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SUMMARY 360 videos have recently become a popular virtual real-
ity content type. However, a good quality metric for 360 videos is still
an open issue. In this work, our goal is to identify appropriate objective
quality metrics for 360 video communications. Especially, fourteen objec-
tive quality measures at different processing phases are considered. Also,
a subjective test is conducted in this study. The relationship between ob-
jective quality and subjective quality is investigated. It is found that most
of the PSNR-related quality measures are well correlated with subjective
quality. However, for evaluating video quality across different contents, a
content-based quality metric is needed.
key words: 360 video, objective quality, subjective quality, video process-
ing

1. Introduction

360-degree videos (or 360 videos for short) have become a
popular virtual reality (VR) content type on video stream-
ing platforms. While there are a lot of previous studies on
traditional videos [1]–[3], the research on 360 videos is still
very limited. Most of 360 video related studies focus on
investigating some aspects of video quality [4]–[6] in VR
environment such as the presence, usability, and cybersick-
ness. Some recent studies consider quality optimization for
360 video delivery [7], [8]. However, a good quality metric
for 360 videos is still an open issue.

Essentially, a spherical image of a 360 video needs to
be converted to 2D plane so that it can be encoded by ex-
isting coding formats. This is supported by different projec-
tion types (e.g. Equi-rectangular projection (ERP) and Cube
Map (CMP) projection). Obviously, such 2D images could
be used as inputs for 360 video quality evaluation. In this
way, two quality metrics, PSNR and Multiscale Structural
similarity (MS-SSIM), are used to evaluate the quality of
360 videos in [7]. However, it is well-known that projected
2D images have redundancy due to over-sampling in certain
areas. To deal with this problem, the concept of spherical
PSNR (S-PSNR) is introduced in [9] to evaluate the quality
of 360 video. In this metric, the points for PSNR calculation
are obtained from unit spheres rather than 2D images.
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In the latest stage of standardization for 360
videos [10], over ten PSNR-related objective quality mea-
sures should be reported for evaluating any 360 video cod-
ing technique. Obviously, this is very complicated for re-
searchers to present and compare coding/adaptation tech-
niques for 360 videos. These measures belong to five
basic types of objective quality metrics, including PSNR,
Weighted to spherically uniform PSNR (WS-PSNR) [11],
spherical PSNR without interpolation (S-PSNR-NN) [12],
spherical PSNR with interpolation (S-PSNR-I) [9], and
PSNR in Crasters Parabolic Projection (CPP-PSNR) [13].
Also, the quality measures of these objective quality met-
rics can be classified into three phases of 360 video process-
ing. Phase 1 is between input video and output video of the
codec, phase 2 is between source video and output video of
the codec, and phase 3 is between source video and recon-
structed video.

To the best of our knowledge, no previous studies have
evaluated these various PSNR-related quality measures for
360 videos. Moreover, it is well-known that PSNR-related
measures do not represent well human perceived quality.
However, the use and investigation of advanced quality met-
rics such as structural similarity-related metrics and content-
based quality metrics (e.g. [3], [14], [15]) are still very
limited. In this work, we investigate both objective qual-
ity and subjective quality of 360 videos. The goals are to
identify appropriate objective quality metrics and to under-
stand the perceived quality range provided by existing 360
videos. A subjective test is conducted to investigate the sub-
jective quality of 360 videos encoded at different encod-
ing parameters. Objective quality metrics are then evalu-
ated based on their complexity and correlations with sub-
jective quality. Regarding objective quality metrics, we not
only consider the above PSNR-based metrics, but also in-
vestigate three other advanced metrics, namely, SSIM [14],
MS-SSIM [15], and a hybrid metric using content features
(HMCF) [3]. Based on the evaluation results, good objective
quality metrics for different processing phases are identified.
The tradeoffs of the quality metrics are also analyzed.

