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SUMMARY An important step for improving software analyzability is
applying refactorings during the maintenance phase to remove bad smells,
especially the long method bad smell. Long method bad smell occurs most
frequently and is a root cause of other bad smells. However, no research
has proposed an approach to repeating refactoring identification, sugges-
tion, and application until all long method bad smells have been removed
completely without reducing software analyzability. This paper proposes
an effective approach to identifying refactoring opportunities and suggest-
ing an effective refactoring set for complete removal of long method bad
smell without reducing code analyzability. This approach, called the long
method remover or LMR, uses refactoring enabling conditions based on
program analysis and code metrics to identify four refactoring techniques
and uses a technique embedded in JDeodorant to identify extract method.
For effective refactoring set suggestion, LMR uses two criteria: code ana-
lyzability level and the number of statements impacted by the refactorings.
LMR also uses side effect analysis to ensure behavior preservation. To
evaluate LMR, we apply it to the core package of a real world java appli-
cation. Our evaluation criteria are 1) the preservation of code functionality,
2) the removal rate of long method characteristics, and 3) the improvement
on analyzability. The result showed that the methods that apply suggested
refactoring sets can completely remove long method bad smell, still have
behavior preservation, and have not decreased analyzability. It is concluded
that LMR meets the objectives in almost all classes. We also discussed the
issues we found during evaluation as lesson learned.
key words: code analyzability, long method bad smell, refactoring, soft-
ware engineering, software maintenance

1. Introduction

In any software development life cycle, the maintenance
cost accounts for around 40–70% of the total cost [1]. Soft-
ware often needs to be maintained in order to add new func-
tionalities and fix remaining faults [2]. Ad-hoc maintenance
produces legacy software that is too large and complex [3].
For developers, this legacy software is hard to understand
and modify, which makes faults fixing more difficult. In
a faults fixing activity, if code is easy to understand, the
cause of faults can be spotted quickly. This paper argues
that such code has high analyzability, which is an important
sub-characteristic of maintainability (ISO/IEC9126, 2003).
The main root cause of low analyzability in software is its
poor structure, such as duplicated code, large class, or long
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method. These are collectively known as bad smells [4].
Bad smell removal makes software easier to understand

and modify [3], [5], increases software analyzability, and de-
creases the time needed to analyze faults. Although there
are several types of bad smell, this paper addresses only the
long method bad smell since it occurs most frequently [6]
and causes other bad smells, such as large class [7]. This bad
smell makes code difficult to understand and reuse [8], [9],
and thus lessening analyzability of the code. The long
method bad smell exhibits four characteristics: 1) too many
statements inside a method, 2) too many unnecessary local
variables, 3) too many parameters, and 4) excessively com-
plex conditions [4]. One of the well-known techniques for
removing bad smells is refactoring.

1.1 Motivation

Refactoring is a technique for improving the structure of
software without changing its behavior. Most low quality
programs have bad smells. Removing bad smells improves
several characteristics, especially analyzability. Fowler [4]
explained informally situations where refactorings could be
applied and proposed a set of refactoring techniques used for
removing each kind of bad smell. Following these guide-
lines, a developer still has to decide which refactorings to
apply at which code location. Currently, most of the existing
tools only help a developer apply the refactoring technique.
They do not help the developer making those decisions.

In case where several refactorings are applicable, in or-
der to select appropriate refactoring to apply, a developer
needs to compare the impact of each refactoring on the ana-
lyzability improvement and then selects the best one. These
tasks require a lot of time and effort. Therefore, an auto-
matic refactoring suggestion tool becomes crucial. It helps
developers recognize the appropriate refactorings, identifies
the code locations where the refactoring techniques should
be applied, quantifies the analyzability improvement result-
ing from applying the refactoring and finally suggest a set of
refactoring techniques to eliminate completely long method
bad smell without reducing code analyzability.

For removing long method bad smells, Fowler [4] pro-
posed six refactoring techniques: 1) extract method; 2) re-
place temp with query; 3) introduce parameter object;
4) preserve whole object; 5) decompose conditional, and
6) replace method with method object. However, the exist-
ing research works have proposed approaches to identifying
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onlytwo refactoring techniques: the extract method [6], [7],
[10], [11] and replace temp with query [6], [10]. No research
has proposed an approach to identifying replace temp with
query for a temp variable inside for loop, or while loop and
the other four refactorings for removing long method bad
smells. Moreover, when several refactoring techniques are
possible, no approach proposed to consider the impacts on
code analyzability to select the refactoring.

In our opinion, effective refactoring suggestion ap-
proach should suggest refactorings that remove bad smells,
increase code analyzability, and minimize the number of
statements impacted by refactoring. No research has pro-
posed an approach to suggesting and applying refactorings
until long method bad smells are completely removed from
the code without reducing code analyzability and minimiz-
ing the impacts on the code.

1.2 Related Works

There are six refactoring techniques that can, collectively
remove long method bad smells [4]. However, existing re-
search on refactoring opportunity identification uses only
two techniques.

The first technique “replace temp with query”, Pienlert
and Muenchaisri [6] presented an approach for detecting and
locating bad smells based on software metrics. They defined
the following detection techniques for six bad smells includ-
ing long method. Each detection technique was described in
the following format: definition, motivation, strategy, met-
rics, specification of outliers, and application of refactor-
ing. After applying refactoring following their approach,
they showed that by using their maintainability metrics, the
maintainability of the refactored code improved. The dis-
advantage of their approach was that it could only identify
elements to be refactored at the class or method levels. It
could not suggest elements at the statement level. Kataoka
et al. [14] defined a set of conditions for identifying refac-
toring techniques using program invariants: when particu-
lar invariants hold at a program point, a specific refactor-
ing is applicable. Since most programs lack explicit invari-
ants, an invariant detection tool called Daikon was used to
infer the required invariants. In summary, two research stud-
ies [6], [14] proposed an approach to identifying temp vari-
able using information from an abstract syntax tree repre-
sentation. However, their research did not concern a temp
variable which is inside for loop, or while loop. Moreover,
their research did not consider code analyzability to select
appropriate refactorings.

