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Identifying Core Objects for Trace Summarization
by Analyzing Reference Relations and Dynamic Properties
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SUMMARY Behaviors of an object-oriented system can be visualized
as reverse-engineered sequence diagrams from execution traces. This ap-
proach is a valuable tool for program comprehension tasks. However, ow-
ing to the massiveness of information contained in an execution trace, a
reverse-engineered sequence diagram is often afflicted by a scalability is-
sue. To address this issue, many trace summarization techniques have been
proposed. Most of the previous techniques focused on reducing the vertical
size of the diagram. To cope with the scalability issue, decreasing the hori-
zontal size of the diagram is also very important. Nonetheless, few studies
have addressed this point; thus, there is a lot of needs for further develop-
ment of horizontal summarization techniques. We present in this paper a
method for identifying core objects for trace summarization by analyzing
reference relations and dynamic properties. Visualizing only interactions
related to core objects, we can obtain a horizontally compactified reverse-
engineered sequence diagram that contains system’s key behaviors. To
identify core objects, first, we detect and eliminate temporary objects that
are trivial for a system by analyzing reference relations and lifetimes of ob-
jects. Then, estimating the importance of each non-trivial object based on
their dynamic properties, we identify highly important ones (i.e., core ob-
jects). We implemented our technique in our tool and evaluated it by using
traces from various open-source software systems. The results showed that
our technique was much more effective in terms of the horizontal reduction
of a reverse-engineered sequence diagram, compared with the state-of-the-
art trace summarization technique. The horizontal compression ratio of
our technique was 134.6 on average, whereas that of the state-of-the-art
technique was 11.5. The runtime overhead imposed by our technique was
167.6% on average. This overhead is relatively small compared with recent
scalable dynamic analysis techniques, which shows the practicality of our
technique. Overall, our technique can achieve a significant reduction of
the horizontal size of a reverse-engineered sequence diagram with a small
overhead and is expected to be a valuable tool for program comprehension.
key words: dynamic analysis, reverse-engineered sequence diagram, trace
summarization, core object, program comprehension

1. Introduction

Sufficiently understanding software structures and behaviors
is one of the most important objectives in program mainte-
nance. Specification and design documents are helpful for
program comprehension. Nevertheless, in most cases, those
documents do not accurately reflect the system state owing
to many modifications and extensions after the first version
has shipped.

Manuscript received November 8, 2017.
Manuscript revised March 10, 2018.
Manuscript publicized April 20, 2018.
†The authors are with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
††The author is with Kyoto University, Kyoto-shi, 606–8501

Japan.
a) E-mail: knhr@sa.cs.titech.ac.jp
b) E-mail: tkobaya@cs.titech.ac.jp
c) E-mail: atsumi.noritoshi.5u@kyoto-u.ac.jp

DOI: 10.1587/transinf.2017KBP0018

To address this issue, execution trace analysis tech-
niques are often used for some purposes, such as program
comprehension [1] and specification mining [2]–[5]. For
aiding in program comprehension, visualizing object inter-
actions in execution traces as reverse-engineered sequence
diagrams is a promising approach [1]. However, the mas-
siveness of information in the diagram causes a scalability
issue. Therefore, abstraction techniques are very important
for the trace visualization approach.

The vertical size of a reverse-engineered sequence dia-
gram grows in proportion to the execution time, while its
horizontal size grows in proportion to the number of ob-
jects. Most previous works focused on reducing the vertical
size of the diagram [6]–[11] or effectively exploring the dia-
gram [12]–[15]. To cope with the scalability issue, decreas-
ing the horizontal size of the diagram is also very important.
Nonetheless, few studies have addressed this point [9], [16]–
[18]. Thus, further development and improvement of re-
duction techniques that focus on the horizontal direction are
needed.

In this paper, we present a technique of identifying core
objects for trace summarization by analyzing the reference
relations and dynamic properties. Visualizing only interac-
tions related to core objects, we obtain a horizontally com-
pactified version of a reverse-engineered sequence diagram
that contains the system’s key behaviors comprised of mes-
sages from among the core objects. Our core identification
steps are as follows. First, we detect and eliminate the tem-
porary objects that are generated in large quantities during a
program execution [19]. To this end, we analyze reference
relations and lifetimes of objects in a similar way to escape
analysis. Second, focusing on the frequency of access to
non-temporary objects, we estimate the importance of those
objects. Objects that survive for long periods and have high
access frequencies are expected to play core roles in a sys-
tem. These objects are the core objects we strive to identify.

We applied our technique to traces of various open-
source software systems to evaluate its feasibility and ef-
fectiveness in terms of trace summarization. The results
showed that our technique achieved superior reduction per-
formance compared with the state-of-the-art trace summa-
rization technique. Our compression ratio of the hori-
zontal size of a reverse-engineered sequence diagram was
134.6 on average, while retaining core objects in the result-
ing diagram that were important to comprehend a design
overview. The runtime overhead imposed by our technique
was 167.6% on average. This overhead is relatively small
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compared with recent scalable dynamic analysis techniques,
which shows the practicality of our technique. Our tech-
nique can achieve a significant reduction of the horizontal
size of a reverse-engineered sequence diagram with a small
overhead and is expected to be a valuable tool for program
comprehension.

The main contributions of this paper are as follows:

• The Reference Escape Analysis (REA) technique is
proposed to detect temporary objects in a system

• A formula to estimate the importance of objects by fo-
cusing on access frequency is presented. Visualizing
only interactions related to important objects (i.e., core
objects), we can obtain a horizontally compactified ver-
sion of a reverse-engineered sequence diagram.

• We demonstrate the feasibility and the effectiveness of
the proposed technique through experiments with vari-
ous open-source software systems.

This paper is an extended version of our previous
work [20]. The main differences from our previous work
are as follows:

• Refinement of the algorithms to identify core objects,
which improves the overall reduction performance

• Additional experiments on various software systems to
mitigate the external validity

• Additional analysis of the sensitivity of the reduction
performance when varying the tunable parameters of
our algorithm

The remainder of this paper is organized as follows.
Section 2 describes key related works. Section 3 details the
proposed technique. Section 4 briefly describes how to visu-
alize a summarized sequence diagram by using the results of
our technique. In Sect. 5, we evaluate our technique through
experiments, and Sect. 6 discusses threats to validity. Sec-
tion 7 presents our conclusions.

