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Accelerating Existing Non-Blind Image Deblurring Techniques
through a Strap-On Limited-Memory Switched Broyden Method

Ichraf LAHOULI†,††,†††a), Member, Robby HAELTERMAN†, Joris DEGROOTE††††, Michal SHIMONI†,
Geert DE CUBBER†, and Rabah ATTIA†††, Nonmembers

SUMMARY Video surveillance from airborne platforms can suffer
from many sources of blur, like vibration, low-end optics, uneven light-
ing conditions, etc. Many different algorithms have been developed in the
past that aim to recover the deblurred image but often incur substantial
CPU-time, which is not always available on-board. This paper shows how
a “strap-on” quasi-Newton method can accelerate the convergence of ex-
isting iterative methods with little extra overhead while keeping the perfor-
mance of the original algorithm, thus paving the way for (near) real-time
applications using on-board processing.
key words: image deblurring, quasi-Newton, limited-memory, switched
Broyden method

1. Introduction

Computer vision is an ever expanding scientific domain that
has become an integral part of everyday life, be it in surveil-
lance, social, medical or artificial intelligence applications.
The images that are taken are often part of a continuous
video stream and are seldom an end in itself but serve as
a tool for abnormal event detection, navigation, diagnosis,
etc. Embedded cameras are often of low quality and can
suffer from lens distortion or from vibrations that are trans-
mitted by the platform on which the camera is mounted, like
a car or an Unmanned Aerial Vehicle (UAV). The images are
therefor corrupted by (motion) blur and noise. Recovering
the unblurred image is thus a part of the pre-processing steps
that are applied to computer vision applications.

Literally hundreds of publications have appeared over
the years (e.g. [4], [14], [19], [36], [55], [56] to name but a
few). In particular, when the image blur is spatially invariant
then the deblurring process can be seen as a deconvolution
problem which is generally ill-conditioned [10], [12], [50].
For this reason the algorithms are generally iterative meth-
ods that, unfortunately, require a substantial runtime.

In this paper we present a robust acceleration tech-
nique that can be “strapped on” existing iterative algorithms,
without the need for delicate tuning of preconditioning
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parameters. Besides robustness, the methods offer a typi-
cal gain of 5 to 90% in CPU time compared to a wide range
of methods that are known from literature.

This paper is organized as follows. In Sect. 2 we de-
scribe the mathematical process behind blurring, while in
Sect. 3 we describe existing non-blind iterative algorithms
for deblurring images suffering from spatially invariant blur.
In Sect. 4 we propose an acceleration technique based on
quasi-Newton methods. The convergence speed of the dif-
ferent algorithms is compared in Sect. 5, after which we end
with conclusions and ideas for future work.

2. Blurring Model

A simplified linear, spatially invariant model of the discrete
(i.e. digital) blurring process of an m×n pixel image is given
by

g = K f + η (1)

where f ∈ Rmn is the original image∗, g ∈ Rmn is the blurred
image, η ∈ Rmn is additive (most often white Gaussian)
noise and K ∈ Rmn×mn represents the point spread function
(PSF)∗∗ responsible for the actual blurring.

Non-blind image restoration, or deblurring, is the pro-
cess of finding f based on (approximate) knowledge of K, n
and g [33].

The following characteristics make deblurring chal-
lenging:

• The problem has a very high dimensionality, which re-
quires matrix-free implementations (cf. Sect. 4.1.4).
• K is, in general, a very ill-conditioned matrix with a

cluster of very small singular values.

The effect of the ill-conditioning can be mitigated by
the use of regularization to avoid computing solutions that
are corrupted by noise. Well-known examples are Tikhonov
regularization and Wiener filtering or Total Variation tech-
niques [13], [18], [24], [27], [28], [37], [43], [45], [51]–[54].

Although this approach works well for well-posed
problems [3], [23], [46], it does not for ill-posed problems
such as image restoration. In this situation, the choice of
preconditioner is very sensitive and can result in fast, but

∗Note that we have vectorized the m × n image by stacking the
columns.
∗∗Or “kernel”.
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erratic, convergence to a poor approximate solution [25],
[26], [38]. Furthermore, for these pre-conditioning meth-
ods, choosing the best value of the regularization parameter
is a nontrivial matter and it may be necessary to solve the
problem for many different parameters to determine which
is best.