The remainder of the paper is organized as follows. In
Sect. 2, an overview of 360 video and quality metrics is pre-
sented. Section 3 describes the details of the experiment.
Section 4 discusses the obtained quality scores and rela-
tionship between objective quality measures and subjective
quality. Finally, Sect. 5 concludes the paper and provides an
outlook on future work.
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Fig. 1 Processing chain of 360-degree video.

2. Overview of 360 Video Processing and Quality Met-
rics

2.1 General 360 Video Processing

The general processing stages of a 360 video are illustrated
in Fig. 1. A source 360 video in the source projection format
is firstly down-sampled and/or converted to another projec-
tion format. After encoding-decoding, the decoded video
is reconverted to the source projection format and/or up-
sampled to the original resolution for quality evaluation. Al-
though a 360 video is provided in every direction, a viewer
sees only one direction at a time. Therefore, viewports ex-
tracted from videos could be used as an input for calculating
objective quality.

To evaluate the impact of each stage on user’s percep-
tion, various objective quality metrics could be considered.
As recommended in [10], we evaluate quality measures in
three phases. Phase 1 includes coding stage only, phase
2 includes coding stage and format conversion stage, and
phase 3 includes all processing stages. Note that all met-
rics considered in [10] are PSNR and PSNR variants. As a
viewport is extracted as a rectilinear image, its quality met-
ric is PSNR only. We can see that quality measures in phase
1 quantify the impacts of encoding only. The measures in
phase 2 quantify the impacts of distortions caused by down-
sampling, forward projection format conversion, and encod-
ing. Meanwhile, the measures in phase 3 also cover the im-
pacts of reconversion to the source format.

In this paper, we consider eight quality metrics, which
can be divided into three categories including PSNR-related
metrics, structural similarity related metrics, and content-
related metrics. The first category is based on the conven-
tional PSNR, the second includes SSIM and MS-SSIM, and
the third takes into account content characteristics.

2.2 PSNR-Related Metrics

In this work, there are five PSNR-related metrics, which are
agnostic of the video content, as follows.

PSNR: this conventional measure is calculated based
on the squared value differences of all points (or samples)
between an original image and a test image with equal
weights. So far, PSNR has been the de-facto quality met-
ric in image and video coding.

WS-PSNR [11]: Weighted to Spherically uniform
PSNR is calculated based on the squared value differences
of all points between an original image and a test image,
where the weight of each point depends on the sampling
area on corresponding spherical surface. Similar to PSNR,
WS-PSNR is also only used for two images of the same res-
olution and the same projection type.

S-PSNR-NN and S-PSNR-I: Spherical PSNR, which is
first presented in [9], is calculated based on the squared
value differences of points uniformly sampled on two con-
ceptual unit spheres, one generated by an original image and
one by a test image. In this way, two (panoramic) images
with different resolutions and projection types can be com-
pared. When the position on a unit sphere is rounded to the
nearest neighbor position on the corresponding image, the
metric is called S-PSNR-NN [12]. When the signal value
of the position on the unit sphere is inferred by interpola-
tion from neighbor positions on the corresponding image,
the metric is denoted by S-PSNR-I.

CPP-PSNR [13]: To compute this PSNR-related met-
ric, the original image and the test image are first converted
into the Crasters Parabolic Projection format. This is simi-
lar to converting to the unit sphere, and so CPP-PSNR can
be used on two images with different resolutions and projec-
tions.

2.3 Structural Similarity Related Metrics

Although PSNR is the simplest and most widely used qual-
ity metric, it is not very well matched to perceptual video
quality [14]. An interesting type of quality metrics based
on the concept of structural similarity is presented in [14],
which can take advantage of characteristics of the human vi-
sual system and thus give a better correlation to perceptual
video quality than PSNR. Two metrics of this type investi-
gated in this work are as follows.
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Table 1 Features of source videos.

Video Motion
activ-

ity

Spatial
Com-

plexity

Shooting
type

Description

Video
#1

Low Complex Static
shooting Natural video of game

show genre. Movements
of 4 characters in a room.
Camera is fixed in floor.