2. Related Work

2.1 Coping with a Scalability Issue of a Reverse-
Engineered Sequence Diagram

The vertical size of a reverse-engineered sequence diagram
drastically increases in accordance with the increasing ex-
ecution time. Many researchers have thus proposed mes-
sage reduction techniques. These methods primarily in-
volve removing trivial behaviors, such as repetitive behav-
iors [6], [10], [14], and implementation details [9]. An-
other approach is to divide an execution trace into several
phases [8], [11], [21]–[23] that correspond with the starting
points of tasks.

Reducing the horizontal size of a reverse-engineered
sequence diagram is a likewise important and challenging
task. Compared with message reduction approaches, fewer
works have presented object reduction techniques. Dugerdil
et al. formed object clusters based on the frequencies of ob-
jects’ interactions in a unit of time. As inter-cluster inter-
actions, they generated a highly abstracted behavioral view

of a system. Some studies extracted design patterns and
performed object grouping based on design intentions that
were realized with the extracted patterns [17], [18]. Hamou-
Lhadj et al. calculated the utilityhood for each method and
pruned the implementation details using the utilityhood val-
ues, achieving the reduction of the numbers of methods and
objects [9].

Several approaches differ from the ones that reduce
messages or objects. If the developer focuses only on a
specific part of a system, extraction approaches [24], [25]
are promising. Another approach is effective visualization
and exploration rather than information reduction; effective
filtering/zooming functionalities [12], a dedicated view for
visualizing static/dynamic information [26], partial trace vi-
sualization [14], and interactive visualization [15].

2.2 Identifying Important Classes of a Software System

There exist several techniques to identify important classes
of a software system. Most of the techniques exploit net-
work analysis and machine learning [27].

Thung et al. and Yang et al. classified whether each
class in a reverse-engineered class diagram was important
with their original classifier using various metrics (e.g., de-
sign and network metrics) [28], [29]. They used the classi-
fier and thereby obtained a condensed version of a reverse-
engineered class diagram that was close to a forward de-
signed one.

Meanwhile, Zaidman et al. and Şora proposed tech-
niques for identifying the most important key classes (i.e.,
core parts) of a system by using network analysis to facil-
itate the comprehension of the design overview [30], [31].
Note that the number of the key classes, which are impor-
tant to comprehend the design overview, is around 5–10; this
number is much lower than the number of classes contained
in a forward designed class diagram.

Those techniques of identifying key classes [30], [31]
are similar to our proposed technique in terms of identify-
ing core parts of a system; however, there is a difference
between their techniques and ours as follows. Key classes
identified by the techniques by Zaidman et al. and Şora tend
to be abstract classes or interfaces that are useful for un-
derstanding the structural view (i.e., static aspect) of a sub-
ject system. On the other hand, our technique can identify
key concrete classes that are instantiated at a runtime and
thus valuable for understanding the behavioral view (i.e.,
dynamic aspect) of a subject system. Due to the difference,
it is difficult to directly compare techniques by Zaidman et
al. and Şora with our technique. We need to use appropriate
one according to the purpose of tasks developers undertake.

2.3 Analyzing Object Reference Relationships

Some studies analyzed object reference relations, which re-
lates to our work. Dufour et al., for example, proposed a
technique of “blended escape analysis” to characterize tem-
porary data structures and program regions that create and
use them [19]. Meanwhile, Lienhard et al. contended that
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analyzing object flow—the way in which objects are passed
through a system at runtime—is important for understand-
ing the runtime of an object-oriented system [32]. The ob-
ject flow graph was used for some purposes, such as archi-
tectural risk analysis [33] and impact analysis [34].

2.4 Comparison of Our Work with Existing Trace Sum-
marization Techniques

The technique proposed herein is categorized into object re-
duction approaches. In this section, we compare our tech-
nique with related works that focus on object reduction.

Of the existing techniques that achieve the horizontal
reduction of a reverse-engineered diagram, the most promis-
ing and closest to our approach is the one proposed by
Hamou-Lhadj et al. [9].

Hamou-Lhadj et al. proposed the utilityhood metric
based on fan-in and fan-out. With the metric, they detected
and pruned implementation details (i.e., non-core parts).
Their approach is similar to ours in terms of identifying the
core and non-core. However, their technique cannot achieve
the appropriate reduction of the horizontal size of the dia-
gram because there tend to exist many methods having the
same fan-in and fan-out. In Sect. 5, we conduct a detailed
comparison of our technique with their one using traces of
open-source software systems. Consequently, we show the
advantage of our technique in terms of the horizontal reduc-
tion of a reverse-engineered sequence diagram.

The technique by Dugerdil et al. [16] provides a
highly abstracted view of a system. The technique is
more appropriate when developers intend to understand a
coarse-grained architectural behavior (e.g., inter-layer inter-
actions in a layered architecture system). The technique
by Dugerdil et al. is valuable in the earliest stage of pro-
gram comprehension. Compared with the technique by
Dugerdil et al., our technique focuses on comprehending
finer-grained behavior. Our technique aims at helping com-
prehension in scenarios in which the developers strive to
identify the objects that play key roles in each feature or
module and understand how the key objects behave.

Design patterns based techniques [17], [18] rely on
static analysis and are more favorable for comprehending
design intentions. This is because extracted design pat-
terns provide good clues about key structures and behav-
iors based on system’s design intentions. Static analysis
relieves the complexity of dynamic analysis of large-scale
execution traces; however, it often incurs a certain amount
of false-positives. Thus, relying solely on static analysis
is insufficient. Analyzing dynamic information specific to
current execution scenarios is also necessary. While these
works [17], [18] focused mainly on static analysis, we herein
examine the effectiveness of dynamic analysis for trace sum-
marization.

3. Identifying Core Objects for Trace Summarization

Our core identification technique consists of the following

two steps.

