IEICE TRANS. INF. & SYST., VOL.E101-D, NO.7 JULY 2018

1811

| LETTER Special Section on Knowledge-Based Software Engineering

Character Feature Learning for Named Entity Recognition

Ping ZENG'"'", Qingping TAN"-"'*, Haoyu ZHANG"'", Xiankai MENG"'", Zhuo ZHANG" ',
Jianjun XU, Nonmembers, and Yan LEI'™, Student Member

SUMMARY  The deep neural named entity recognition model automat-
ically learns and extracts the features of entities and solves the problem
of the traditional model relying heavily on complex feature engineering
and obscure professional knowledge. This issue has become a hot topic in
recent years. Existing deep neural models only involve simple character
learning and extraction methods, which limit their capability. To further
explore the performance of deep neural models, we propose two charac-
ter feature learning models based on convolution neural network and long
short-term memory network. These two models consider the local seman-
tic and position features of word characters. Experiments conducted on the
CoNLL-2003 dataset show that the proposed models outperform traditional
ones and demonstrate excellent performance.

key words: named entity recognition, character representation learning,
character feature learning, knowledge extraction

1. Introduction

Named entity recognition (NER) is an important NLP task.
Traditional NER approaches include rule-based and statis-
tical methods. Rule-based methods [1] require linguists or
domain experts to design rule templates and usually achieve
good results, but they depend heavily on sophisticated man-
ual design and obscure domain knowledge and possess poor
versatility. Statistical methods include support vector ma-
chine [2], hidden Markov model [3], and condition random
field (CRF) [4], which require design rule templates and rely
on complex and taxing feature engineering.

Deep neural NER models, which do not rely on com-
plex feature engineering, have received considerable atten-
tion recently. [5] proposed the use of a DNN network
model for the relationship between a word and a tag. This
model is relatively simple, does not consider the existence
of contextual information among words, and demonstrates
a weak performance. To learn word context semantic as-
sociations, [6] proposed the use of long short-term memory
network (LSTM) or bidirectional LSTM (BiLSTM) mod-
eling of word sequences. To consider the presence of con-
text association between tags, [6]-[9] proposed adding a lin-
ear chain CRF layer above the BILSTM layer, this addition
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further enhances the learning capability. These models,
which use BiLSTM to model word sequences and CRF to
model tag sequences, are called BILSTM-CRF models and
dominant in the field of NER.

These models can effectively model word and tag fea-
tures, but many of the words to be predicted may not exist in
the training set. To address this problem, researchers have
attempted to learn word character features by using neural
networks. Word characters often have local combinations,
and words with similar meanings may have similar con-
stituent structures (e.g., “sample” and “example”), which are
called local semantic features. The local semantic features
of words are commonly learned by using convolution neu-
ral networks (CNNs) [7]-[13]. In addition, position features
between word characters, such as “pre”, often appear at the
beginning of a word, and “ing” often appears at the end of
the word, character position features are normally learned
by using LSTM or BiLSTM [8], [14].

CNN and (Bi)LSTM (short for LSTM/BiLSTM) can
learn several semantic features of a word. However, CNN
is ineffective in modeling the positional features of char-
acter sequences, and (Bi)LSTM is not as good as CNN
in modeling the local semantics of words. To synthe-
size the adventges of CNN and (Bi)LSTM, this study de-
veloped a CNN+(Bi)LSTM concatenation model and a
CNN+(Bi)LSTM stack model, which can learn the local
semantic and position features of word sequences. Ex-
perimental results showed that the CNN+BiLSTM con-
catenation and CNN+LSTM stack models, which obtained
91.58% and 91.52% F1 scores on the CoNLL-2003 dataset,
respectively, possessed a strong learning capability and out-
performed state-of-the-art models.

The main contributions of this work are as follows.
First, it evaluates the effect of different character feature
learning modules on NER tasks. Second, to the best of our
knowledge, this study is the first to jointly use CNN and
(Bi)LSTM to model character features. Lastly, the proposed
models achieve excellent performance.

2. Our Models

We referred to the BILSTM-CRF model and proposed two
models that can learn many character features. The two
models integrate the semantic information contained in a
word into the word embedding task by concatenation or
stacking. These end-to-end models do not require complex
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data preprocessing.
2.1 Overall Architecture

The model consists of an input layer, a BILSTM layer, a
concatenation layer, and a CRF layer. The overall model
architecture is shown in Fig. 1. The input layer consists of
processed word vectors (called input vectors), and the num-
ber of input vectors is equal to the number of words in the
sentence. The input vector is entered into a two-way LSTM
network consisting of forward and backward LSTMs, and
the time step is equal to the number of input vectors. The
output of BiILSTM is concatenated into a new vector in se-
ries and inputted to CRE.