Video
#2

Medium Simple Dynamic
shooting Natural video of documen-

tary genre. Dolphins move
around in the ocean. Cam-
era is controlled by a diver
in a medium motion.

Video
#3

Fast Complex Dynamic
shooting Natural video of adventure

genre. Camera is in a roller
coaster in a fast motion.

Video
#4

Low Complex Static
shooting

Natural video of documen-
tary genre. Movements of
panda bears in a National
Nature Reserve.

Video
#5

Fast Complex Dynamic
shooting

Animated video of game
genre. A gamer is playing
Counter-strike Game.

Video
#6

Medium Medium Static
shooting

Animated video of anima-
tion genre. Movements of
1 cartoon character in a
room.

Structural similarity (SSIM) [14] is calculated based on
comparisons of luminance, contrast, and structure between
two image signals x and y. Let μx and σ2

x be the mean and
the standard deviation of x, respectively. Denote σxy the
covariance of x and y. The comparison measures of lumi-
nance, contrast, and structure are respectively defined by

l (x, y) =
2μxμy +C1

μ2
x + μ

2
y +C1

, (1)

c (x, y) =
2σxσy +C2

σ2
x + σ

2
y +C2

, (2)

s (x, y) =
σxy +C3

σxσy +C3
, (3)

where C1, C2, and C3 are model parameters. Finally, the
SSIM metric between x and y is given by

S S IM (x, y) =
[
l (x, y)

]α[c (x, y)
]β[s (x, y)

]γ, (4)

where α, β, and γ are parameters used to adjust the rela-
tive importance of the three components. The expression is
simplified by setting α = β = γ = 1 and C3 =

C2
2 follow-

ing [14]. Therefore, the SSIM metric is simplified as follows

S S IM (x, y) =
(2μxμy +C1)(2σxy +C2)

(μ2
x + μ

2
y +C1)(σ2

x + σ
2
y +C2)

. (5)

Multi-scale SSIM (MS-SSIM) [15] is calculated based
on similar measures computed at different resolutions (or
multi-scales). Specifically, the source image and the test
image are firstly low-pass filtered, and then down-sampled
by a factor of 2. The source image and the test image are
denoted as scale 1. Denote M the highest scale which is ob-
tained after M−1 interactions. For each scale j, the compar-
ison measures of luminance l j (x, y), contrast c j (x, y), and
structure s j (x, y) are calculated by Eqs. (1)∼(3). Finally, the
MS-SSIM metric is given by

MS−S S IM(x, y) =
[
lM(x, y)

]αM×
M∏
j=1

([
c j(x, y)

]β j
[
s j(x, y)

]γ j
)
,

(6)

where αM , β j, and γ j are parameters to define the relative
importance of the different components. We can see that
MS-SSIM includes a SSIM measure for scale M. In other
words, if only the parameters αM , βM , and γM are non-zero
values, MS-SSIM is equal to SSIM for scale M. In order
to simplify the expression, the parameters are set as follows:
α j = β j = γ j with all scales j ∈ {1, 2, . . .M} and

∑M
j=1 γ j = 1

following [15].

2.4 Content-Related Metric

In several previous studies, it is indicated that the impacts
of content types (or content characteristics) on perceptual
video quality are significant [2], [16]. However, there has
been few proposed quality metrics considering the impacts
of content characteristics. In this study, a content-related
metric that is proposed in [3] is investigated.