1. Pruning temporaries by Reference Escape Analysis
2. Importance estimation by analyzing access frequency

The 1st step eliminates temporaries that are generated in
large quantities at a runtime but not important for compre-
hending system’s key behavior. The 2nd step estimates the
importance of each object by analyzing access frequency
and identifies the core objects for a system. Here, it is worth
noting that the 1st step plays a role of a noise-reducer for the
2nd step. Because some of the temporaries expect to have
high access frequencies, removing such noisy objects before
the 2nd step is important to estimate the importance of each
object more correctly. (The effect of the noise-reduction
can be seen in the result of our experiment described in
Sect. 5.3.2.) We elaborate each of the steps in the follow-
ing sections with a running example shown in Fig. 1.

The left graph in Fig. 1 represents the reference rela-
tions among objects that are generated during an execution
of a Pac-Man game. The circle and rectangle shapes rep-
resent an instance object and static object, respectively. An
edge represents a reference direction between objects via a
field. In a Pac-Man game, the player strolls to collect gems
and attempts to avoid colliding with ghosts on the map.
The map object holds blocks and ghosts via vector objects.
The ghosts and player have some states (e.g., NormalState,
DeathState). The player object is a singleton and is refer-
enced from the static map instance. At times, the block and
ghost instances in the vectors are iterated by iterators for
some calculations.

3.1 Pruning Temporaries by Reference Escape Analysis

In an object-oriented system, an object refers to other ob-
jects (including itself) to send messages to those objects.
The means of referencing other objects are categorized into
three types: (1) via a field, (2) via a local variable, and (3)
via a return value of a method (e.g., a chain of method in-
vocations). Temporary objects are destroyed without being
stored in any field. We detect those temporary objects by
reference escape analysis (REA).

In REA, we define following three escape states:

• GlobalEscape: An object is stored in a class field.
• ReferenceEscape: An object is stored in an instance

field.

Fig. 1 Running example (Pac-Man game example)
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Algorithm 1 Reference Escape Analysis
Input: Execution Trace: ET = ⟨b1, b2, . . . , bn⟩
Output: Escape States of Objects
1: for all bi ∈ ET do
2: Oreferenced ← all the static objects referenced at bi

3: for all o ∈ Oreferenced do
4: EscapeState(o)← “GlobalEscape”
5: for all bi ∈ ET do
6: if bi is ConstructorEntry then
7: ocreated ← an object created at bi

8: EscapeState(ocreated)← “Captured”
9: else if bi is VariableDefinition then

10: f ← the field assigned at bi

11: oowner ← the owner object of f
12: oassigned ← the value assigned to f
13: if EscapeState(oowner) == “GlobalEscape” then
14: EscapeState(oassigned)← “GlobalEscape”
15: else
16: EscapeState(oassigned)← “ReferenceEscape”

• Captured: A state other than those listed above.

REA assigns one of the above states to each object by ex-
amining the variable definition and reference events in an
execution trace.

In the following, we assume that an execution trace is
represented in a form of an event sequence based on the be-
havior model (B-model) proposed by Noda et al. [25]. B-
model represents a behavior of an object-oriented system.
B-model consists of event elements, such as ConstructorEn-
try / ConstructorExit events, which represent “entry into a
constructor” / “exit from a constructor,” respectively, and
VariableDefinition / VariableReference events, which denote
that “a value is assigned to a variable” / “a value is read
from a variable,” respectively. An execution trace can be
represented in the form ⟨b1, b2, . . . , bn⟩, where bi is an event
element in B-model.

Algorithm 1 shows our REA algorithm. For each
static object, we initialize the escape state of a static object
to “GlobalEscape.” When an object is instantiated, we ini-
tialize the escape state of the object to “Captured.” After
that, we examine VariableDefinition events in an execution
trace and update escape states of objects.

After REA, we decide whether each object is tempo-
rary based on its escape status. Obviously, objects marked as
“Captured” are the first candidates of temporaries; however,
there exist two types of complicated situations such that we
cannot decide whether each object is temporary based solely
on its escape state. First, we should not conclude that all ob-
jects marked as “Captured” are temporaries. For instance,
an object created in the main method and that becomes a
root of successive procedures is not likely to be stored in
any field; however, it is not a temporary object. Second, if
temporary objects have mutual or cyclic references, those
objects are marked as “Reference Escape.” Thus, simply
pruning all the objects marked as “Captured” is not appro-
priate for temporaries removal.

To address those situations, we estimate and utilize the

Algorithm 2 Lifetime Analysis
Input: Execution Trace: ET = ⟨b1, b2, . . . , bn⟩
Output: Lifetimes of Objects
1: for all bi ∈ ET do
2: if bi is ConstructorEntry then
3: ocreated ← the object created at bi

4: CreatedAt(ocreated)← i
5: else
6: for all ok referenced at bi do
7: LastAccessedAt(ok)← i
8: for all object os do
9: Lifetime(os)← LastAccessedAt(os) − CreatedAt(os)

lifetimes of objects by analyzing the reference timings. To
avoid the first situation, we do not treat long-lived objects as
temporaries. As for the second situation, we prune objects
that are marked as “Reference Escape” but are short-lived.

Algorithm 2 shows our lifetime estimation algorithm.
We handle the period from object instantiation to the last
reference as the object lifetime. Note that we calculate an
approximate lifetime based on reference timings, and the ap-
proximated lifetime is different from the actual one treated
in a garbage collection system. However, since our purpose
in estimating the lifetime is to determine whether an object
is important for program comprehension, we do not require
an accurate lifetime; the approximated value is sufficient for
our purpose.

Consequently, if an object oi satisfies the following
condition, we conclude oi is a temporary and prune it.

(EscapeState(oi) == “Captured”

∧ Lifetime(oi) < Lifetimemax(O) · Lt-long)

∨ (EscapeState(oi) == “ReferenceEscape”

∧ Lifetime(oi) < Lifetimemax(O) · Lt-short)

Here, O is a set of all objects (O = {oi | 1 ≤ i ≤ n}).
Lt-long and Lt-short are threshold factors for deciding whether
an object is long-lived, short-lived, or not. By default, we
set Lt-long and Lt-short as 0.7 and 0.03, respectively. These
settings are based on the result of our experiment described
in Sect. 5.3.3.