The second technique “extract method”,
Maruyama [10] proposed a mechanism that extracted lines
of code, to a new method from an existing method us-
ing block based slicing. Calling and called methods are
unconsidered in his approach. Side effects may occur in
the new method, which consequently violate the condition
of behavior preservation. Liu and Niu [11] proposed an
approach to recommending fragments within long methods
for extraction using blank line slicing. The disadvantage

is that it analyzes statements but does not cover all cases
of long method bad smell (such as variables and param-
eters) and the variable relationships are unconsidered, so
the extracted method was incomplete. Tsantalis et al. used
the union of static slices for extracting the complete com-
putation of a given variable declared inside a method [7].
Their approach also proposed a set of rules that preserved
the code behavior and prevented code duplication. They
could find code in which statements were affected by apply-
ing extract method refactoring and could improve the qual-
ity of the code with the removal of code duplication. In
summary, these research works focused on identifying the
code fragments to be extracted method by using code slic-
ing approaches. Our approach used the technique embed-
ded in JDeodorant tool [13], developed by Tsantalis et al.
to identify extract method refactoring. However, some re-
search [7], [13] used a single metric and suggested only one
appropriate refactoring; therefore, they may not be able to
remove long method bad smells completely.

1.3 Our Contribution

In this paper, we propose an effective approach to identify-
ing appropriate refactorings for long method bad smell re-
moval, while increasing code analyzability and minimizing
the number of statements impacted by the refactorings. Our
approach will also help developers decrease the number of
refactorings and lower the risk of incurring side effects. The
contributions of our approach are as follows:

• Defining the refactoring enabling conditions in the
form of rules in logic programming for four refac-
toring techniques: replace temp with query, intro-
duce parameter object, preserve whole object, and de-
compose conditional using program analysis and soft-
ware metrics. We complemented the existing research
works [6], [7], [10], [11] with our refactoring enabling
conditions to cover the five refactoring techniques for
removing long method bad smell and make an auto-
matic refactoring suggestion for long method removal
possible.
• Proposing an algorithm for identifying statements im-

pacted by the four refactoring techniques using pro-
gram slicing technique and quantifying the analyzabil-
ity level of code. The number of statements impacted
by a refactoring and analyzability level will be used as
criteria for refactoring selection.
• Proposing the steps of refactorings suggestion using

two criteria: code analyzability level and the number
of statements impacted by the refactorings

This paper is organized as follows. Section 2 describes
our approach for refactoring identification. Section 3 dis-
cusses our evaluation and Sect. 4 presents our conclusions.
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2. Methodology

2.1 The Main Concept

The long method bad smell exhibits four long method char-
acteristics, and Fowler [4] proposed five refactorings for re-
moving all four, as summarized in Table 1. To automate
the identification of refactoring opportunities, we formalize
the situations of long method characteristics into refactor-
ing enabling conditions. In this work, we defined refac-
toring enabling conditions for four refactoring techniques:
replace temp with query (RTWQ), introduce parameter ob-
ject (IPO), preserve whole object (PWO), and decompose
conditional (DC). We also used JDeodorant to find extract
method (EM) refactoring opportunities. A refactoring en-
abling condition is composed of arithmetic and logical ex-
pressions based on code structure and code metrics such as
the control flow path of a method and the number of param-
eters. When the refactoring enabling condition of a refactor-
ing technique is met, its related refactoring is applicable.

Our research problem is “How to identify appropriate
refactorings and code locations that should be applied to re-
move the long method bad smells effectively?” and involves
three challenges: 1) identifying of the information required
to understand the code structure and means of obtaining that
information; 2) calculating the refactorings necessary to re-
move all traits of long method bad smells in an effective
way, and 3) determining to which code elements and code
locations the selected refactorings should be applied.

The first challenge is identifying the information re-
quired to understand the code structure and the means of
obtaining that information. To support refactoring enabling
condition, we need several program analysis techniques:
control flow, data flow, control dependence, data depen-
dence, point-to analysis, and program slicing. These tech-
niques use five representations: an abstract syntax tree, a
control flow graph, a data flow graph, a class dependence
graph, and point-to graph. We analyzed the informal condi-
tion for selecting four refactoring techniques: RTWQ, IPO,
PWO, and DC, as defined by Martin Fowler.

Table 1 Summary of relationship between long method characteristics and refactoring solutions.

For example, to detect a local variable for “replace
temp with query” refactoring or to detect a parameter list
for “introduce parameter object” refactoring, we used an
abstract syntax tree as the representation for program anal-
ysis. All informal conditions for enabling four refactorings
and the representations used for checking the refactoring en-
abling conditions of each refactoring are shown in Table 2.

The second challenge is calculating the refactorings
necessary to remove all characteristics of long method bad
smells in an effective way. An effective approach to iden-
tifying and suggesting appropriate refactoring requires two
core steps: 1) identify applicable refactorings, and 2) sug-
gest a set of effective refactorings. In the first step, we define
conditions to identify all applicable refactorings for remov-
ing long method characteristics. In our previous study [15],
we proposed a set of refactoring filtering conditions based
on software metrics, and defined them in terms of elements
in data flow and control flow graphs. For example, in the
refactoring filtering condition “replace temp with query”, a
temporary variable becomes a candidate for being replaced
by a query method if it is assigned and then used at least
once along a data flow path.