Due to these constraints, iterative image restoration al-
gorithms that do not require preconditioning have become a
method of choice, as they have many advantages over sim-
ple filtering techniques and can be very efficient for spatially
invariant as well as spatially variant blurs [5], [32], [54].

In this paper we focus on the non-blind deconvolution
(or deblurring) process and do not take the noise into consid-
eration. We refrain from using pre-conditioning techniques
that are based on parameter estimation and in this stage of
our research we focus only on spatially invariant blurs.

Our aim is to reduce the cost of an iterative algorithm,
which is the product of the CPU time required per iteration
and the number of iterations needed to obtain the required
quality of the deblurred image.

3. Deblurring Algorithms

Preliminary note: for all the algorithms mentioned in this
section, we use the implementation found in [4].

Note that these algorithms do not take η into account. If
(an estimate of) η is known it can be catered for by replacing
g with g − η.

3.1 Landweber Iteration

The basic Landweber iteration [18], [27], [28], [54], in the
context of image restoration, is given by

Landweber iteration
1. Startup: Take initial value f1, set s = 1.
2. Loop until ‖g − K fs‖2 ≤ ε:

fs+1 = fs + τKT (g − K fs); set s = s + 1.

A typical choice for τ is 1
σ2

max
, where σmax is the largest sin-

gular value of K, estimated by σmax =
√‖K‖1‖K‖∞ [22].

3.2 Steepest Descent (SD)

As in the case of the Landweber iteration, the Steepest De-
scent method takes KT (g−K fs) as a step direction, but with
a variable step-size [4].

Steepest descent

1. Startup: Take initial value f1, set s = 1.
2. Loop until ‖g − K fs‖2 ≤ ε:
2.1. fs+1 = fs +

‖KT (g−K fs)‖22
‖KKT (g−K fs)‖22

(KT (g − K fs));

2.2. Set s = s + 1.

3.3 LSQR and CGLS

LSQR and CGLS are related conjugate gradient methods.
We refer to the literature for more details [7], [41], [42].

3.4 Hybrid Method (HM)

Hybrid methods combine variational approaches with itera-
tive methods, i.e. an iterative conjugate gradient method is
applied to min ‖K f − g‖ and variational regularization is in-
corporated in the iterations. Again, we refer to the literature
for more details [6], [40].

3.5 MRNSD and Richardson-Lucy

As pixels represent perceived intensity values, nonnegativity
constraints can be added to the optimisation statement, i.e.
we may want to develop algorithms that solve min

f≥0
‖K f −g‖.

Two common algorithms for image restoration with
nonnegativity constraints are MRNSD [2], [30], [39] and
Richardson-Lucy [33], [44], [54].

4. Acceleration by Quasi-Newton Methods

The Landweber iteration in Sect. 3.1 can be seen as a fixed-
point process, where the creation of fs+1 based on fs is writ-
ten as fs+1 = H( fs). Then the problem of finding f can be
transformed into a root finding problem H( f ) − f = P( f ) =
0. This novel interpretation of deblurring as a root-finding
exercise leads us to contemplate the use of a quasi-Newton
method as an acceleration method.

Quasi-Newton accelerated Landweber iteration

1. Startup: Take initial value f1, set s = 1.
2. Loop until ‖g − K fs‖2 ≤ ε:
2.1. Compute approximate Jacobian P̂′s (see below).
2.2. fs+1 = fs − (P̂′s)−1

(
KT (g − K fs)

)
︸������������︷︷������������︸

P( fs)

2.3. Set s = s + 1.

Alternatively a slightly different quasi-Newton step fs+1 =

fs −M′s P( fs) can be used. Here M′s serves as an approxima-
tion to the inverse of the Jacobian at step s, whereas P̂′s is an
approximation of the Jacobian itself.

The difference between the various quasi-Newton
methods that we consider here lies in the choice of P̂′s (or
M′s).

4.1 Broyden’s Methods

We choose Broyden’s methods as the quasi-Newton meth-
ods that we will use for the acceleration step, mainly be-
cause they have been well-studied and allow for a limited-
memory implementation later on.

To construct the approximate (inverse) Jacobians in
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Broyden’s method we first define δ fs = fs+1 − fs and
δPs = P( fs+1) − P( fs).