Note that both Algorithm 1 and Algorithm 2 analyze
the events of VariableReference/Definition of fields, Metho-
dEntry/Exit, and ConstructorEntry/Exit; we need to weave
logging codes to detect those events. Other events in the B-
model (e.g., VariableReference/Definition of local variables,
LoopStart/End, etc.) are not necessary for our technique; we
do not record those events.

In Fig. 1, iterator instances and a non-static map ob-
ject are marked as “Captured,” while a static map object
and the player object are “GlobalEscape.” The other objects
are “ReferenceEscape.” Though a non-static map object is
“Captured,” the map object is not reported as a temporary
on account of its long lifetime. Meanwhile, iterator objects
are reported as temporaries and pruned. The pruned objects
are blacked-out in the right of Fig. 1.
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3.2 Importance Estimation by Analyzing Dynamic Prop-
erties

To find core objects, we estimate the importance of each
non-temporary object by analyzing its dynamic proper-
ties: access and method-invocation frequencies. An object,
which plays an important role in a system, is expected to be
heavily accessed and receive many messages from other ob-
jects. Thus, we consider an important object to be one that
has high access and method-invocation frequencies. We de-
fine an importance estimation formula as follows.

Importance(oi) =
ww + wr + wmi

ww

WF(oi)
+
wr

RF(oi)
+
wmi

MIF(oi)

Importance(oi) is a weighted harmonic mean of the
three frequencies: write access frequency WF(oi), read ac-
cess frequency RF(oi), and method-invocation frequency
MIF(oi). By default, we set ww, wr, and wmi as 10, 5, and 1,
respectively, based on the result of our experiment described
in Sect. 5.3.3.

WF(oi), RF(oi), and MIF(oi) are defined as follows.

WC(oi) = (the count of write accesses to oi)

RC(oi) = (the count of read accesses to oi)

MIC(oi) = (the count of method invocations

whose receiver is oi)

WF(oi) =
WC(oi) −WCmin(O)

WCmax(O) −WCmin(O)

RF(oi) =
RC(oi) − RCmin(O)

RCmax(O) − RCmin(O)

MIF(oi) =
MIC(oi) −MICmin(O)

MICmax(O) −MICmin(O)

WF(oi), RF(oi), and MIF(oi) are unity-based normal-
ized values of WC(oi), RC(oi), and MIC(oi), respectively.
Because the ranges of WC(oi), RC(oi), and MIC(oi) are
greatly different each other, the unity-based normalization
is necessary. Note that if either WF(oi), RF(oi), or MIF(oi)
is zero, then Importance(oi) = 0. If the maximum count is
equal to the minimum count, then the frequency value is one
(e.g., if WCmax(O) = WCmin(O), then WF(oi) = 1).

Consequently, if the importance value of an object is
greater than the threshold It, we determine the object is a
core object.

In Fig. 1, a non-static map, player, and ghost objects are
heavily accessed and receive many messages; thus, those are
recognized as the core objects. Those objects indeed play
key roles in the Pac-Man game. A star symbol in the right
graph in Fig. 1 indicates that the object is a core object.

4. Object Grouping and Visualization of Intergroup
Interactions

In this section, we briefly describe how to visualize only

core objects related behavior. After importance estimation,
to visualize interactions related to core objects, we exploit
the object grouping and visualization algorithm proposed in
our previous work [20].

The algorithm takes our core identification result as its
input. Then, for each identified core object, it constructs an
object group; each of the object groups consists of an identi-
fied core object and objects having the similar lifetimes and
references from the core object. In the running example,
the object reference graph is decomposed into four object
groups by the algorithm, as shown on the right of Fig. 1.

After that, the algorithm visualizes only intergroup in-
teractions between the object groups and thereby obtains a
summarized version of a reverse-engineered sequence dia-
gram. An object group is depicted as a single lifeline in the
summarized sequence diagram. The horizontal size of the
resulting summarized sequence diagram (i.e., #lifelines in
the diagram) is equal to the number of identified core ob-
jects. (Note that this number is also equal to the number of
object groups.)

5. Experiment

We have implemented our technique as a tool. Our tool
records runtime information based on the B-model. It then
performs trace summarization, as described in the previ-
ous section. To weave logging codes into the target sys-
tem, our tool uses SELogger which is a part of REMViewer
[35]. SELogger takes *.class files as its input, then per-
forms byte-code processing to insert logging codes into the
*.class files.

We evaluated our technique on traces of various open-
source software systems. We chose the utilityhood-based
trace summarization proposed by Hamou-Lhadj et al. [9],
which is the most promising approach for identifying core-
behaviors among the existing techniques, as the baseline
technique.

5.1 Research Questions and Evaluation Approaches

RQ1: Compared with the baseline technique, how effec-
tive is our approach in terms of the horizontal reduction
of a reverse-engineered sequence diagram?

Motivation: Reducing the horizontal size of a reverse-
engineered sequence diagram is our primary concern and
objective. In RQ1, we investigate the effectiveness of our
proposed technique in terms of the performance of the hori-
zontal reduction of a reverse-engineered sequence diagram.
Evaluation Approach: In both of the baseline and our tech-
nique, the size of the resulting summarized sequence dia-
gram varies according to the thresholds that decide whether
each object (or method) is important. The baseline tech-
nique deletes objects that did not receive any methods whose
utilityhood values are smaller than the utilityhood threshold
Ut. Our technique removes objects whose importance val-
ues are smaller than the importance threshold It.
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Table 1 Subject systems and execution scenarios