These refactoring filtering conditions are defined as
rules enabling an application of refactoring for removing
long method bad smells. In another work [16], we com-
bined logic meta programming, software metrics, control
flow and data flow analysis, to improve refactoring filtering
conditions. In this paper, we further extended the previous
method by including control and data dependence analysis
as well as pointer analysis. We call the enhanced refactoring
filtering conditions as the refactoring enabling conditions.
We present the refactoring enabling conditions formally in
Fig. 1.

In the second step, we consider all applicable refactor-
ings according to two criteria: code analyzability and the
number of statements impacted by refactorings. Our ap-
proach uses code analyzability model based on statistical
method and identify statements impacted by refactorings.
We suggest an effective refactoring set candidate that can
remove the bad smells, enhance code analyzability and min-
imize statements impacted by refactorings.
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Table 2 The refactoring techniques and the models for program analysis.

Fig. 1 The refactoring enabling condition of four refactoring techniques.

The third challenge is determining the code elements
and code locations where the selected refactorings should be
applied. We use program slicing to analyze the code struc-
ture and use class dependence graphs to identify statements
affected by each selected refactoring.

2.2 The Steps of the Proposed Approach

Our approach, called the long method remover or LMR, is
a semi-automated approach to removing long method bad
smells that requires some manual actions and decisions by
from a developer. The approach includes eleven steps, out-
lined in Fig. 2, all but two of which can be automated. The
steps that require intervention of the developer are steps 6
“does the developer reject all refactoring candidates?” and

10 “does the developer accept this solution?” The proposed
approach starts when the developer inputs a piece of code
with long method bad smells and an analyzability model.
The approach focuses on the code at the method level and
considers each method in a class individually.

To demonstrate our approach, we used an example
written in Java with long method smell from Fowler [4].
This method “getFlowBetween” of the class Account is
shown in Fig. 3. Code in each line is designated with a line
identifier as shown on the left edge of the figure.

2.2.1 Transform Code to an Abstract Syntax Tree and Four
Graphs

To calculate the metrics, LMR transforms code with long
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Fig. 2 Steps of the proposed approach.

Fig. 3 Code method “getFlowBetween” of a class account.

method bad smells into an abstract syntax tree and four
graph representations: control flow graph, data flow graph,
class dependence graph, and point-to graph.

After transforming the code to an abstract syntax tree,
we can retrieve code information such as class name, mod-
ifier of class, attributes of class, and so on. We also ob-
tain other information, such as the number of parameters,
required for computing the analyzability level.

Next, we analyze the code in the form of a control flow
graph, data flow graph, and class dependence graph. The
control flow graph represents the flow of control from one
instruction to another [21]. The data flow graph represents
the flow of data from definitions to usages [21]. From these

two graphs, we calculate the metrics used in the refactoring
enabling conditions, such as the number of the definition
uses of a variable and the computation uses of parameters.
The class dependences graph represents the statement and
variable dependence inside methods. It contains statements
as nodes and two edge types: control dependence edge and
data dependence edge [21]. We use this graph for program
slicing, which identifies the statements to which refactorings
will be applied.

Finally, the point-to graph shows the objects in the heap
and the variables that point to them. We use this graph for
checking whether a method invocation has a side effect by
applying the purity analysis technique [22]. If a side effect
is detected, the refactorings cannot be applied.

For our example, we transform code in Fig. 3 to an ab-
stract syntax tree and four graphs. The control flow graph
contains eight nodes (the number of executed statements in
the code) and 10 edges, e.g., edge s3->s4 is the true branch
of the while statement. Due to the lack of space, from here
on, we neither show the graphs nor go into details; we will
only provide the results of each step.

2.2.2 Calculate Metrics from Abstract Syntax Tree and
Graphs

The LMR calculates two metric groups: 1) metrics for com-
puting the code analyzability level, and 2) metrics used in
refactoring enabling conditions. The outputs from this step
are metric values of these two groups for a version of code.

The first group of metrics depends on the analyzability
model provided as input. In this case, we use the analyz-
ability model from previous work [17]. This analyzability
model requires three metrics for calculating the analyzabil-
ity level: 1) method lines of code, 2) the number of parame-
ters in the method, and 3) the nested block depth. Methods
line of code is the number of non-blank and non-comment
lines inside each method body.

To use refactoring enabling conditions, LMR requires
five metrics: (1) the definition use of a variable, du(v),
(2) the computation use of a variable, cu(v), (3) the pred-
icate use of a variable, pu(v), (4) the computation use of pa-
rameters, cu(params), and (5) the predicate use of a group of
parameters, pu(params). du(v) counts the number of assign-
ments of variable v in data flow graph paths. cu(v) counts
the number of computations of variable v in data flow graph
paths. pu(v) counts the number of predicate uses of variable
v in data flow graph paths. cu(params) counts the number
of computation statements that use all of the parameters in
the list “params”. The pu(params) is calculated by a for-
mula which counts the number of the predicate statements
that use all of the parameters in the list “params”.

2.2.3 Calculate the Analyzability Level Using Metrics and
Analyzability Model and Define the Target Analyz-
ability Level

Assume that the analyzability model provide as input spec-
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ifies the following formulas Eq. (1)–Eq. (5) for calculating
the analyzability level. With the values of metrics used for
calculating code analyzability, we can derive the analyz-
ability level of the code by applying these formulas. The
result can be one of the three levels: poor (1); fair (2),
and good (3). Before identifying refactoring, LMR calcu-
lates the analyzability level of the original code, defined as
ALoriginal. In addition, LMR sets the target analyzability
level, defined as ALtarget, to “good” as the default value.

