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SUMMARY Cooperative caching is a key technique to reduce rapid
growing video-on-demand’s traffic by aggregating multiple cache storages.
Existing strategies periodically calculate a sub-optimal allocation of the
content caches in the network. Although such technique could reduce the
generated traffic between servers, it comes with the cost of a large com-
putational overhead. This overhead will be the cause of preventing these
caches from following the rapid change in the access pattern. In this pa-
per, we propose a light-weight scheme for cooperative caching by group-
ing contents and servers with color tags. In our proposal, we associate
servers and caches through a color tag, with the aim to increase the effec-
tive cache capacity by storing different contents among servers. In addition
to the color tags, we propose a novel hybrid caching scheme that divides its
storage area into colored LFU (Least Frequently Used) and no-color LRU
(Least Recently Used) areas. The colored LFU area stores color-matching
contents to increase cache hit rate and no-color LRU area follows rapid
changes in access patterns by storing popular contents regardless of their
tags. On the top of the proposed architecture, we also present a new rout-
ing algorithm that takes benefit of the color tags information to reduce the
traffic by fetching cached contents from the nearest server. Evaluation re-
sults, using a backbone network topology, showed that our color-tag based
caching scheme could achieve a performance close to the sub-optimal one
obtained with a genetic algorithm calculation, with only a few seconds of
computational overhead. Furthermore, the proposed hybrid caching could
limit the degradation of hit rate from 13.9% in conventional non-colored
LFU, to only 2.3%, which proves the capability of our scheme to follow
rapid insertions of new popular contents. Finally, the color-based routing
scheme could reduce the traffic by up to 31.9% when compared with the
shortest-path routing.
key words: cooperative caching, routing algorithm, color tags, hybrid
caching, dynamic content popularity

1. Introduction

Internet traffic is rapidly growing due to the wide spread of
Video-on-Demand (VoD) services. It is estimated that the
video traffic will reach more than 80% of the whole internet
traffic in 2020 [1]. Since such enormous traffic will cause
many congested links and degrade network performances,
VoD service providers usually place their contents on Con-
tent Delivery Networks (CDNs) which are global-scale net-
works consisting of many cache servers. Although CDNs
could reduce the video traffic, their servers are usually lo-
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cated outside of the Internet Service Provider (ISP) net-
works. Several CDN providers place their cache servers in
ISP networks [2]–[4] and try to engineer the traffic to further
reduce traffic [5]. However, such servers are only in limited
locations, causing congested links near the cache servers.
Moreover, ISPs cannot accept CDNs to engineer the traffic
since CDN providers have no global knowledge of the un-
derlying network [5]. This implicates that CDNs still cannot
reduce traffic on peering links to the contents servers as well
as inside of the ISP networks, introducing congested links
as well as data traffic overhead. Although such problems
could be relieved by introducing new network fabrics, such
solution is expensive and not scalable since the needed net-
work fabrics are proportional with the data growing. Hence,
it is a major challenge for ISPs to reduce the traffic under
reasonable cost overhead.

Several ISPs are planning to build their own CDNs
by placing cache servers in their networks, which is called
Telco-CDNs [5], [6]. They reduce the traffic on the peer-
ing links as well as internal communication links by con-
fining the video requests to their networks. However, the
obtained traffic reduction is not enough due to the limited
storage capacity compared to the large library of contents.
Moreover, an inefficient allocation of contents often leads to
congested links because popular contents are responsible for
most of the requests that concentrate traffic on a few servers
and links.

Recent studies try to reduce the video traffic by in-
creasing the effective cache capacity. They apply a coop-
erative caching strategy that aggregates multiple cache stor-
ages by sharing contents among cache servers [5], [7]. In
Telco-CDNs, an ISP manages both the physical network and
cache servers, which makes possible to realize the coopera-
tive caching by traffic engineering. Existing schemes often
periodically calculate a sub-optimal allocation of contents in
the network by solving an optimization problem by heuris-
tics approach such as Genetic Algorithm (GA). Although
such strategies could eliminate a large amount of traffic, they
often require hours of calculation overhead. Such long cal-
culation will cause mismatches in cache allocations since
access patterns change by 20–60% every hour [8]. Hybrid
caching strategies are also proposed to follow the changes
in access patterns [9], however, they do not support cooper-
ative caching. In addition to the adopted cache aggregation
scheme, the routing algorithm responsible for handling the
data between caches plays an important role in the traffic re-
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duction. In fact, it is not a trivial task to find a location of a
cached content that might change in time.