Project Ver. KLOC Execution scenario
jpacman 1 rev.53 6.0 launch the application; start a new game; move the Pac-Man to the right; have the Pac-Man obtain a power cookie and

change its state into the power state; quit the application
wro4j 2 1.7.7 34.0 execute the wro4j-runner with specifying test resources (*.js and *.css files) as target files, ’cssMin’ as a pre-processor,

and ’jsMin’ as a post-processor
JHotDraw 3 7.6 138.9 launch a demo application; draw a rectangle; draw a rounded-rectangle on the right side; quit the application

jEdit 4 5.3.0 186.7 launch the application; type some sentences including line breaks; quit the application
JMeter 5 3 1 187.7 execute the application from the command line (Non-GUI mode) with the following settings: sending HTTP requests to

a web page of a university; #threads=5, #ramp-up=2, and #loop=2; saving the results into report files
Ant 6 1.9.8 224.3 build Ant itself (i.e., execute the ’build’ task defined in the build.xml)

1 http://code.google.com/p/jpacman/ 2 http://wro4j.github.io/wro4j/ 3 http://www.jhotdraw.org/ 4 http://www.jedit.org/
5 http://jmeter.apache.org/ 6 http://ant.apache.org/

For each subject system, we define the ground truth of
core classes that are important to comprehend the design
overview of the system. Varying the thresholds Ut and It,
we evaluate the trade-off relationship between the horizon-
tal size of the resulting sequence diagram and the coverage
of the ground truth (i.e., what percentage of the ground truth
classes are contained in the resulting diagram). We denote
the coverage by CGT. The coverage CGT indicates the use-
fulness of the resulting sequence diagram to comprehend the
design overview of a subject system. To be able to generate a
smaller size of a summarized sequence diagram with higher
coverage CGT means the summarization technique is more
effective.

RQ2: Do both of the temporaries removal and the non-
core objects elimination contribute to the performance of
the horizontal reduction of a reverse-engineered sequence
diagram?

Motivation: Our technique consists of two types of re-
duction steps: pruning temporaries and eliminating low-
importance objects. In RQ2, we would like to further inves-
tigate the individual contribution of the two reduction steps
to the performance of our technique.
Evaluation Approach: For each step, we investigate the
performance of reducing the number of objects since the
number of objects directly affects the horizontal size of the
resulting sequence diagram.

RQ3: What is the effect of varying the tunable parameters
of our technique on the reduction performance?

Motivation: Our technique has two types of tunable param-
eters: a set of weights used in our importance estimation
formula; a set of lifetime thresholds for detecting long-lived
and short-lived objects. In RQ3, we would like to investi-
gate the effect of varying the parameters on the reduction
performance.
Evaluation Approach: We analyze the sensitivity of the
performance when varying the two types of parameters in-
dividually: first, fixing the lifetime threshold values, we vary
the weights and investigate the reduction performance; sec-
ond, we fix the weight values and vary the lifetime thresh-
olds.

RQ4: How much runtime overhead does our technique
involve?

Motivation: Our proposed technique need to weave logging
codes, which causes a runtime overhead. In terms of prac-
ticality, it is highly important to be able to analyze with a
small runtime overhead. In this research question, we inves-
tigate the overhead imposed by our technique.
Evaluation Approach: We measure and compare the exe-
cution times of two states: with and without weaving. We
evaluate the overhead by comparing with those of recent
scalable dynamic analysis techniques.

5.2 Experimental Setup

5.2.1 Subject Systems and Execution Scenarios

The subject systems and execution scenarios are as shown
in Table 1. For each subject, we selected a representative
execution scenario.

5.2.2 Ground Truths

For each execution scenario, we predefine a ground truth of
core identification. Extracting core classes, which are im-
portant to comprehend the design overview, from execution
scenarios, source code comments, and documents, we de-
fine the extracted classes as the ground truth GT . Table 2
shows the ground truth GT for each subject system.

For the jpacman case, we consider that the actors and
keywords that appear in the description of the execution sce-
nario (i.e., player, ghost, power cookie, and state) are impor-
tant for program comprehension. In addition, we also con-
sider the SimpleLevel class as a core class because the Sim-
pleLevel controls many key parts of the game system (e.g.,
sends periodic update/render-messages to the game entities
according to the FPS).

As for JHotDraw, since the documentation and source
code comments written by its developers provide the de-
scription of the important classes for its architecture, we de-
fine the important classes as our ground truth.

For other subject systems, we use the definition of im-
portant classes provided by Şora et al. [31]. Şora et al. ex-
tracted the classes that are important to comprehend design
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Table 2 Core classes that are important to comprehend the design overview

Project Core classes (i.e., ground truth GT)
jpacman Player, Ghost, EatGem, Player$NormalState, Player$PowerState, Ghost$NormalState, Ghost$EatableState, SimpleLevel

wro4j WroModel, WroModelFactory, Group, Resource, WroManager, WroManagerFactory, ResourcePreProcessor, ResourcePostProcessor,
UriLocator, UriLocatorFactory, ResourceType

JHotDraw DrawingView, Drawing, DrawingEditor, Tool, Figure
JEdit jEdit, View, EditPane, Buffer, JEditTextArea, Log

JMeter JMeterEngine, JMeterThread, Sampler, SampleResult, TestCompiler, TestElement, TestStateListener, TestIterationListener, TestPlan,
ThreadGroup

Ant Project, Target, UnknownElement, RuntimeConfigurable, Task, IntrospectionHelper, ProjectHelper2

overviews from the documentation or developer tutorials of
the subject systems. Note that Şora et al. also defined the
important classes for JHotDraw; however, we re-extract im-
portant classes from the source code comments because the
definition by Şora et al. was for an older version of JHot-
Draw.

Of the sets of important classes extracted from execu-
tion scenarios, documents, and the definitions by Şora et al.,
we exclude some of the classes because those are not used
in our execution scenario. For example, although the Han-
dle interface is described as important in the source code
comments in JHotDraw, our execution scenario has no op-
erations using the Handle interface (e.g., resizing); thus, we
exclude the Handle from the ground truth.

While most of the core classes in GT are abstract
classes or interfaces, classes of the objects appeared in
a reverse-engineered sequence diagram are sub-classes or
implementation-classes of the core classes in GT. From a
perspective of comprehending a behavioral aspect with a
reverse-engineered sequence diagram, identifying not ab-
stract classes or interfaces but concrete classes are impor-
tant. Therefore, when calculating the coverage CGT, for each
class c defined in Table 2, we consider the class c is covered
if at least one object of the sub-type of c (including itself) is
contained in the resulting sequence diagram. Formally, the
coverage CGT is calculated as follows:

CGT =
Σc∈GT isCovered(c, SD)

| GT |
If at least one object of the sub-type of c (including it-
self) is contained in the resulting sequence diagram SD,
isCovered(c, SD) = 1; otherwise, isCovered(c, SD) = 0.