4.1.1 Broyden’s Good Method

Broyden’s first or good method† (also abbreviated as
“BG”) [8], [9], [16], [17] is a quasi-Newton method that is
part of the family of Least Change Secant Update (LCSU)
methods [17], [20], where the approximate Jacobian P̂′s+1 is
chosen as the solution of the following minimization prob-
lem:

min
P̂′
{‖P̂′ − P̂′s‖Fr}, s.t. P̂′δ fs = δPs. (2)

In other words, it gives a new approximate Jacobian that is
closest to the previous one in the Frobenius norm and that
satisfies the secant equation.

The solution of (2) leads to the following rank-one up-
date:

P̂′s+1 = P̂′s +
(δPs − P̂′sδ fs)δ f T

s

〈δ fs, δ fs〉 (3)

P̂′1 is typically set to be equal to −I, which means that the
first iteration equals a Landweber iteration. Interpreting
Broyden’s good method differently, we could say that

• P̂′s+1 is the projection w.r.t. the Frobenius norm of P̂′s
onto {A ∈ Rmn×mn : Aδ fs = δPs};
• no change occurs between P̂′s+1 and P̂′s on the or-

thogonal complement of δ fs, i.e. (P̂′s+1 − P̂′s)z = 0 if
〈z, δ fs〉 = 0.

We have the following properties of this method:

1. For linear problems, the method is known to show su-
perlinear convergence [31] and it needs at most 2mn it-
eration to reach the solution (Gay’s theorem [21]).

2. No guarantee can be given that the approximate
Jacobians are non-singular nor that convergence is
monotone.

Using using the Sherman-Morrison theorem [49], Broyden’s
good method can be written as:

(P̂′s+1)−1 =

(P̂′s)
−1 +

(δ fs − (P̂′s)−1δPs)δ f T
s (P̂′s)−1

δ f T
s (P̂′s)−1δPs

. (4)

4.1.2 Broyden’s Bad Method

Broyden’s second or bad method (also abbreviated as “BB”)
[8] is a quasi-Newton method that uses an approximation M̂′
of the inverse Jacobian. It is also part of the family of LCSU
methods [17], [20], where the approximate inverse Jacobian
M̂′s+1 is chosen as the solution of the following minimization
problem:

†Most often simply called Broyden’s method.

min
M̂′
{‖M̂′ − M̂′s‖Fr}, s.t. M̂′δPs = δ fs. (5)

i.e. it gives a new approximation of the inverse of the
Jacobian that is closest to the previous one in the Frobenius
norm and that satisfies the secant equation.

The solution of (5) leads to the following rank- one up-
date

M̂′s+1 = M̂′s +
(δ fs − M̂′sδPs)δPT

s

〈δPs, δPs〉 . (6)

Interpreting Broyden’s bad method differently, we could say
that

• M̂′s+1 is the projection w.r.t. the Frobenius norm of M̂′s
onto {A ∈ Rmn×mn : AδPs = δ fs};
• no change occurs between M̂′s+1 and M̂′s on the or-

thogonal complement of δPs, i.e. (M̂′s+1 − M̂′s)z = 0
if 〈z, δPs〉 = 0.

Broyden himself [8] admitted that this formulation of his
algorithm didn’t function properly††. The reasons for the
“good” or “bad” behavior are not well understood, and it is
quite possible that in some instances the bad method outper-
forms the good method. Indeed, as we will see in Sect. 5.2,
BB performs better than BG in this application. We also
have the same properties as for Broyden’s Good method.

Even though it is the inverse Jacobian that is approx-
imated in this method, we will write (P̂′s)−1 instead of M̂′s
to standardize the notation of the methods in what follows,
thus obtaining

(P̂′s+1)−1 = (P̂′s)
−1 +

(δ fs − (P̂′s)−1δPs)δPT
s

δPT
s δPs

. (7)

Again, P̂′1 is typically set to be equal to −I, which means
that the first iteration equals a Landweber iteration.

4.1.3 Switched Broyden Method

As Broyden’s Good method is not always better than
Broyden’s Bad method, we follow an idea suggested in [34]
that avoids the need to choose between the two methods and
create a switched version of BG/BB (called “BS”) in the fol-
lowing manner. If

|δ f T
s δ fs−1|

|δ f T
s (P̂′s)−1δPs|

<
|δPT

s δPs−1|
δPT

s δPs
(8)

then the rank-one update of BG is used, otherwise the update
of BB is used. To our knowledge, this variant of Broyden’s
method has not been given the attention that it deserves,
even though we will see that it lies at the basis of the best
performing algorithm in Sect. 5.