This model is a variant of the BILSTM-CRF model.
The difference is that our model introduces CNN and
(Bi)LSTM modules at the input layer. The two modules
learn word character features by concatenation or stacking,
and these character features are concatenated together with
word embedding to form the input vector.

2.2 Concatenation Model for Character Feature Learning

Figure 2 shows the process of learning character features
by concatenation. The character vectors are fed to the
(Bi)LSTM and CNN modules to calculate the output values.
These output values are eventually concatenated with word
embedding (query from the word embedding table) into a
new input vector (corresponding to the INPUT layer vector
in Fig. 1). The rest of the calculation processes do not inter-
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fere with one another, except for sharing the same character
vector.

The concatenation method preserves the word embed-
ding, the CNN vector, and the (Bi)LSTM vector by con-
sidering the semantic features of the word itself, the local
semantic features, the position-related features of the word
characters, and so on. The implication feature is rich, and
the mutual interference is small.

2.3 Stack Model for Character Feature Learning

Figure 3 shows the process of learning character features by
stacking. The character vector is entered into the (Bi)LSTM
module, and the output of each step in the (Bi)LSTM mod-
ule is regarded as the input of the CNN module. Word em-
bedding is then concatenated with the output of the CNN
module into a new input vector (corresponding to the IN-
PUT layer vector in Fig. 1). As a result, the input vector
dimension is smaller than the concatenation model, and the
character position feature can be fused to the local semantic
features via implicit stacking.

2.4  Model Details and Training

All of the BiLSTM units in the model are consistent with
that mentioned in [16]. All LSTM units are defined in the
same manner as that in [17]. The forget gate bias is initial-
ized to 1, and the other vectors are initialized to 0. The CNN
in the character feature module uses the method mentioned
in [7], and the pooling layer uses the max pooling method.
All matrix parameters are initialized by the uniform
sampling U ~ [— V6/(r +c¢), +V6/(r + c)] (r is the num-
ber of matrix rows and c is the number of matrix columns)
mentioned in [18], [19]. All word embedding or charac-
ter vectors are initialized by U ~ [— V3/d,++3/d ] (d is
the dimension of the vector) and fine-tuned in the training

process.
We used the CRF mentioned in [20] to encode NER
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tags. In the training process, we used the backpropagation
(BP) algorithm [21], backpropagation through time (BPTT)
algorithm [17], and momentum mini-batch random gradient
descent optimizer with a dynamic decay learning rate to op-
timize the training parameters, word embedding, and char-
acter vectors. The training objective of the model is to max-
imize the likelihood function L(6) as follows:

L(®) = )" log p(y|x;6)
l_[:lzl JiQi-1,yi,X)

n - -
ZY’G}’(X) nizl f’(yi—l’y," X)

Jiyi-1,yi- X) = exp(6(X,)) = exp(WX; +b)

where 6 denotes the training parameter, x denotes the in-
put vector, y denotes the target tag corresponding to X, y(X)
denotes the set of all possible tags corresponding to x, W
denotes the weight matrix, and b denotes the bias. In the
prediction process, the Viterbi algorithm [22] is used for de-
coding. The objective function is

plylx;6) =

s

y' = argmax p(y|x;6).

yey(x)

To improve the generalizability of the model, we ap-
plied dropout [23] on the character vector before inputting
to the CNN layer and on the input and output vectors of the
BiLSTM layer. Before entering the model, the data were
shuffled by batch. In the validation set, we used the early
stopping method [24] to prevent over-training. These meth-
ods were proven to be valid by [8], [9].

3. Experiments

We used the Lasagne framework [25] to implement the
model. On the basis of the CoNLL-2003[15] English
dataset, we evaluated the effects of the character learning
components of the model and compared them with those
obtained by Chiu and Nichols [7], Luo et al. [26], Lample
et al.[8], and Ma and Hovy [9]. Other models were also
compared.