P(Y ≤ 1) =
1

1 + e−cp1−(C1PAR)−(C2LMOC)−(C3NBD)
(1)

P(Y ≤ 2) =
1

1 + e−cp2−(C1PAR)−(C2LMOC)−(C3NBD)
(2)

P(Y ≤ 3) = 1 (3)

P(Y = 2) = P(Y ≤ 2) − P(Y ≤ 1) (4)

P(Y = 3) = 1 − P(Y ≤ 2) (5)

Where
MLOC stands for method lines of code.
PAR stands for the number of parameters in method.
NBD stands for the nested block depth.

Also assume that the analyzability model from our pre-
vious work [17] specifies the values of cutpoint1–cp1 and
cutpoint2–cp2 as −10.051 and −1.170, respectively and the
values of C1, C2, and C3 as (−1.675), (−0.032) and (0.51),
respectively. According to the analyzability model, the
probability values of each analyzability level are calculated
and then compared. The highest probability computed de-
termines the analyzability level of the code.

For our example, using the aforementioned analyz-
ability model, LMR calculates the analyzability levels of
method “getFlowBetween” by the applying the metric val-
ues in the formula, PAR = 2, MLOC = 9, NBD = 2. The
calculated analyzability level is three because this is just a
tiny example to illustrate our approach.

2.2.4 Determine Possible Refactorings and Statements
Impacted by Refactorings

LMR uses JDeodorant to identify extract method opportuni-
ties and uses the refactoring enabling conditions to identify
opportunities for applying the other four refactorings. This
step is divided into two sub-steps.

(1) Determine all possible refactorings
To determine all possible refactorings in a long method,

LMR checks refactoring enabling conditions with the metric
values obtained from step 2 of our approach see Sect. 2.2.2.
When a condition of the refactoring enabling conditions (see
Table 3) of a refactoring is met, LMR records that refactor-
ing in a list of applicable refactoring techniques and long
method characteristics.

(2) Determine statements impacted by the refactorings
LMR identifies statements impacted by each refactor-

ing opportunity as follows
1) The statements impacted by replace temp with query are
the assignment statement of that temporary variable, which

Table 3 Refactoring identification tool comparisons.

will be extracted to create a query methodand the state-
ments for which the temporary variable is used. To identify
these statements, we use our algorithm from our previous
work [20].
2) The statements impacted by introduce parameter object
are the statements containing the parameters that will be re-
placed by the parameter object.
3) The statements impacted by preserve whole object are the
statements containing the parameters that will be replaced
by the whole object.
4) The statements impacted by decompose conditional are
the statements containing the conditions that will be re-
placed by the condition method.
5) The statements impacted by extract method are the state-
ments of the code which will be extracted for creating an
extracted method. These statements are identified by the
technique proposed by Tsantalis and Chatzigeorgiou [7].

As an example, we illustrate only the refactoring en-
abling condition of refactoring “introduce parameter ob-
ject”. This refactoring enabling condition has three rules
(as shown in Fig. 1). Rule 3 is met because the number
of parameter is two and the predicate use of parameters is
one. In other word, this method has two parameters, and
they are used together in one statement. Since the condi-
tion requires that only one rule is met, this example method
satisfies the condition of refactoring “introduce parameter
object”. In summary, LMR identifies two refactoring oppor-
tunities: IPO (start, end) and DC (if). Then LMR identifies
and counts statements impacted by two applicable refactor-
ings. The statement impacted by IPO (start, end) is S0 (in
Fig. 3) and the statements impacted by DC (if) is S6. Both
the number of statements impacted by IPO (start, end) and
the number of statements impacted by DC (if) are one.

2.2.5 Suggest Effective Refactoring Candidates

The objective of our approach is to suggest refactoring can-
didates that remove long method bad smell, increase code
analyzability, and have the least impact on the code in terms
of the number of statements impacted by the refactorings.
LMR considers the list of applicable refactoring using two
factors: analyzability level and the number of statements im-
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pacted by the refactorings. To suggest effective refactoring
candidates, LMR executes three steps and these steps are
described as follows

(1) Check conflicting pairs of refactorings opportuni-
ties

First, our approach checks whether any two refactor-
ing opportunities cannot be applied successively in any or-
der, i.e., one refactoring conflicts with each other. A con-
flict occurs if a refactoring affects the same statements as
the other one. LMR checks conflicts using the following
Boolean predicate.

isConflicting is true if the intersection of two sets of affected
statements does not equal an empty set.

For our example, LMR checks conflicts in the two
refactoring opportunities identified in the previous step. As
a result, both refactoring opportunities do conflict because
they affect statement S6, thus these two refactoring oppor-
tunities cannot be applied successively in any order.

(2) Identify refactorings sets
LMR enumerates refactoring sets using the graph the-

ory. A refactoring set is a set of refactoring opportuni-
ties where each member does not conflict with one an-
other. First, LMR builds an undirected graph where each
refactoring opportunity is a vertex and each edge con-
nects two refactoring opportunities that do not conflict, i.e.,
isConflictingROi, j is false. Based on this graph, finding a
refactoring set corresponds to finding the set of vertices in
a maximal clique (Let G be a graph. A clique in G is a
subgraph in which every two nodes are connected by an
edge [21]) because, by definition of a clique, each and every
refactoring opportunity in the subgraph of our graph repre-
sentation does not conflict with one another. Therefore, to
numerate all refactoring sets, LMR finds all maximal cliques
in the graph and identifies the set of vertices in each maxi-
mal clique as a refactoring set.

For our example, the number of vertices and edges are
two and zero; so the number of maximal cliques for this
method is two. It implies that there are two refactoring sets,
each contains one refactoring opportunity.

(3) Select an effective refactorings sets
Finally, LMR selects an effective refactoring set. An

effective refactoring set is a set of refactorings which, when
applied, results in code with the highest code analyzability
level. If there is a tie, LMR uses the lowest of the number
of statements impacted by refactoring as tie-breakers. How-
ever, because no refactorings are applied at this stage, LMR
cannot determine the actual analyzability level. Therefore,
LMR needs to predict analyzability level. To do so, LMR
needs to predict new values of the three metrics used.