4.1.4 Matrix-Free and Limited Memory Implementation
of Broyden’s Algorithms

All the methods that we have mentioned so far require
††This is the reason the method is called “bad”.
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matrix-vector multiplications with K and/or KT . As the size
of the matrices and vectors in the test-cases are typically
very large, a matrix-free implementation of the algorithms
is necessary. We first develop Broyden’s good method as

(P̂′s+1)−1 = (P̂′1)−1 +

s∑
i=1

δ fi − (P̂′i)
−1δPi

δ f T
i (P̂′i)−1δPi

δ f T
i (P̂′i)

−1,

while for Broyden’s bad method we get

(P̂′s+1)−1 = (P̂′1)−1 +

s∑
i=1

(δ fi − (P̂′i)
−1δPi)

δPT
i δPi

δPT
i

In summary, both methods can be written as

(P̂′s+1)−1 = (P̂′1)−1 +

s∑
i=1

wiv
T
i

where wi = δ fi − (P̂′i)
−1δPi and

BG BB

vi
δ f T

i (P̂′i)
−1

δ f T
i (P̂′i)−1δPi

δPT
i

δPT
i δPi

Obviously, when a lot of iterations are required, the
Broyden methods become both memory heavy and compu-
tationally expensive. In this paper we propose a limited
memory version of the algorithms, where only the last κ
(wi, vi) pairs are kept. We will call the resulting methods
BG(κ), BB(κ) and BS(κ) and where the inverse Jacobian is
given by

(P̂′s+1)−1 = (P̂′1)−1 +

s∑
i=max(1,s−κ)

wiv
T
i .

Admittedly, the choice of the value κ is subject to fur-
ther research. The only firm conclusion for the moment (as
the experiments in the next section will show) is that it can-
not be too small (otherwise the method performs badly) nor
too high (otherwise the method becomes too computation-
ally heavy).

5. Performance Comparisons

5.1 Test-Cases

5.1.1 Spatially Invariant Gaussian Blur

Gaussian PSFs are typically used to evaluate the perfor-
mance of deblurring algorithms and can be written as K =
[ki j] with

ki j =
1

2π
√
γ

e−
1
2 ([i j]C−1[i j]T ) (9)

where

C =

⎡⎢⎢⎢⎢⎢⎣
α2

1 ρ2

ρ2 α2
2

⎤⎥⎥⎥⎥⎥⎦ (10)

Fig. 1 Gaussian blur. Unblurred image (top), blurred images (bottom),
from left to right: G1, G2, G3. m = n = 256.

Fig. 2 Atmospheric blur. Unblurred image (top), blurred images (bot-
tom), from left to right: A1, A2, A3. m = n = 256.

γ = (α1α2)2 − ρ4 > 0 (11)

We select three examples of spatially invariant Gaussian
blurs from [4] and which are illustrated in Fig. 1:

1. G1: (α1, α2, ρ) = (4, 4, 0);
2. G2: (α1, α2, ρ) = (4, 2, 0);
3. G3: (α1, α2, ρ) = (4, 2, 2).

5.1.2 Spatially Invariant Atmospheric Turbulence Blur

When viewing objects through a telescope, a quantifica-
tion of the observation conditions can be given by d

ro
,

where d is diameter of the telescope and ro is the Fried
parameter, which is a statistical measure of atmospheric
turbulence [29]. A low value of d

ro
corresponds to good

conditions.
We use three models, illustrated in Fig. 2, correspond-

ing to d
ro
= 10 (A1), 30 (A2) and 50 (A3) respectively.

5.2 Comparison between Broyden Variants

We first compare the Landweber iteration with BG, BB and
BS. As a convergence criterion ε = mn ·10−3 is used. As the
experiments will show, this is a rather stringent convergence
criterion, corresponding to a high quality of the restored im-
age (e.g. Fig. 3 for G1).

For all six test-cases the same behavior was noted:

• All methods had monotonous convergence, except for
Broyden’s good method.
• Convergence for Landweber’s method was signifi-

cantly slower than for BB and BS. The performance of
the latter two methods was very similar over the range
of test-cases.

The convergence history for test-case G1 is given in
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Fig. 3 Atmospheric blur A2. Unblurred image (top), restored image with
BS (bottom).

Fig. 4 Convergence history against iteration count and CPU-time for
test-case G1 using Landweber, BG, BB and BS.