Hybrid metric using Content Features (HMCF) [3] is
calculated based on measured mean opinion score Q0 (sub-
jective quality metric) of an original video and PSNR (ob-
jective quality metric) between the original video and a test
video. Specifically, HMCF is calculated by

HMCF = 1.04 × Q0

(
1 − 1

1 + ep(PS NR−s)

)
, (7)

where s and p are model parameters. Parameter s can be
calculated by

s = α − β ∗Gm − γ ∗ NFD, (8)

where α, β, and γ are model parameters, and NFD and Gm

are parameters used to characterize content features. Specif-
ically, NFD is used to measure the contrast of the video, and
Gm is used to measure the amount of details in the video.
More information about calculating NFD and Gm can be
found in [3]. It should be noted that calculating NFD and
Gm are very complex, and so the parameters for each content
should be obtained in advance.
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2.5 Selected Quality Measures

As mentioned, we evaluate quality measures in three phases
(Fig. 1). The objective quality measures in phase 1 include
PSNR, WS-PSNR, and HMCF. Note that the projection for-
mats as well as the resolutions of the two videos must be
identical. The quality measures in phase 2 include CPP-
PSNR, S-PSNR-NN, and S-PSNR-I. Here the projection
formats as well as the resolutions of the two videos can be
different. For phase 3, the quality measures include the WS-
PSNR, CPP-PSNR, S-PSNR-NN, SPSNR-I, PSNR, SSIM,
MS-SSIM and HMCF. These measures are calculated be-
tween the source video and the reconstructed video with the
same projection format and the same resolution.

In this study, we focus on comparing objective qual-
ity measures, and so only the most popular projection type,
which is ERP, is used. In addition, because the video pro-
cessing is omnidirectional, the video quality is almost iden-
tical across different viewing directions. Therefore, the
PSNR measure of viewports is not considered in this study.
Viewport PSNR evaluation, which is important when the
quality is not omnidirectional, will be reserved for our fu-
ture work.

So totally 14 objective quality measures (three in phase
1, three in phase 2, and eight in phase 3) are investigated
in this paper. Note that all the PSNR-related measures de-
scribed here are also required in [10].

3. Experiment Description

For the experiments, six 360 videos of 30-second duration
with different levels of motion activity and spatial complex-
ity are chosen. The characteristics of the videos are shown
in Table 1. The test video streams are encoded by using
H.264/AVC (libx264) with a frame rate of 30 fps. A GoP
structure of “IBBP” with a GoP size of 30 is used for all
videos. For each video, 20 encoding settings correspond-
ing to combinations of five QP values of 22, 28, 32, 36, 40,
and four resolutions of 3840x1920 pixels, 2880x1440 pix-
els, 2160x1080 pixels, 1440x720 pixels are used to generate
20 different video streams. Totally, there are 120 streams
generated from the six original videos. Note that these reso-
lutions and coding format are common in existing streaming
platforms.

The objective quality measures are computed on an
Ubuntu 14.04LTS PC with Intel Core i7 2.93GHz CPU
and 8G RAM. PSNR and PSNR variants are deployed us-
ing 360Lib software package [17]. SSIM, MS-SSIM, and
HMCF are implemented and added to 360Lib software
package also. The quality measure of a video stream is the
average of its frame quality values.

To evaluate image quality, it is shown that applying the
SSIM measure locally is better than globally [14]. There-
fore, in this study, SSIM measure is applied locally for slid-
ing windows that move pixel-by-pixel across the whole im-
age as in [14]. Then, SSIM index of the whole image is

the mean of SSIM indexes of all windows in the image. In
addition, to avoid “blocking artifacts” in the quality map,
an 11x11 circular-symmetric Gaussian weighting function
w = {wi|i ∈ {1, 2, . . . ,N} , ∑N

i=1 wi = 1} with the standard
deviation of 1.5 samples is used as a smooth windowing ap-
proach [15]. μx, σx, and σxy are then modified as follows:

μx =

N∑
i=1

wi xi (9)

σx =

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

wi(xi − μx)2

⎞⎟⎟⎟⎟⎟⎠
1/2

(10)

σxy =

N∑
i=1

wi(xi − μx)(yi − μy). (11)

For calculating SSIM, we set C1 = 6.5025 and C2 =

58.5225 following [14]. Regarding MS-SSIM metric, we
use 5 scales and set β1 = γ1 = 0.0448, β2 = γ2 = 0.2856,
β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, and α5 = β5 = γ5 =

0.1333 following [15].
In the subjective experiment, video streams are dis-

played by a device set consisting of a Samsung Galaxy S6
smartphone and a Samsung Gear VR headset. The point of
view can be changed by moving viewer’s head. The field
of view of Samsung Gear VR is 96 degrees [18]. Samsung
Galaxy S6 has the screen resolution of 2560x1440 pixels
and the display size of 5.1 inches.