In this paper, we consider that important factors of traf-
fic reduction are content distribution and duplication of pop-
ular contents. In fact, the content distribution increases the
effective cache capacity by storing different contents among
cache servers, while the duplication of popular contents im-
proves cache hit rates of servers. From these facts, we pro-
pose in this work a new methodology that takes into con-
sideration the content distribution and the popular content
duplication, by grouping caches and servers using a novel
color tag scheme. These color tags are efficiently distributed
to the caches and servers through a light-weight color dis-
tribution scheme. A cooperative hybrid caching scheme is
also proposed to follow rapid changes in access patterns that
maintains hit rates when an access pattern changes rapidly.
Moreover, an efficient routing scheme is proposed to further
reduce traffic utilizing the color information provided by the
color tag scheme. The proposed routing scheme transfers
requests to the nearest server that matches the color with
the desired content, while it requires only a small size of an
additional routing table.

We conducted preliminary evaluations on our color
based cooperative caching strategy, and we proved its ca-
pability of traffic reduction [10]. In this work we extend
our idea and we evaluate it under different constraints, such
as computational overhead, the number of colors and origin
servers, cache capacity, ratio of hybrid caching, as well as
under the new proposed routing scheme. Evaluation results
show that our colored cooperative caching scheme achieves
a performance close to a sub-optimal result calculated by
a Genetic Algorithm (GA) while limiting its computational
overhead to a few seconds. The proposed routing scheme
also reduces more than 30% of traffic compared with the
shortest-path routing, and our color distribution scheme can
follow changes in access patterns’ biases with a few seconds
of estimation time.

The rest of the paper is organized as follows. Sec-
tion 2 describes existing cooperative caching schemes and
their routing schemes as well as the video popularity’s char-
acteristics. In Sect. 3, we present our color-based caching
scheme and a light-weight color management strategy. We
also propose a color-based routing algorithm in Sect. 4 uti-
lizing the color information. In Sect. 5, we evaluate the traf-
fic reduction and the computation time overhead while vary-
ing the number of colors and origin servers, cache capacity,
and the ratio of the hybrid caching using a realistic network
topology. Finally, we conclude the paper in Sect. 6.

2. Related Work

2.1 Cooperative Caching Strategies for Reducing Traffic

There are several heuristic approaches for cooperative
caching. In an Akamai’s CDN [11], they distribute contents
within servers in a cluster to increase an effective cache ca-
pacity and distribute server load by introducing a hash func-

tion. Each server calculates hash values of contents and
compares them with server IDs to find appropriate servers to
store the contents. Although such strategy could increase ef-
fective storage size and distribute server load in a cluster, the
effective cache capacity is limited since the authors do not
use cooperative servers in different locations. The work [12]
adopts a similar approach, but for servers in a ring network
in different locations. They distribute contents by calculat-
ing hash values with a modulo function, which increases the
effective cache capacity. In [13], the authors also propose a
hash-based distribution, but for mesh networks. They cre-
ate several groups of cache servers and distribute contents
within a group by associating the hash values and server IDs.
Thus they increase effective cache capacity in the network
and reduces the traffic to the peering links to CDNs.

Several studies try to find sub-optimal allocations of
contents that minimize the traffic size while satisfying sev-
eral constraints such as throughput, latency, and power con-
sumption [5], [7]. They usually formulate an optimiza-
tion problem and solve it using an access pattern gener-
ated by gathered access logs. However, it is hard to solve
such complex problems that include many constraints, since
such problems could be transformed to Capacitated Facil-
ity Location Problem which is NP-complete [5]. Hence,
such optimization problems are usually solved by heuris-
tic approaches such as Genetic Algorithm (GA). Although
the produced result could reduce large traffic and distribute
server load efficiently, it often takes more than 10 hours
of computational overhead even using a PC cluster. Since
video accesses continuously change their access patterns in
20–60% every hour [8], such long calculation time often
causes mismatches in contents’ allocations that generate ad-
ditional traffic.