5.2.3 Weaving Extent

We aim to help developer comprehend the behavior spe-
cific to the target domain. For this reason, we weave log-
ging codes only into classes defined in the target applica-
tion. We do not insert logging codes into libraries (i.e., our
tool passes only *.class files defined in the target application
to SELogger). This weaving condition is commonly and
widely used in the area of dynamic analysis and is realistic
in terms of avoiding a heavy logging overhead.

Of the library codes, we exceptionally weave logging
codes only into Java collection libraries. Our proposed
method analyzes the object reference relations. Because de-
velopers often use the collection libraries to manipulate col-

lection data, not analyzing the collection libraries may sig-
nificantly reduce the accuracy of the analysis. To avoid this
situation, we weave logging codes only into the Java col-
lection libraries; libraries except for the collection libraries
are not our logging targets. Note that objects of collec-
tion libraries are used only for analyzing reference relations.
Since those objects of collection libraries are not core ob-
jects in the target application, we ignore those objects when
importance estimation and visualization.

From a technical point of view, normally, SELogger
does not weave logging codes into the runtime-core classes
of Java (i.e., classes contained in rt.jar) because SELogger
needs some of the non-woven classes in the rt.jar to write an
execution trace onto a disk. To weave logging codes into the
Java collection libraries, we have collection classes within
our tool that are independent on the rt.jar, then we pass
the collection classes within out tool to SELogger explicitly;
thereby, we achieve that the target application uses the wo-
ven collection libraries and SELogger uses the non-woven
collection libraries.

5.2.4 Settings of Tunable Parameters

Our technique has two types of tunable parameters as de-
scribed in the description of RQ3 (see Sect. 5.1). In all the
experiment except for RQ3, we use the default values of
them. In the experiment for RQ3, we investigate the effect
of varying the parameters on the reduction performance.

5.2.5 Settings of Baseline Technique

For comparison, we apply the baseline technique [9] to sub-
ject systems. A utilityhood value is calculated for each
method m by the following formula:

U(m) =
#fan-in(m)

N
× log(N/(#fan-out(m) + 1))

log(N)

Here, N stands for the number of methods in a call graph.
We calculate the utilityhood values with the same settings as
described in the paper of Hamou-Lhadj et al. [9]: Polymor-
phic calls are resolved by Rapid Type Analysis [36] during
a call graph construction to measure the fan-in and fan-out;
The utilityhood values are calculated for only non-private
methods (excluding constructors and accessor methods) in-
voked in the execution scenario. Note that although Hamou-
Lhadj et al. ignore methods of inner classes, we do not ig-
nore those. This is because some of the core classes shown
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in Table 2 are implemented as inner classes.

5.3 Results

5.3.1 Answer to RQ1

The recorded runtime information is shown in Table 3. The
numbers of messages and objects affect the size of the
reverse-engineered sequence diagram. The number of life-
lines (i.e., the horizontal size) of the diagram is equal to the
number of objects.

When varying the thresholds It and Ut that decide
whether each object (method) is important, the trade-off re-
lationships between the horizontal size of the resulting dia-
gram (i.e., #lifelines) and the coverage CGT are as shown in
Fig. 2. The dashed line in Fig. 2 is a random classifier that
randomly classifies whether each object is important.

As shown in Fig. 2, for all the subject systems, our tech-
nique reaches CGT = 1 with a much smaller number of life-
lines, compared with the baseline. The numbers of lifelines
and the compression ratios at CGT = 1 are as shown in Ta-
ble 4. Table 4 shows the compression ratio of our technique

Table 3 Recorded runtime information

Project Total events Messages Loaded classes Objects1

jpacman 24,415,941 10,709,679 57 1,289
wro4j 327,214 154,928 295 1,504

JHotDraw 436,926 219,858 276 2,736
jEdit 2,529,506 908,104 497 7,030

JMeter 608,182 320,258 372 5,245
Ant 44,864,241 23,176,454 271 50,828

1 the number does not include objects of collection libraries

Fig. 2 The reduction performance

is much higher than that of the baseline: our compression
ratio ranges 14.5–390.9 (134.6 on average), whereas that of
the baseline ranges 3.6–22.0 (11.5 on average).

Our technique could achieve a significant reduction of
the horizontal size of a reverse-engineered sequence dia-
gram, while retaining the core objects of GT in the diagram.
From the result described above, we confirm that our tech-
nique is more effective in terms of the horizontal reduction
of a reverse-engineered sequence diagram, compared with
the baseline technique.

Moreover, there is another finding. In the baseline tech-
nique, there are many ties in the utilityhood-based rank-
ing because many methods have the same utilityhood val-
ues (i.e., there exist many methods having the same #fan-
in/out). Meanwhile, in our proposed technique, the number
of ties in the importance-based ranking is relatively small.

Table 4 The compression ratio at CGT = 1

ours baseline

Project #lifelines1 Comp.2 #lifelines1 Comp.2

jpacman 27 47.7 148 8.7
wro4j 104 14.5 421 3.6

JHotDraw 7 390.9 313 8.7
jEdit 71 99.0 492 14.3

JMeter 222 23.6 238 22.0
Ant 219 232.1 4,378 11.6

Average 108 134.6 998 11.5
1 #lifelines in the resulting sequence diagram at CGT = 1
2 Compression ratio is calculated by

(#lifelines in the original diagram)/(#lifelines in the resulting diagram).
Note that #lifelines in the original diagram is equal to #objects in
Table 3.
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Fig. 3 The distribution of the difference of #lifelines between two ad-
jacent threshold values (i.e., the difference between #lifelines(Ut = UMi )
and #lifelines(Ut = UMi+1 ); the difference between #lifelines(It = IO j ) and
#lifelines(It = IO j+1 ))

This fact affects the degree of the change of #lifelines when
varying the threshold to raise/reduce the abstraction level of
the diagram. We elaborate this finding in the following para-
graphs.