The subjective experiment is divided into two rounds.
The first round is for the first three videos, and the second
round for the last three videos (Table 1). In this study, mean
opinion score (MOS) is used as the subjective quality met-
ric for 360 videos. Specifically, each of the test streams is
randomly displayed during the experiment, and then each
viewer gives a rating score at the end of each stream with the
score ranging from 1 (bad) to 5 (excellent). As 360 videos
are new to many people, the viewers are required to watch
some 360 videos one week in advance using available de-
vices in our laboratory. In addition, in the experiment, be-
fore doing actual subjective tests, the viewers are trained to
get accustomed to the devices and the rating procedure. In
particular, the participants are trained by 5 training streams,
which are different from the test streams. These training
streams are displayed in the order from the best quality to
the worst quality following the explanations and demonstra-
tions of impairments caused by an increased QP and/or a
decreased resolution. In the 5 training streams, one has the
best quality, one has the worst quality, one demonstrates the
impact of the QP increase, one shows the impact of the res-
olution decrease, and the last illustrates the impacts of both
QP and resolution. During the experiment, every 20 min-
utes, there is a break for the viewers. There are totally 18
people taking part in the first round and 19 people in the
second round of this experiment. The participants have ages
between 20 and 37 with an average age of 25. The Absolute
Category Rating method is used in our experiment [19]. A
screening analysis of the subjective test results is performed
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Fig. 2 Subjective quality values vs. encoding parameters.

Fig. 3 Coding distortion measurement. a) PSNR & WS-PSNR b)
HCMF.

according to [19], and no subject is rejected.

4. Result Analysis

Figure 2 shows the subjective quality values (and corre-
sponding confidence intervals) at different QP values and
different resolutions for all considered videos. The relation-
ship of each objective quality measure and the subjective
quality is shown in Figs. 3, 4, and 5. In the following, we
will discuss the characteristics of these measures in detail.

4.1 Subjective Quality

It can be seen from Fig. 2 that subjective quality values vary
from 1 to about 4.5 (MOS). The maximum subjective qual-
ity values of Video #1, Video #2, Video #3, Video #4, Video
#5, and Video #6 are 4.44, 4.44, 4.56, 4.35, 4.10, and 4.70
respectively. However, the quality drops quickly when QP

Fig. 4 Cross-format distortion measurement.

Fig. 5 End-to-end distortion measurement a) PSNR-related metrics b)
SSIM and MS-SSIM c) HCMF
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Table 2 Correlation coefficient between objective quality measures and subjective quality measure.

Objective quality
measures

Video #1 Video #2 Video #3 Video #4 Video #5 Video #6 All videos
PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE

Phase 1
WS-PSNR 0.93 0.37 0.91 0.40 0.89 0.42 0.89 0.40 0.92 0.34 0.90 0.46 0.75 0.64

PSNR 0.93 0.37 0.91 0.40 0.90 0.42 0.89 0.40 0.92 0.35 0.90 0.47 0.76 0.63
HMCF 0.92 0.38 0.89 0.43 0.88 0.45 0.87 0.42 0.92 0.36 0.90 0.47 0.85 0.51

Phase 2
CPP-PSNR 0.99 0.13 0.99 0.14 0.99 0.11 0.98 0.18 0.98 0.17 0.98 0.19 0.78 0.61

S-PSNR-NN 0.92 0.39 0.98 0.18 0.94 0.33 0.95 0.27 0.96 0.26 0.94 0.35 0.67 0.72
S-PSNR-I 0.99 0.13 0.99 0.14 0.99 0.11 0.98 0.18 0.98 0.17 0.98 0.19 0.78 0.60