3.1 Datasets

We used the CoNLL-2003 English dataset for experimental
evaluation. The training set of the dataset contains 14,987
sentences and 204,567 tags. The validation set contains
3,466 sentences and 51,578 tags. The test set contains 3,684
sentences and 46,666 tags. We used the BIOES tagging
scheme [8], [9] to process the data and improve the model’s
capabilities. We also used Glove 100-dim word embedding
data[27] as the initial input vector of a word. Words that do
not appear in Glove were randomly initialized, as described
in Sect. 2.6.

3.2 Parameter Setting

We set the model parameters according to [9], as shown in
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Table 1  Parameter setting for the proposed model
Layer Parameter Name Value
CNN window size 3
CNN filter size 30
Character Layer Number of LSTM units 30
Number of BILSTM units 15
Number of BILSTM units 200
BiLSTM Layer Initial state 0.0
Initial bias 1.0
Batch size 10
Dropout rate 0.5
Initial learning rate 0.015
Other Learning rate decay rate 0.05
Early stopping patient 15
Gradient clipping 5.0
Table2  Results of the model component test
Character model Acc. Prec. Recall F1
None 97.54 90.80 88.33 89.55
CNN 97.92 91.02 91.44 91.23
BiLSTM 98.02 91.34 91.37 91.35
LST™M 97.59 90.64 88.64 89.63
CONCAT(CNN+BIiLSTM)  98.03 91.29 91.75 91.52
CONCAT(CNN+LSTM) 97.99 91.25 91.48 91.36
STACK(CNN+BIiLSTM) 98.03 91.35 91.50 91.42
STACK(CNN+LSTM) 98.02 91.46 91.69 91.58

Table 1. We set the word character feature dimension to 30.
Thus, the number of BiLSTM units was set to 15 (the final
output dimension was 30 after concatenation). The number
of LSTM units was set to 30, and the CNN filter was also
set to 30. According to these settings, the word feature di-
mension is 260 in the final concatenation model and 230 in
the stack model.

3.3 Results

To comprehensively verify the validity of the character fea-
ture learning module and the overall learning capability of
the model, we conducted component and comparison tests
with other models and used the conlleval perl script [28] to
calculate the output.

The main purpose of the component test was to verify
the effect of character features on the overall learning ca-
pability of the model. We tested the learning capability of
various character feature components by replacing the char-
acter feature learning module in the overall model. The re-
sults are shown in Table 2. The results demonstrate that
the CNN+LS TM stack and CNN+BiLSTM concatenation
models have the best learning capability because both mod-
els can learn the local semantic and position features of word
characters. BiLSTM is generally superior to LSTM because
it is more capable of capturing semantic associations among
characters. CNN is better than LSTM in our experiments,
this finding is consistent with the results reported in previ-
ous work.

Table 3 shows the F1 scores of the main NER models
established after 2009. As shown in the table, our model has
a higher F1 score than previous models. The STACK(CNN
+LSTM)-BiLSTM-CRF and CONCAT(CNN+BiLSTM)-
BiLSTM-CRF models showed the best performance in
the CoNLL-2003 dataset. This result indicates that the
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Table3 Related NER work comparison. Given that the same evaluation
criteria and datasets were used, we directly referred to the results reported
by relevant work. * The highest F1 score of Ma and Hovy’s model in our
environment is 91.23.

Model F1

Ratinov and Roth (2009) 90.80
Lin and Wu (2009) 90.90
Collobert et al. (2011) 89.59
Passos et al. (2014) 90.90
Huang et al. (2015) 90.10
Chiu and Nichols (2015) 90.77
Luo et al. (2015) 91.20
Lample et al. (2016) 90.94
Ma and Hovy(2016)* 91.23
Our STACK(CNN+LSTM) 91.58
Our STACK(CNN+BILSTM) 91.42
Our CONCAT(CNN+LSTM) 91.36
Our CONCAT(CNN+BILSTM) 91.52

recognition capability of the NER model can be further im-
proved by fully learning the character features.

4. Conclusion

We investigated the influence of character feature learning
on NER tasks and proposed two models of learning local
semantic and position-related features in word characters by
concatenation and stacking. To the best of our knowledge,
the proposed models are the first to use CNN and (Bi)LSTM
to learn character features in NER tasks.

The experiments showed that the concatenation and
stack models performed well in different character fea-
ture learning tasks. CONCAT-BiLSTM-CRF and STACK-
BiLSTM-CRF models outperformed previous models.

In the future, we will consider using the attention
mechanism [29] to enhance model capabilities at the char-
acter feature level to learn the combined weights of differ-
ent character modules. We will also consider the attention
mechanism at the word level to model the correspondence
among tags and words.
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