. Valero, “MultiLayer Processing
- An execution model for parallel stateful packet processing,” The
4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, San Jose, USA, pp.79–88, 2008.

[3] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R.H. Katz, “Fast and
Memory-Efficient Regular Expression Matching for Deep Packet In-
spection,” Proceedings of the 2006 ACM/IEEE symposium on Ar-
chitecture for networking and communications systems, San Jose,
California, USA, pp.93–102, 2006.

[4] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari,
“Client Subnet Option in DNS Queries,” RFC7871, IETF, 2016.

[5] “What are FireHOL and FireQOS?” https://firehol.org/ (accessed
2018-05-12).

[6] FORCEPOOINT, “Forcepoint Stonesoft Next Generation Firewall,”
https://www.forcepoint.com/ja/product/network-firewall/forcepoint-
stonesoft-next-generation-firewall (accessed 2018-05-10).

[7] Dell, “Network Security Solutions|Firewall Hardware, Software &
Services - SonicWall,” https://www.sonicwall.com/ (accessed 2018-
05-10).

[8] H. Hamed and E. Al-Shaer, “Dynamic Rule-ordering Optimization
for High-speed Firewall Filtering,” Proceedings of the 2006 ACM
Symposium on Information, computer and communications secu-
rity, Taipei, Taiwan, pp.332–342, March 2006.

[9] A. Ganesh, A. Sudarsan, A. Krishna Vasu, and D. Ramalingam,
“IMPROVING FIREWALL PERFORMANCE BY USING A
CACHE TABLE,” IJAET, vol.7, no.5, pp.1594–1607, Nov. 2014.

[10] D.S. Alexander, W.A. Arbaugh, M.W. Hicks, P. Kakkar, A.D.
Keromytis, J.T. Moore, C.A. Gunter, S.M. Nettles, and J.M. Smith,
“The SwitchWare active network architecture,” in IEEE Netw.,
vol.12, no.3, pp.29–36, May/June 1998.

[11] R. Narisetty and D. Gurkan, “Identification of Network Measure-
ment Challenges in OpenFlow-based Service Chaining,” Proc. 8th
IEEE Workshop on Network Measurements (WNM2014), Edmon-
ton, Canada, pp.663–670, Sept. 2014.

[12] AT&T, BT, CenturyLink, China Mobile, Colt, Deutsche Telekom,
KDDI, NTT, Orange, Telecom Italia, Telefonica, Telstra, Verizon,
“NetworkFunctions Virtualization - Introductory White Paper,” Oct.
22–24, 2012, https://portal.etsi.org/NFV/NFV White Paper.pdf.

[13] “Open Networking Foundation” (online), available from
https://www.opennetworking.org/.

[14] H. Kim and N. Feamster, “Improving Network Management with
Software Defined Networking,” Proc. IEEE Commun. Mag., vol.51,
no.2, pp.114–119, Feb. 2013.

[15] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server
Load Balancing Gone Wild,” The 11th USENIX conference on Hot
topics in management of internet, cloud, and enterprise networks
and services, Boston, MA, pp.12–17, 2011.

[16] W. Chen, H. Li, Q. Ma, and Z. Shang, “Design and implementa-
tion of server cluster dynamic load balancing in virtualization envi-
ronment based on OpenFlow,” The 9th International Conference on
Future Internet Technologies (CFI2014), Tokyo, Japan, June 2014.

[17] M. Nugraha, I. Paramita, A. Musa, D. Choi, and B. Cho, “Utilizing
OpenFlow and sFlow to Detect and Mitigate SYN Flooding Attack,”
Journal of Korea Multimedia Society, vol.8, no.8, pp.988–994, Aug.
2014.

[18] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “En-
abling security functions with SDN: A feasibility study,” Computer
Networks, vol.85, pp.19–35, 2015, ISSN 1389-1286.

[19] S. Kim, S. Lee, G. Cho, M.E. Ahmed, J. Jeong, and H.
Kim, “Preventing DNS Amplification Attacks Using the His-
tory of DNS Queries with SDN,” vol.10493, pp.135–152, 2017,
10.1007/978-3-319-66399-9 8.

[20] T.A. Tang, L. Mhamdi, D. McLernon, S.A.R. Zaidi, and M.
Ghogho, “Deep learning approach for Network Intrusion Detection
in Software Defined Networking,” 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM), Fez,
pp.258–263, 2016.

[21] T. Otsuka, Gada, N. Yamai, K. Okayama, and Y. Jin, “Design and
Implementation of Client IP Notification Feature on DNS for Proac-
tive Firewall System,” 2015 IEEE 39th Annual Conference on Com-
puter Software and Applications, Taichung, pp.127–172, July 2015.

[22] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating De-
nial of Service Attacks which employ IP Source Address Spoofing,”
RFC2267, IETF, May 2000.

[23] R. Brown, “Net::DNSServer-0.11,” http://search.cpan.org/∼bbb/
Net-DNSServer-0.11/lib/Net/DNSServer.pm (accessed 2018-05-
10).

[24] Internet Systems Consortium, “BIND, The most widely used Name
Server Software,” https://www.isc.org/downloads/bind/ (accessed
2018-05-10).

[25] N. Labs, “Net::DNS::Nameserver,” http://search.cpan.org/dist/Net-
DNS/lib/Net/DNS/Nameserver.pm (accessed 2018-05-10).