Fig. 4 The effective refactoring selection algorithm.

For brevity, we only demonstrate how to predict these
three metrics after applying a replace temp with query refac-
toring. This refactoring removes the assignment statement
of a temporary variable and creates a new query method.
Applying a replace temp with query refactoring may remove
a nested block because the whole block is moved to the new
method. Therefore, LMR predicts that the new value of
method lines of code after applying RTWQ will be reduced,
while the value of the nested block depth may or may not be
reduced. However, the value of the number of parameters in
the method will remain the same.

Since a refactoring set may comprise several refactor-
ing opportunities, LMR must predict the three metrics, the
analyzability level, and the number of statements impacted
as if all the refactorings in the set are applied. After pre-
dicting the values for of all refactoring sets, LMR selects an
effective refactoring set with the effective refactoring selec-
tion algorithm. The algorithm is shown in Fig. 4.

For our example, RSi is refactoring opportunity “IPO
(start, end)”. we predict three metric values: the number of
parameters in method becomes one, because LMR applies
refactoring “introduce parameter object”, the method lines
of code is still nine, and the nested block depth is still two.
The predicted analyzability level is three, while the number
of statements impacted refactoring is two. In RSj as refac-
toring opportunity “DC (if)”, we predict three metric values
likewise the previous values and the number of statements
impacted refactoring is one. After using effective refactor-
ing selection algorithm, LMR suggests that RSj or refac-
toring opportunity “DC (if)” because the analyzability level
of them is the same but the number of statements impacted
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refactoring of RSj is less than the number of statements im-
pacted refactoring of RSi.

2.2.6 The Steps for the Decision to Break LMR

In step 6, if the developer rejects all the refactorings sug-
gested in step 5, the proposed approach is terminated. Other-
wise, the developer chooses one refactoring set and applies
it, using the Eclipse plugin. In step 7, LMR recalculates
the metrics and code analyzability, as in steps 2 and 3 of
the proposed approach. After applying all of the suggested
refactorings in the set, LMR recalculates the analyzability
level.

In steps 8-11, LMR checks whether any long method
characteristic persists by checking the refactoring enabling
conditions and using JDeodorant. If a long method char-
acteristic remains, LMR repeats steps 1-7. When all long
method characteristics have been removed, LMR compares
ALlast with ALtarget. If ALlast is equal to ALtarget, the LMR
outputs the refactored code. Otherwise, the developer is
asked to accept or reject this solution. In the case of re-
jection, LMR restores the code to its original version.

In our example, LMR applies refactoring opportunity
“DC (if)” at the first iteration. Then LMR recalculates met-
rics and the AL; the analyzability level of refactored code
after the first iteration, AL1 is good. In step 8, LMR found
a long method characteristic. Since LMR repeats steps 1-
7, LMR applies refactoring opportunity “IPO (start, end)”
at the second iteration. Then LMR recalculates metrics and
the AL; the analyzability level of refactored code after the
second iteration, AL2 is good. In steps 8, LMR does not find
any long method characteristic. Therefore, ALlast is AL2

and the value of ALlast is also good. After that. ALlast is
compared to ALtarget. Since ALlast is equal to ALtarget, LMR
shows the refactored code that removes all long method
characteristics and the same AL as the original code. In
summary, LMR applies refactoring to candidates in only two
iterations. ALlast equals to ALoriginal and ALlast is good.

We explain here the reason why an infinite loop cannot
occur in steps 1-8. We note that each refactoring technique
relates to only one code element, as shown in Table 1, and
does not introduce any element that can cause other long
method characteristics. To prove that an infinite loop can-
not occur in the algorithm proposed by our approach, we
give the definitions and prove the conjectures, lemmas and
theorems as follows.

Definition: For a long method being proceeded,
1. Let n1 and n1

′ be the numbers of statements applicable
for extract method in the iterations i and i + 1 respectively.
2. Let n2 and n2

′ be the numbers of local variables applica-
ble for “replace temp with query” in the iterations i and i+1
respectively.
3. Let n3 and n3

′ be the numbers of parameter groups appli-
cable for “introduce parameter object” or “preserve whole
object” in the iterations i and i + 1 respectively.

4. Let n4 and n4
′ be the numbers of boolean conditions ap-

plicable for “decompose conditional” in the iterations i and
i + 1 respectively.
5. Let ntotal and ntotal

′ be the total number of all long method
characteristics in the iteration i and i + 1, respectively. For-
mally, ntotal = n1+n2+n3+n4 and ntotal

′ = n1
′+n2

′+n3
′+n4

′.

Conjecture 1: After applying refactoring technique “extract
method”, the number of long method characteristics “too
many statements” in the code of a long method decreases
and no long method characteristic is added. It implies that
n1
′ < n1 ∧ n2

′ ≤ n2 ∧ n3
′ ≤ n3 ∧ n4

′ ≤ n4.

Proof: Removing a long method characteristic “too many
statements” by applying “extract method” will move some
local variables or some statements from the long method
to a newly introduced method which does not cause addi-
tional three other long method characteristics. Thus, n1

′ is
strictly less than n1, while the new values of other variables
are equal to or less than their pervious values.

Conjecture 2. After applying refactoring technique “re-
place temp with query”, the number of long method charac-
teristics “too many unnecessary local variables” in the code
of a long method decreases and no long method character-
istic is added. It implies that n1

′ ≤ n1 ∧ n2
′ < n2 ∧ n3

′ ≤
n3 ∧ n4

′ ≤ n4.

Proof: Removing “too many unnecessary local variables”
by applying “replace temp with query” will remove some
unnecessary local variables or some statements and intro-
duce a new method which does not cause three other long
method characteristics. Thus, n2

′ is strictly less than n2,
while the new values of other variables are equal to or less
than their pervious values.