Phase 3

WS-PSNR 0.99 0.14 0.99 0.13 0.99 0.12 0.98 0.17 0.98 0.16 0.98 0.19 0.78 0.62
CPP-PSNR 0.99 0.14 0.99 0.13 0.99 0.12 0.98 0.17 0.98 0.17 0.99 0.18 0.78 0.61

S-PSNR-NN 0.99 0.13 0.99 0.13 0.99 0.11 0.98 0.17 0.98 0.17 0.98 0.18 0.78 0.61
S-PSNR-I 0.99 0.13 0.99 0.13 0.99 0.12 0.98 0.17 0.98 0.17 0.99 0.18 0.78 0.61

PSNR 0.99 0.13 0.99 0.15 0.99 0.13 0.98 0.17 0.97 0.21 0.98 0.20 0.80 0.59
SSIM 0.99 0.17 0.98 0.21 0.98 0.21 0.97 0.21 0.98 0.18 0.97 0.27 0.80 0.58

MS-SSIM 0.98 0.18 0.98 0.17 0.99 0.15 0.97 0.22 0.97 0.21 0.97 0.26 0.87 0.48
HMCF 0.99 0.14 0.99 0.16 0.99 0.15 0.98 0.18 0.97 0.21 0.98 0.20 0.91 0.41

is increased or the resolution is decreased.
Compared to the highest resolution of 3840x1920 pix-

els, the subjective quality of the resolution of 2880x1440
pixels is reduced by 0.4 MOS on average for all considered
videos. When the resolution decreases further to 2160x1080
pixels and then 1440x720 pixels, the average quality reduc-
tions corresponding to these changes are respectively 0.61
MOS and 0.60 MOS. So, when the resolution is decreased
from the highest level to the lowest level, the average quality
degradation is about 1.61 MOS. Especially, although when
the QP value is very good (QP = 22), subjective quality
values at the resolution of 1440x720 pixels are lower than
3 MOS for all videos. This means that videos encoded at
the resolution of 1440x720 pixels, which are being provided
in current streaming platforms, are very negative to view-
ers. This is because, using the headset, viewers actually see
roughly one sixth of the provided resolution on a large pro-
jected sphere. Therefore, 360 videos should be encoded at
resolutions higher than 1440x720 pixels.

Similarly, at the highest resolution of 3840x1920 pix-
els, subjective quality values of video streams encoded at the
QP of 40 are also lower than 3 MOS for all video types. This
means that 360 videos should be encoded at QP values lower
than 40. In addition, for most of the considered videos, to
achieve subjective quality values higher than 3 MOS, the
maximum QP values at the resolutions of 3840x1920 pix-
els, 2880x1440 pixels, and 2160x1080 pixels are 32, 32 and
28, respectively. It should be noted that these QP values are
specific to the AVC coding format.

4.2 Quality Correlation for Individual Videos

In this part, we will investigate the correlation of different
objective quality measures with subjective quality for each
video. In Figs. 3, 4, and 5, each marker shows a type of ob-
jective quality metric and each color corresponds to a video
(i.e., orange for Video #1, blue for Video #2, black for Video
#3, green for Video #4, purple for Video #5, and red for
Video #6).

To investigate the relationships between objective qual-
ity and subjective quality, different mapping functions could

be used, e.g. linear, exponential, power, and logistic func-
tions. After trying curve-fitting with these functions, it is
found that the Pearson Correlation coefficients (PCCs) of
the logistic function are always highest. Specifically, the av-
erage PCCs (over all metrics and videos) of linear, exponen-
tial, power, and logistic functions, are 0.93, 0.90, 0.92, and
0.97, respectively. Therefore, in this study, a four-parameter
logistic function of the form

f (x) = d +
a − d

1 +
(

x
c

)b
(12)

is used to map between the objective quality values and the
subjective quality values. Note that all model parameters
including a, b, c, d, α, β, γ and p in Eqs. (7), (8), and (12)
are obtained by curve-fitting using the data in Figs. 3, 4, and
5.