Fig. 4 (both as a function of iteration count and as a function
of CPU time) and in Fig. 5 for test-case A2. Results for BB
and BS are indistinguishable on the figures. (Results for
test-cases G2 and G3 are very similar to G1, while those for
A1 and A3 are very similar to A2.) The gain in CPU time
(measured on a 3.3GHz Intel Core i3-2120 with 4GB RAM)
for BS, compared to Landweber iteration, was in the order
of 90% for all test-cases. Typically the order of convergence

(approximated by
log | fs+1− fs

fs− fs−1
|

log | fs− fs−1
fs−1− fs−2

| , for a sufficiently big value of

s) of the Landweber method was 0.8 to 0.95, while that of
BS was 1.2 to 1.3.

Looking at these results, we chose BS as the best
method of these four.

When we compare BS with BS(κ), we note that for val-
ues of κ > 10 (Fig. 6), divergence is possible, although it
must be added that for κ = 11 or 12, this is just barely,
as the algorithm comes within a whisker of the (admittedly
stringent) stopping criterion before diverging. The source

Fig. 5 Convergence history against iteration count and CPU-time for
test-case A2 using Landweber, BG, BB and BS.

Fig. 6 Convergence history against iteration count and CPU-time for
test-case G1 using BS(12) and BS(15).

of this phenomenon is the numerical instability of the cho-
sen limited-memory algorithm. While this might warrant
further investigation, it needs to be emphasized that there is
no point in trying to keep the algorithm stable for very high
values of κ as this would go against the idea of a limited-
memory method.

When we compare BS with BS(κ), we further note that

• using κ ∈ [2, 10] does not significantly change the con-
vergence behavior when plotted against iteration num-
ber (Fig. 7), with κ = 8 giving slightly better results.
In particular, Fig. 7 shows that BS(10) is slightly bet-
ter than BS(8) when comparing the iteration count, but
slightly worse when comparing the CPU-time. A value
of κ = 8 is therefore the one around which the gain in
CPU-time per iteration starts to outweigh the gain in
total number of iterations.
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Fig. 7 Convergence history against iteration count and CPU-time for
test-case G1 using BS(2), BS(4), BS(6), BS(8) and BS(10).

Fig. 8 Convergence history for test-cases G1 (top) and A2 (bottom) us-
ing BS and BS(8).

• When plotted against CPU-time BS(8) yielded a gain
of roughly 25% compared to BS on test-case G2
(Fig. 7) and 20% compared to BS on test-case A2
(Fig. 8). For other blurs the results were similar.

5.3 Comparison with Other Methods

Having selected the best-performing Broyden variant (i.e.
BS(8)), we turn our attention to the more sophisticated it-
erative methods for non-blind deblurring described in [4]
and using the implementations therein. These are “Steep-
est Descent” (SD), “LSQR”, “CGLS”, the “Hybrid Method”
(HM), MRNSD and Richardson-Lucy. The convergence
history for test-cases G1, G2 and A1 are given in Figs. 9
and 10; those for G3, A2 and A3 (not shown) exhibit sim-
ilar behavior. The best performing of these methods is SD.
For the test-cases with Gaussian blur it still required around

Fig. 9 Convergence history for test-cases G1 (top), G2 (middle) and A1
(bottom) using BS(8), SD, MRNSD and Richardson-Lucy.

Fig. 10 Convergence history for test-cases G1 (top), G2 (middle) and A1
(bottom) using BS(8), LSQR, CGLS and the Hybrid Method.

50% to 70% more CPU time than BS(8), while for the at-
mospheric blurring it only required around 5 to 10% more.
Furthermore, convergence of SD is erratic, while BS(8) has
monotone convergence. All the other methods initially had a
monotone, but excessively slow convergence, which some-
times resulted in stagnation (typical for the Hybrid Method)
or in slow divergence before the tolerance was reached. In
none of the cases, the performance came close to that of
BS(8).

6. Conclusions

We have shown how a switched variant of Broyden’s quasi-
Newton method, and in particular a matrix-free, limited
memory version of this algorithm, offers faster convergence
than the most common iterative methods used for non-blind
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image deblurring. Compared to the most competitive of the
other methods, the gain is still in the order of 5 to 40% in
CPU time for the test-cases that we used. Furthermore the
new methods offers monotone convergence and is easy to
implement. We would like to point out that at this point the
new quasi-Newton method has not yet been computationally
optimized and that further gains are possible when tweaked
accordingly. This will form the basis of future work.
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