Conjecture 3: After applying refactoring technique “in-
troduce parameter object” or “preserve whole object”, the
number of long method characteristics “too many parame-
ters” in the code of a long method decreases and no long
method characteristic is added. It implies that n1

′ ≤ n1 ∧
n2
′ ≤ n2 ∧ n3

′ < n3 ∧ n4
′ ≤ n4.

Proof: Removing “too many parameters” by applying “in-
troduce parameter object” will remove some parameters and
introduce a new class which does not cause three other long
method characteristics. For applying “preserve whole ob-
ject” will remove some parameters and use whole object.
It does not cause three other long method characteristics.
Thus, n3

′ is strictly less than n3, while the new values of
other variables are equal to or less than their pervious values.

Conjecture 4: After applying refactoring technique “de-
compose conditional”, the number of long method char-
acteristics “too complex conditions” in the code of a long
method decreases and no long method characteristic is
added. It implies that n1

′ ≤ n1 ∧ n2
′ ≤ n2 ∧ n3

′ ≤ n3 ∧ n4
′ <

n4.

Proof: Removing “too complex conditions” by applying
“decompose conditional” will remove some complex con-



1774
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.7 JULY 2018

ditions and introduce a new method which does not cause
three other long method characteristics. Thus, n4

′ is strictly
less than n4, while the new values of other variables are
equal to or less than their pervious values.

Theorem 1: When applying the proposed approach, the
number of long method characteristics in a long method
strictly decreases from iteration to iteration: ntotal

′ < ntotal.

Proof: By conjecture 1 and definition 5:

n1
′ < n1 ∧ n2

′ ≤ n2 ∧ n3
′ ≤ n3 ∧ n4

′ ≤ n4,

hence ntotal
′ ≤ ntotal

By conjecture 2 and definition 5:

n1
′ ≤ n1 ∧ n2

′ < n2 ∧ n3
′ ≤ n3 ∧ n4

′ ≤ n4,

hence ntotal
′ ≤ ntotal

By conjecture 3 and definition 5:

n1
′ ≤ n1 ∧ n2

′ ≤ n2 ∧ n3
′ < n3 ∧ n4

′ ≤ n4,

hence ntotal
′ ≤ ntotal

By conjecture 4 and definition 5:

n1
′ ≤ n1 ∧ n2

′ ≤ n2 ∧ n3
′ ≤ n3 ∧ n4

′ < n4,

hence ntotal
′ ≤ ntotal

Theorem 2: An infinite loop cannot occur in the algorithm
proposed by our approach.

Proof by contradiction: Suppose that an infinite loop oc-
curs, it implies that a loop condition of our approach remains
true infinitely. In other words, it means that after applying
refactoring technique suggested by our approach from iter-
ation to iteration, the number of long method characteris-
tics will not decrease to zero. Using theorem 1, since the
number of long method characteristics strictly decreases, it
implies that the number of long method characteristics will
decrease to zero at the end. Therefore by contradiction, we
can conclude that an infinite loop cannot occur in the algo-
rithm proposed by our approach.

3. Evaluation

Our research goal is to identify appropriate refactorings that
remove long method bad smell, increase code analyzability
and minimize the number of impacted statements. There-
fore, to evaluate our approach, we implemented it into an
Eclipse plugin, ran the plugin on a subject program and col-
lected the results. The evaluation objectives are to assess:
1) the preservation of code functionality, 2) the bad smell re-
moval rate, 3) the improvement on code analyzability. This
research assesses the preservation of code functionality by
running a test suite on the refactored code and determining
whether all test cases pass. For removal rate, this research
determines whether all existing long method characteristics
are removed after applying refactorings and no new one is

Fig. 5 LMR plugin architecture.

introduced. This research assesses the improvement on ana-
lyzability by comparing the analyzability level of the refac-
tored code against the original one.

3.1 Tools

To automate refactoring opportunities selection and remove
all long method bad smell, we need a tool which covers the
suggestion for all five refactoring techniques: replace temp
with query, introduce parameter object, preserve whole ob-
ject, and decompose conditional, and extract method. As
JDeodorant can identify opportunities for extract method,
then we constructed an eclipse plugin that implemented our
LMR approach and by itself can identify refactoring oppor-
tunities and their impacted statements for four remaining
refactoring techniques. We call our eclipse plugin as LMR
plugin. A developer can use our LMR plugin in coopera-
tion with JDeodorant plugin to remove all long method bad
smell.

The architecture of our LMR plugin is shown in Fig. 5.
The LMR plugin was enhanced from PMD. We use PMD
for creating class dependence graph which shows statement
and variable dependences inside a method and for construct-
ing facts about method which will be used with refactoring
enabling conditionsfor identifying refactoring opportunities.
A class dependence graph is created from control flow and
data flow which are computed by PMD. Refactoring en-
abling conditions are defined as Prolog rule sets to identify
opportunities for four refactoring techniques and suggest the
most effective refactoring set.

Our plugin uses SWI-Prolog, which is an open source
tool for running Prolog rules, and InterProlog, which is an
open source API for communicating between Eclipse and
SWI-Prolog. To identify a candidate temporary variable ap-
plicable for “replace temp with query” refactoring, we must
guarantee that an assignment expression of that variable has
no side effect. Our LMR uses Soot [22] to check for side
effects. Soot is a static analysis tool that can check for side
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Fig. 6 LMR plugin identifies replace temp with query refactoring tech-
nique.

Fig. 7 LMR plugin identifies the statements impacted by replace temp
with query refactoring techniques.

effects using point-to graph model and purity analysis [19].
Our plugin also identifies statements impacted by the re-
place temp with query refactoring by using the approach
described in Ref. [20].