Let UM1 ,UM2 , . . . ,UMM (s.t.,UMi < UMi+1 ) be all the
possible values of utilityhood, and IO1 , IO2 , . . . , ION (s.t., IO j <
IO j+1 ) be all the possible values of importance. UMi means
the utilityhood value for a set of methods Mi, and IO j means
the importance value for a set of objects O j. All the meth-
ods (objects) in Mi (O j) have the same utilityhood (im-
portance) value. Additionally, let #lifelines(Ut = UMi )
(#lifelines(It = IO j )) be the #lifelines such that Ut = UMi

(It = IO j ).
Figure 3 shows the distribution of the difference of

#lifelines between two adjacent threshold values (i.e., the
difference between #lifelines(Ut = UMi ) and #lifelines(Ut =

UMi+1 ); the difference between #lifelines(It = IO j ) and
#lifelines(It = IO j+1 )). From the Fig. 3, moving the threshold
values Ut, It to the adjacent values (i.e., from Ut = Mi to
Ut = Mi+1; from It = O j to It = O j+1), the degree of the
change of the #lifelines is much smaller in our technique,
compared with the baseline (the #lifelines is changed by 1–
34 in our technique and by 1-1826 in the baseline).

Changing the threshold Ut causes a drastic change of
the abstraction level of the diagram; it is difficult to change
the threshold value flexibly in the baseline technique. Mean-
while, the degree of the change of #lifelines when varying
the threshold It is much smaller. This indicates that our
technique enables a developer to choose the threshold value
more flexibly depending on the kind of the maintenance task
that the developer undertakes. (e.g., It is appropriate to
choose the higher-importance point as the threshold value
in the earlier stage of program comprehension. Along with
increasing the degree of understanding, the developer can

Table 5 Results of pruning temporaries

Project #temporaries #non-temporaries Comp.1

jpacman 733 556 2.3
wro4j 1,120 384 3.9

JHotDraw 2,157 579 4.7
jEdit 5,765 1,265 5.6

JMeter 914 4,331 1.2
Ant 48,055 2,773 18.3

Average 9,791 1,648 6.0
1 Compression ratio is calculated by #(all objects)/#(non-temporaries)

change the threshold value to the lower-importance point.)

Our technique is more effective in terms of the horizontal
reduction of a reverse-engineered sequence diagram. The
compression ratio of our technique was much higher than
that of the baseline: our compression ratio was 134.6 on
average, whereas that of the baseline was 11.5.
Moreover, our technique is capable of changing the ab-
straction level more flexibly, compared with the baseline
technique.

5.3.2 Answer to RQ2

Table 5 shows the number of (non-)temporaries and the
compression ratios by pruning temporaries. Temporaries re-
moval reduced a significant number of objects: on average,
9,791 objects were removed and the compression ratio was
6.0. On the other hand, the reduction performance of elim-
inating the non-core objects is shown in Table 4. The non-
core objects elimination further improves the compression
ratios from 6.0 up to 134.6 on average. Both of the two re-
duction steps reduce a great number of objects as shown in
Table 5 and Table 4; therefore, both of the steps contribute
to the reduction performance.

To investigate the individual contribution of eliminat-
ing the non-core objects without temporaries removal, we
calculated the importance values for all objects including
temporaries. By manual samplings of the calculation re-
sult, we found some temporary objects had high access fre-
quencies and thereby temporaries could be noise in our im-
portance estimation technique: If developers decrease the
threshold It because the desired behaviors are not contained
in the resulting diagram, a lot of temporaries will tend to ap-
pear in the diagram, which greatly impairs the usefulness of
the diagram. Therefore, to enable developers to change the
abstraction level of the resulting diagram flexibly, it is nec-
essary to combine the temporaries removal and the non-core
objects elimination.

Both pruning temporaries and eliminating the non-core
objects contribute to the reduction performance. Both of
the reduction steps are essential to enable developers to
flexibly change the abstraction level of the resulting se-
quence diagram.

5.3.3 Answer to RQ3

First, fixing the lifetime thresholds Lt-long and Lt-short as their
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default values, we vary the weights ww, wr, and wmi.
The results of varying the weights ww, wr, and wmi are

shown in Fig. A· 1, Fig. A· 2, and Fig. A· 3, resp. Enlarg-
ing the weight ww, the reduction performance rises for four
projects and decreases for two projects (Fig. A· 1). Increas-
ing the weight wr makes the reduction performance better
for two projects and worse for two projects (Fig. A· 2). As
for wmi, increasing the weight makes the reduction perfor-
mance worse for two projects and has few positive effects;
there are almost no performance improvements by increas-
ing the wmi (Fig. A· 3).

Enlarging the weight for write access ww leads a good
effect on the reduction performance. Write accesses reflect
state changes of objects. Core objects that play important
roles in a system are expected to tend to change their states
frequently. Thus, the good effect on core identification by
increasing the weight for write access is a plausible result.

From these observations, fixing the ww as 10 (i.e., high
value) and the wmi as 1 (i.e., low value), we varied the wr and
tried to seek for the best weight value. We obtained the best
performance with (ww, wr, wmi) = (10, 5, 1); thus, we chose
those values as the default values of the weights.

Second, Fig. A· 4 shows the effect of varying the life-
time threshold for short-lived objects Lt-short with fixing
other parameters as default values. From Fig. A· 4, we can
see that removing short-lived objects whose lifetimes are
less than 3% of the whole execution period leads a good
effect on the reduction performance. We consider removing
short-lived objects reduces noise in our core identification
technique and contributes to the improvement of the perfor-
mance. Since the setting Lt-short = 0.3 leads the best perfor-
mance, we set the default value of Lt-short as 0.3.