[26] “Trema:Full-Stack OpenFlow Framework in Ruby and C,”
https://trema.github.io/trema/ (accessed 2018-05-10).

[27] “Open vSwitch,” http://www.openvswitch.org/ (accessed 2018-05-
10).

[28] F. Gont and C. Pignataro, “Formally Deprecating Some ICMPv4
Message Types,” RFC6918, IETF, April 2013.

[29] D. Mills, U. Delaware, J. Martin, Ed., J. Burbank, and W. Kasch,
“Network Time Protocol Version 4: Protocol and Algorithms Spec-
ification,” RFC5905, IETF, June 2010.

[30] O.E. Ferkouss et al., “A 100Gig network processor platform for
openflow,” 2011 7th International Conference on Network and Ser-
vice Management, Paris, France, pp.286–289, Oct. 2011.

[31] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow:
Controller load balancing for OpenFlow networks,” 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligent Sys-

http://dx.doi.org/10.1145/1477942.1477954
http://dx.doi.org/10.1145/1185347.1185360
http://dx.doi.org/10.1145/1128817.1128867
http://dx.doi.org/10.1109/65.690959
http://dx.doi.org/10.1109/lcnw.2014.6927718
http://dx.doi.org/10.1109/mcom.2013.6461195
http://dx.doi.org/10.1145/2619287.2619288
http://dx.doi.org/10.1016/j.comnet.2015.05.005
http://dx.doi.org/10.1007/978-3-319-66399-9_8
http://dx.doi.org/10.1109/wincom.2016.7777224
http://dx.doi.org/10.1109/compsac.2015.220
http://dx.doi.org/10.1109/ccis.2012.6664282


IKARASHI et al.: DESIGN AND IMPLEMENTATION OF SDN-BASED PROACTIVE FIREWALL SYSTEM IN COLLABORATION WITH DOMAIN NAME RESOLUTION
2643

tems, Hangzhou, pp.780–785, Oct. 2012.
[32] H. Yao, C. Qiu, C. Zhao, and L. Shi, “A Multicontroller Load Bal-

ancing Approach in Software-Defined Wireless Networks,” Interna-
tional Journal of Distributed Sensor Networks, vol.11, no.10, 2015.

Hiroya Ikarashi received his B.E. degree
in computer and information sciences from To-
kyo University of Agriculture and Technology,
Japan in 2016. Since April 2016, he has been
master’s course in information science at Tokyo
University of Agriculture and Technology grad-
uate school. His research interests include Net-
work Architecture and network security. He is a
student member of IPSJ.

Yong Jin received his M.E. degree in elec-
tronic and information systems engineering and
Ph.D. degree in Industrial Innovation Sciences
from Okayama University, Japan in 2009 and
2012, respectively. In April 2012, he joined the
Network Architecture Laboratory of National
Institute of Information and Communications
Technology, Japan, as a researcher. From Oc-
tober 2013, he joined the Global Scientific In-
formation and Computing Center of Tokyo In-
stitute of Technology as an assistant professor.

His research interests include network architecture, network security, traf-
fic engineering and Internet technology. He is a member of IPSJ and IEEE.

Nariyoshi Yamai received his B.E. and
M.E. degrees in electronic engineering and his
Ph.D. degree in information and computer sci-
ence from Osaka University, Osaka, Japan, in
1984, 1986 and 1993, respectively. In April
1988, he joined the Department of Information
Engineering, Nara National College of Technol-
ogy, as a research associate. From April 1990
to March 1994, he was an Assistant Professor in
the same department. In April 1994, he joined
the Education Center for Information Process-

ing, Osaka University, as a research associate. In April 1995, he joined
the Computation Center, Osaka University, as an assistant professor. From
November 1997 to March 2006, he joined the Computer Center, Okayama
University, as an associate professor. From April 2006 to March 2014, he
was a professor in the Information Technology Center (at present, the Cen-
ter for Information Technology and Management), Okayama University.
Since April 2014, he has been a professor in the Institute of Engineering,
Tokyo University of Agriculture and Technology. His research interests in-
clude distributed system, network architecture and Internet. He is a member
of IPSJ and IEEE.

Naoya Kitagawa received his B.Sc.
and M.Sc. degree in information science from
Chukyo University, Toyota, Japan in 2009 and
2011 respectively, and his Ph.D. degree in
information science from Nagoya University,
Nagoya, Japan in 2014. In April 2014, he joined
Information Technology Center, Nagoya Uni-
versity as a postdoctoral fellow. Since Octo-
ber 2014, he has been an assistant professor in
the Institute of Engineering, Tokyo University
of Agriculture and Technology. His research in-

terests include the Internet, network security, and distributed system. He is
a member of IPSJ.

Kiyohiko Okayama received his B.S.,
M.S. and Ph.D. degrees in information and com-
puter sciences from Osaka University, Japan, in
1990, 1992 and 2001, respectively. After he has
worked in the Department of Information Sys-
tem at Osaka University and in the Graduate
School of Information Science at Nara Institute
of Science and Technology as a research asso-
ciate, he joined the Department of Communica-
tion Network Engineering at Okayama Univer-
sity in 2000. From 2005 to 2011, he joined the

Information Technology Center at Okayama University. Since 2011, he
has been an associate professor in Center for Information Technology and
Management at Okayama University. His research interests include net-
work design and network security. He is a member of IEICE.

http://dx.doi.org/10.1109/ccis.2012.6664282
http://dx.doi.org/10.1155/2015/454159