To facilitate refactoring application and long method
bad smell removal, as shown in Fig. 6, the LMR plugin
shows the list of refactoring opportunities in form of table
and the control flow and data flow graphs of the code be-
fore refactoring. Our plugin highlights all impacted state-
ments of refactoring opportunities as shown in Fig. 7, so
that developer can use Eclipse to refactoring by apply-
ing the suggested refactoring technique to the highlighted
statements.

We compare the capability of refactoring identification
tools between LMR plugin and two other tools, as shown
in Table 3. JDeodorant and IntelliJ IDEA identify refactor-
ing opportunities only for extract method and replace temp
with query, respectively, while the LMR plugin identifies
refactoring opportunities for four refactorings except ex-
tract method. We compare the impacted statements by re-
place temp with query refactoring technique identified by
our LMR plugin and IntelliJ IDEA. As a result, our tool can
identify codes to form a query method for replacing a tem-
porary variable in a long method covering more cases and
more correctly than IntelliJ IDEA [23]. Our tool can identify

temp variable inside loop statement and selection statement
while IntelliJ IDEA cannot.

3.2 Subject

We selected our subject using three criteria: 1) being an
open source software that is widely adopted and written in
Java; 2) containing long method bad smells, and 3) availabil-
ity of a test suite. This research selected JFreeChart, which
is publicly used and is a popular subject for experiment. We
chose its core package version 1.0.17, which has 5,665 lines
of code and contains 20 classes and 552 methods.

After detecting long method characteristics in all
classes and methods, we found long method bad smells in
13 classes. These classes altogether had 489 methods, 172
of which had long method characteristics. Next, we applied
the proposed approach to the 172 methods to identify refac-
toring opportunities and their locations. LMR could identify
opportunities for five refactoring techniques. We found that
these methods could be divided into three types: 1) methods
in which one refactoring technique was applicable at one lo-
cation (T1); 2) methods in which one refactoring technique
was applicable at a number of locations (T2), and 3) meth-
ods in which refactoring techniques could be applied at a
number of locations (T3). Method examples of the three
types are shown in Table 4.

From Table 4, method “ChartColor” of class
“ChartColor” is classified type 1 since it had one refac-
toring “introduce parameter object” applicable to one lo-
cation parameter group [r, g, b]. In Type 2, method
“applyToXYAnnotation” of class “StandardChartTheme”
had one refactoring “extract method” applicable to two loca-
tions local variables in blocks B1 and B2. In Type 3, method
“createPieChart” of class “ChartFactory” has four refactor-
ing candidates “introduce parameter object, replace temp
with query, extract method, and decompose conditional” ap-
plicable at six locations.

In summary, there were 90, 25 and 57 methods in
method types 1, 2 and 3, respectively. In Type 1, LMR found
three long method characteristics: too many statements in-
side a method, too many unnecessary local variables, too
many parameters, and too complex conditions. LMR then
suggested three refactoring techniques: “replace temp with
query”, “introduce parameter object”, and “extract method,”
covering 12 classes. The number of methods type 1 appli-
cable for “replace temp with query”, “introduce parameter
object”, “extract method,” are 3, 73 and 11 respectively,
while there is no method applicable for “preserve whole
object and decompose conditional”. LMR found two long
method characteristics: too many unnecessary local variable
and too many statements inside a method. LMR suggested
three refactoring techniques: “replace temp with query” and
“extract method” covering 8 classes. The number of meth-
ods type 2 applicable for “replace temp with query” and
“extract method” are 9 and 16, respectively. In Type 3,
LMR found four long method characteristics and suggested
four refactoring techniques (4RT), three refactoring tech-
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Table 4 Example of methods of three types.

niques (3RT), and two refactoring techniques (2RT). The
number of methods of 4RT, 3RT and 2RT are 2, 6 and 49,
respectively.

3.3 The Experiment of Three Objectives

3.3.1 Evaluation of the Preservation of Code Functionality

Before performing the case study, the original code was used
to rerun the test suite and the result was a pass. After a devel-
oper has applied the refactorings suggested by our approach
for each method in the case study, the regression test suites
will be re-run. If the refactored method passes this test suite,
it implies that LMR approach preserves its behavior as spec-
ified by the test suite. Then, this refactored method in which
there was no impact on code functionality was counted as
a case. All methods of all types followed the same steps
and the percentage of cases in which there was no impact
on code functionality (NICF) formula was calculated using
Eq. (6).

3.3.2 Evaluation of the Removal Rate of Long Method
Characteristics

For each method in the case study, we detected long method
characteristics of the refactored method and compared them
with those of the original code. If the refactored method
does not reintroduce long method characteristics previously
found in the original code or introduce new long method
characteristics, the refactored method was given the status
true, and counted as a case in which all long method char-
acteristics were removed. This implies that the removal rate
criterion is satisfied. All methods of all types followed the
same steps and the results were calculated using Eq. (7).

3.3.3 Evaluation of the Improvement on Analyzability

For each method in the case study, we compared the ana-
lyzability levels of the refactored code and original code. If

the analyzability level of the refactored method was greater
than or equal to that of the original method, the refactored
method was counted as a case with no analyzability level
degradation. This implies that the refactored method satis-
fied the impact on analyzability criterion. All methods of
all types followed the same steps and the results were calcu-
lated using Eq. (8).

The percentage of cases with NICF for Type X =
Number of cases with NCIF for Type X

Total of cases in Type X
× 100 (6)

The percentage of cases which remove all LMCs for Type X =
Number of cases which remove all LMCs for Type X

Total of cases in Type X
× 100

(7)

The percentage of cases whose AL is not degraded for Type X =
Number of cases whose AL is not degraded for Type X

Total of cases in Type X
× 100

(8)

where X is the type of method: type 1, type 2, type 3.