Finally, fixing the weights and the lifetime threshold
Lt-short as their default values, we investigated the effect of
varying the threshold Lt-long from 0.7 up to 1.0 at 0.1 inter-
vals. We could not see any notable effect of varying Lt-long.
For five projects of the total six projects, the reduction per-
formance did not vary. For only one project, the reduction
performance varied; however, the change was very slight
and ignorable (#lifelines at CGT = 1 varied by only 1). We
consider this result is attributed to the situation such that
there were no important objects that were the roots of suc-
cessive procedures as described in Sect. 3.1. Although there
was no need to prevent long-lived captured objects from be-
ing removed by our REA for our subjects, the prevention of
removing long-lived captured objects is intrinsically neces-
sary. As no effect was observed, we just chose the first value
in our experiment (i.e., 0.7) as the default value of Lt-long.

Enlarging the weight for write access leads the improve-
ment of the reduction performance. To attach great im-
portance to state changes of objects is expected to be
helpful for core object identification.
Removing short-lived objects whose lifetimes are less
than 3% of the whole execution period reduces noise in
our core identification and improves the reduction per-
formance. We could not see any notable effect of varying

the Lt-long for our subjects; however, preventing long-lived
captured objects from being removed is intrinsically nec-
essary.

5.3.4 Answer to RQ4

Table 6 shows the runtime overhead. We measured the run-
time overhead 5 times for each execution scenario, and cal-
culated the average overhead. The ‘Base’ and ‘With log-
ging’ columns show the execution time without and with
logging codes, resp. We used an Intel Xeon E5-2620 v4
2.10GHz machine and assigned 16GB of RAM to the heap
of the Java VM. We set the options of SELogger as follows:
using four background threads for writing a trace data into a
disk; recording the trace data in an uncompressed format.

Our technique involved 39.9%–344.1% runtime over-
head (167.6% on average). This overhead is relatively small
compared with the recent scalable dynamic analysis tech-
niques. For example, the feedback-directed instrumentation
technique for computing crash paths [37] imposed 100%–
800% overhead in most cases, and the record and replay
system [38] involved 480% overhead on average.

Developers need to execute an instrumented applica-
tion only once for behavioral visualization. Thus, in many
cases, the overhead of our technique is expected to be ac-
ceptable not in a production phase but in a development
phase.

Our technique imposes 167.6% runtime overhead on av-
erage, which is relatively small compared with the recent
dynamic scalable analysis techniques. In many cases, this
overhead is expected to be acceptable for practical use.

Finally, to promote the understandings of readers, we
show an example of a part of the resulting (summarized)
sequence diagram of the jpacman case in Fig. 4.

From the diagram shown in Fig. 4, for example, devel-
opers can understand the following key behavior. A Sim-
pleLevel object periodically sends update() messages to ac-
tor objects such as Map, Player, and Ghost objects. If a
collision between the Player object and another object (e.g.,
a ghost object) occurs, the onCollision() method of Player’s
StateManager is invoked. Then, the Player object changes
its state from NormalState to PowerState. Therefore, for
example, if developers want to change the behavior on a
collision between the player object and other actor objects
(e.g., to implement new states of the player; to move the

Table 6 Execution time

Project Base (sec) With logging (sec) Overhead (%)
jpacman 9.84 13.76 39.9

wro4j 4.59 6.16 34.0
JHotDraw 6.84 22.79 233.2

jEdit 7.48 26.92 259.8
JMeter 4.97 22.06 344.1

Ant 52.91 102.91 94.5
Average 14.44 32.43 167.6
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Fig. 4 A part of the resulting diagram of the jpacman case

player backward on the collision), developers can acquire
the knowledge necessary for the modification from the re-
sulting diagram.

6. Threats to Validity

In the experiment, each execution scenario for each applica-
tion is short. However, this is not an unnatural setting; even
though there exist only a long execution trace, we can easily
extract a small block of interest from the long trace based on
the absolute time recorded in each event in the trace. We can
also use the phase detection techniques mentioned in Sect. 2
to divide the long trace.

The ground truth of the core objects for jpacman were
defined by authors. Although authors have conducted some
studies by using jpacman over two years and have lots
of knowledge about the application, the GT for jpacman
might be incorrect. However, for other subject systems,
we extracted the ground truths from their documents, and
our technique showed superior reduction performance com-
pared with the baseline for all the subjects; thus, we consider
the effectiveness of our technique has been confirmed.

We did not make it clear how much of developers’ time
were saved in actual maintenance tasks by using the result-
ing summarized sequence diagram, which was out of scope
of this paper, since we focused on the identification of core
objects in this paper. User studies need conducting in future
studies to evaluate and validate the usefulness of the result-
ing summarized diagram (including the object grouping and
visualization algorithm described in Sect. 4) in actual main-
tenance tasks.

7. Conclusion

Facilitating program comprehension with a reverse-

engineered sequence diagram is a promising technique.
However, it incurs a scalability issue. In this paper, we pre-
sented a technique to identify core objects for trace sum-
marization by analyzing reference relations and dynamic
properties. Our technique first detects and prunes temporary
objects, and then ranks objects by estimated importance to
identify core objects. Visualizing only interactions related to
identified core objects, our technique obtains a summarized
version of a reverse-engineered sequence diagram.

We evaluated our technique on traces of various open-
source software systems. The results showed that our tech-
nique had superior reduction performance of a reverse-
engineered sequence diagram, compared with the state-
of-the-art trace summarization technique. The horizontal
compression ratio of our technique was 134.6 on average,
whereas that of the state-of-the-art technique was 11.5. The
runtime overhead imposed by our technique was 167.6% on
average, which was small and showed the practicality of our
technique. Our technique can achieve a significant reduction
of the horizontal size of a reverse-engineered sequence dia-
gram with a small overhead and is expected to be a valuable
tool for program comprehension.
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Appendix: Result of Sensitivity Analysis

As mentioned in Sect. 5.1 RQ3, we analyzed the sensi-

Fig. A· 1 The effect of varying the value of ww

Fig. A· 2 The effect of varying the value of wr

tivity of the performance when varying the two types of tun-
able parameters individually. We show the resulting charts
of the sensitivity analysis in the following pages.
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Fig. A· 3 The effect of varying the value of wmi

Fig. A· 4 The effect of varying the value of Lt-short
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