The correlation coefficients including Pearson Cor-
relation Coefficient (PCC) and Root Mean Square Error
(RMSE), which are used to quantify how well the objec-
tive quality and subjective quality correlate, are shown in
Table 2. Note that the last two columns of Table 2 will be
reserved for the next subsection, which discusses the corre-
lation for all videos.

From Table 2, we can see that although the six videos
used in this study have different characteristics such as mo-
tion activity, spatial complexity, genre, and shooting type,
the behaviors of PCC and RMSE are consistent for all six
videos. Specifically, the objective quality measures used in
phase 1 have rather low PCC (0.87∼0.93) and rather high
RMSE (0.34∼0.47).

In phase 2, the objective quality measures CPP-PSNR
and S-PSNR-I have very high PCC (0.98∼0.99) and very
low RMSE (0.11∼0.19). Meanwhile, the S-PSNR-NN mea-
sure in phase 2 has lower PCC (0.92∼0.98) and higher
RMSE (0.18∼0.39). This means that in phase 2, CPP-PSNR
and S-PSNR-I are closer to users’ perception than S-PSNR-
NN. Especially, the correlation coefficients of S-PSNR-NN
are different for different videos. This implies that the ac-
curacy of rounding using the nearest neighbor position in
S-PSNR-NN depends on content features. For example, be-
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cause the background of Video #2 is very simple, the round-
ing using the nearest neighbor position in this video causes
less errors than in the other videos.

It should be noted that in phase 2, the resolution of
the decoded video is equal or lower than that of the source
video. The smaller the resolution of the decoded video is,
the more significant the impact of rounding is. However, in
phase 3, as the resolution of the reconstructed video is al-
ready upsampled to be equal to that of the source video, the
PCC of S-PSNR-NN measure for each video is always high
(0.98∼0.99).

In phase 3, PSNR, PSNR variants, and HMCF
have very high PCC (0.97∼0.99) and very low RMSE
(0.11∼0.21). Interestingly, it turns out that the traditional
PSNR, the most straightforward calculation, has high PCC
similarly to those of the other measures in phase 3. So PSNR
in phase 3 could be directly used for 360 videos.

Meanwhile, SSIM and MS-SSIM have a little lower
PCC (0.97∼0.99) and higher RMSE (0.15∼0.27). Espe-
cially, for Video #1 and Video #5, PCC of MS-SSIM is
lower than that of SSIM. Meanwhile, for Video #2 and
Video #3, the correlation coefficient of MS-SSIM is better
than that of SSIM. It be because that the SSIM and MS-
SSIM metrics have parameters used to adjust the relative
importance of different components. The parameters are re-
lated to the human visual system, and so it is difficult to di-
rectly obtain them from simple subjective experiments [15].
In addition, we can see that the RMSE of the HMCF mea-
sure in phase 3 is a bit higher (or worse) than that of PSNR-
related measures for each video.

Therefore, the objective measures including CPP-
PSNR and S-PSNR-I in phase 2 and PSNR-related measures
in phase 3 are not only effective but also less complicated to
evaluate the quality.

4.3 Quality Correlation for All Videos

Though the quality measures in phase 2 and phase 3 have
high correlations for each individual video, they mostly have
low PCC and high RMSE when fitting for all six videos (see
the last two columns of Table 2). In fact, only HMCF mea-
sure in phase 3 has acceptable results.

More specifically, for all videos, only the HMCF mea-
sure in phase 3 still has high PCC (i.e., 0.91). It is because
that HMCF is calculated based on some of content features
including NFD and Gm as presented in Sect. 2. Therefore,
HMCF metric in phase 3 is able to compare 360 video qual-
ity across different videos. However, we can see that the
RMSE of HMCF measure for all videos is up to 0.41 MOS.
This means that it is necessary to improve content-related
metrics.