3.4 Result

LMR plugin executes three steps. In the first step, LMR plu-
gin takes around one minute to transform JFreeChart code
to an abstract syntax tree and four graphs for all classes and
methods. In second step, LMR plugin takes around one sec-
ond to identify refactoring opportunities after a developer
selects a long method bad smell. In the last step, LMR plu-
gin takes around one second to identify statements impacted
by refactoring “replace temp with query” after a developer
select that refactoring opportunity.

3.4.1 The Code Functionality and the Removal Rate

We found that all methods of three types passed all test
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cases; so it implied that a hundred percent of methods af-
ter applying refactorings can preserve behavior. Further-
more, we found that all methods of three types removed long
method bad smells; so it implied that is a hundred percent of
long method bad smells can be removed for all three types.

3.4.2 The Improvement on Analyzability

In this case study, there is no method with analyzability
level 1 or level 2 but the numbers of methods type 1, type 2,
and type 3 with analyzability level 3 are 90, 25, 57 respec-
tively. Analyzability level of these methods before and af-
ter applying refactorings remains the same. The percent of
methods whose analyzability level remains unchanged for
type T1, T2, and T3 is 100%. Therefore, we conclude that
using our approach to remove long method characteristics
does not alter the analyzability level of all methods.

3.5 Discussion

As shown in the results, for this subject program, our ap-
proach identifies and suggests that applying one of the three
refactoring techniques: EM, IPO, and RTWQ is adequate
to remove all the long method characteristics in methods of
types 1 and 2. The results show that, in more complex cases
such as in methods of type 3, our approach can remove all
the long method characteristics by identifying and suggest-
ing combinations of refactorings of all five techniques.

We found that, in all cases, our approach can preserve
behavior and remove all long method bad smells. The an-
alyzability level of all methods after applying refactorings
suggested by our approach are unchanged. Therefore, our
approach can completely remove long method bad smell and
preserve their behavior without decreasing their analyzabil-
ity. In type 3, our approach can suggested an effective set of
refactoring techniques that remove several long method bad
smell characteristics simultaneously.

3.6 Threats to Validity

The results in this experiment were subject to several threats.
In this section, we discussed these limitations from two per-
spectives: internal validity and external validity.

3.6.1 Internal Validity

Our approach focused on analyzability improvement in
code, but does not take into account other code qualities. We
use code analyzability model from our previous work [17],
which is based on three code metrics using logistic regres-
sion statistical method trained by the data from another
with a Java open source project: JEdit. Since, JEdit and
JFreeChart are similar for its size and architecture, we use
the code analyzability model without adjusting cut point
values.

If a developer uses other code analyzability models or
other code maintainability models, she must validate models

for its fitness. If these models are not suitable, she must ad-
just the models such as by changing constants or parameters.
When the input analyzability model is changed, the metrics
used in model may also change. A method should therefore
be developed for predicting the values of these metrics. Be-
cause the predicted analyzability value is one of criteria for
selecting an effective refactoring set.

In this experiment, we used the test suite of a sub-
ject program for evaluating code behavior preservation.
JFreeChart has a test suite, which can be used to check
whether main method can function correctly. In order to
confirm that the methods after removing all long method
bad smell characteristics, we suggest developer to check the
quality of test suites related to all bad smell methods. Devel-
oper may use code coverage criteria i.e. statement or branch
decision to assess quality of test suite.

3.6.2 External Validity

For our experiment, we selected a subject using three crite-
ria: 1) it was an open source software that is widely adopted
and written in Java; 2) it had long method bad smells, and
3) it had a test suite. Therefore, the proposed approach sup-
ports code in Java, but does not support generated code from
automation tools.

For decreasing the number of parameter object, the
conditions for identifying refactoring introduce parameter
object should take into account the parameters of other
classes. Moreover, our proposed approach excludes the ar-
chitectural aspect.

4. Conclusion

This research proposed an effective approach for identify-
ing and suggesting appropriate refactorings to completely
remove the long method characteristics with minimal impact
(in terms of the number of statements) and no reduction in
code analyzability. The proposed approach, called the long
method remover or LMR, focuses on code at the method
level and considers each method in a class individually.

To identify refactoring opportunities and statements
impacted by the refactoring techniques, LMR used refac-
toring enabling conditions and statements- impacted-by-the-
refactoring algorithm for four refactoring techniques: “re-
place temp with query, introduce parameter object, pre-
serve whole object, and decompose conditional” and used
JDeodorant for refactoring technique “extract method”. A
refactoring enabling condition, written as a rule, is com-
posed of arithmetic and logical expressions based on the
code structure and code metrics from program analysis.
This algorithm predicts impacted statements using program
slicing. Moreover, LMR suggested a refactoring set using
two criteria: the code analyzability level and the number of
statements impacted by the refactoring techniques.

To evaluate our approach, we assessed three objectives:
1) the preservation of code functionality; 2) the removal
rate, and 3) the improvement on code analyzability. We se-
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lected as a subject the core package of JFreeChart, which
has 20 classes and 552 methods. After investigating long
method characteristics in all classes and methods, we found
172 methods with long method characteristics. These meth-
ods could be classified into three method types: 1) methods
in which one refactoring technique was applicable at one
location (T1); 2) methods in which one refactoring tech-
nique was applicable at more than one location (T2), and
3) methods in which refactoring techniques could be applied
at more than one location (T3). The results showed that, for
all of the methods, our approach can suggest refactoring sets
that can complete remove long method bad smell, preserve
behavior and maintain the code analyzability.

For future work, we plan to extend the evaluation as
follows: 1) increase the number of cases of types 1 and 2
to cover all five refactoring techniques, and 2) evaluate the
soundness of our approach by seeking judgments from ex-
perts. Lastly, we will implement a fully automatic tool for
supporting the proposed approach.
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