As for SSIM and MS-SSIM measures, it is interesting
that the PCC of SSIM is not good, while the PCC of MS-
SSIM is worse than that of HMCF only. This suggests that
MS-SSIM is the second choice to compare quality values
across different videos.

Table 3 Time complexity of objective quality metrics for two frames
with the same resolution of 3840x1920 pixels.

Objective quality metrics Time complexity (ms)
PSNR 19
S-PSNR-NN 223
WS-PSNR 44
S-PSNR-I 879
CPP-PSNR 7979
SSIM 394
MS-SSIM 581
HMCF 19

4.4 Complexity Evaluation

Table 3 shows the complexity measured as the amount of
time taken to calculate each objective quality metric. For
fair comparison (i.e. with same resolution and same projec-
tion), the metrics are compared in phase 3 only. Note that,
as mentioned, SSIM, MS-SSIM, and HMCF metrics require
complex (offline) processes to obtain content-related param-
eters in advance. However, these processes are not reflected
in these complexity values.

We can see that PSNR and HMCF have the small-
est time complexity. Compared to PSNR, WS-PSNR takes
about two times longer to calculate. That is due to the ad-
ditional time to process the weight of each sample. In addi-
tion, the complexity values of S-PSNR-NN and S-PSNR-I
are about eleven times and forty times higher than that of
PSNR. It is because rounding by using the nearest neighbor
position takes a shorter time than taking interpolation. Also,
the complexity of CPP-PSNR is about four hundred times
higher than that of PSNR. It is because converting to Craster
parabolic projection is rather complex. The complexity of
SSIM is twenty times higher than that of PSNR. Meanwhile,
MS-SSIM, with multiple rounds of down-sampling, takes
about thirty times longer to calculate compared to PSNR.

Therefore, in phase 3, given the smallest complexity
and the high correlation with subjective quality, PSNR is the
most appropriate measure for evaluating different streams of
an individual video. However, for evaluating video quality
across different videos, HMCF is the most appropriate met-
ric for 360 video communications.

4.5 Remarks on Evaluation Results

Based on the above results and discussions, some remarks
on the quality metrics can be summarized as follows.

• To achieve acceptable subjective video quality, 360
videos should be encoded at resolutions higher than
1440x720 pixels, regardless of QP values.
• The quality measures in phase 1 cannot be used to pre-

dict user perceived quality of 360 videos.
• In phase 2, quality measures CPP-PSNR and S-PSNR-

I, but not S-PSNR-NN, are appropriate to evaluate 360
video quality.
• In phase 3, actually all quality measures are well cor-

related with subjective quality. Especially, the tradi-
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tional PSNR, which has the simplest calculation, pro-
vides very high correlation results. Among these mea-
sures, SSIM and MS-SSIM have a little lower perfor-
mance and more complex processing. So, SSIM and
MS-SSIM should not be used as a quality metrics for
360 video communications.
• Most quality measures are only good to compare video

quality between streams of the same video. To evaluate
the quality across different 360 videos, HMCF in phase
3 should be used.
• Content-related quality metrics have content-related

parameters, which are not easy to obtain in advance.
This is the main drawback of the content-related met-
rics. Such content-related parameters can be obtained
by computing content features (e.g. spatial informa-
tion) [20].

5. Conclusions

In this paper, we have investigated the objective and subjec-
tive quality for 360 videos. The subjective results showed
that the quality range of existing 360 videos spans from
1 MOS to 4.5 MOS. In addition, to achieve acceptable
video quality, 360 videos should be encoded at resolutions
higher than 1440x720 pixels. An investigation of the rela-
tionships between objective quality metrics and subjective
quality metric was also conducted. Totally fourteen objec-
tive quality measures were considered in this paper. Vari-
ous tradeoffs of these metrics were identified in the evalu-
ation. It was found that most of the PSNR-related quality
measures are well correlated with subjective quality. How-
ever, for evaluating video quality across different contents,
a content-based quality metric is needed. For future work,
quality evaluation for adaptive streaming of 360 videos will
be investigated.
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