2.2 Routing Schemes for Cooperative Caching

The hash-based content distribution approaches [11]–[13]
could be used by a simple routing scheme based on hash val-
ues. When a server receives a request, it calculates the hash
value of the request to find locations of desired contents as
well as decide whether to store the content in the server. In
fact, such hash-based approaches require a small modifica-
tion to servers by adding a hash function into their routing
scheme. Although they could be used with such a simple
routing scheme, they often cause traffic concentrations of
popular contents since they do not care about the contents’
popularities. Traffic concentration poses many congested
links and high-loaded servers that degrade network perfor-
mance.

When using sub-optimal allocations of contents [5],
[7], it is not easy to find cached locations of a desired con-
tent without introducing a large size of an additional rout-
ing table that associates content IDs and server IDs. Since
a sub-optimal contents’ allocation changes in time, routing
tables must be updated every time when the content alloca-
tions change. Moreover, there are a huge amount of con-
tents in the network that makes it difficult to store contents’
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locations in a small routing table resulting in extra routing
overhead.

2.3 Strategies for Following Dynamic Access Patterns

According to the measurement studies of video access pat-
terns, the access patterns continuously change [8] and often
make spikes [14] affected by the introduction of new con-
tents, influential news, and viral communications on SNS,
such as Twitter and Facebook. A hybrid caching scheme is
proposed to follow such access patterns’ changes by sepa-
rating a cache storage into LFU and FIFO caching areas [9].
The LFU area improves the cache hit rate by storing pop-
ular contents while the FIFO area follows the changes in
access patterns by storing contents recently accessed. How-
ever, such hybrid caching schemes do not cooperate with
other cache servers that limit the traffic reduction due to the
small cache capacity. Prefetching techniques are also pro-
posed [5], [6] that store contents according to future popu-
larities of contents that could be estimated from access logs
or empirical rules of VoD service providers. However, the
prefetching techniques do not always give a good predic-
tion since video accesses occasionally make a spike due to
unpredictable news or viral communications in SNS.

3. Light-Weight Caching Strategy

3.1 Color Tag Based Cooperative Caching

A key factor to reduce network traffic is the use of a com-
bination between content distribution to increase cache ca-
pacity, and content duplication to improve cache hit rate.
Figure 1 shows the basic concept of our cooperative caching
scheme with color tags [10]. Initially, to decide the cache
locations in the network, we assign color tags to all cache
servers and contents. Each cache server has a tag with a
single color, and it stores contents when the server’s color
matches any of the contents’ colors. Since cache servers
store different contents based on the colors, effective cache
capacity increases, which reduces traffic to the external net-
works. Servers’ color tags are set like the four-color theorem
that efficiently distributes contents. The detailed algorithm
is explained in [10]. Although it may take a long time to
compute an efficient coloration of servers, this overhead can
be amortized since the backbone networks do not change

Fig. 1 Example of contents cached in three servers according to their
color tags and popularities.

their topologies frequently. Contents’ color tags are peri-
odically updated to follow changes in the access patterns.
Moreover, we apply more than one colors to a tag of pop-
ular contents. We aim to distribute traffic load among mul-
tiple servers by enhancing hit rates, since popular contents
are often the source of traffic concentrations.

The proposed color-based cooperative caching strategy
is endorsed with a novel hybrid caching scheme. Figure 2
shows the structure of our hybrid caching scheme with two
different caching areas. Each cache server separates its stor-
age area into large colored LFU and small modified LRU
areas. The colored LFU area stores color-matching con-
tents to increase effective cache capacity, while the mod-
ified LRU area stores recently accessed contents regardless
of their color tags to follow rapid changes in access patterns.
We adopt a modified LRU algorithm [6] for the modified
LRU area. It accepts a jump parameter j, and inserts new
contents at j ranks up from the Least Recently Used (LRU)
position instead of that of the Most Recently Used (MRU).
When cache hits, the modified LRU policy moves the cache-
hit content j ranks toward the MRU position. Such behavior
achieves higher hit rate than the traditional LRU [6].

The fraction of the colored LFU area and the modified
LRU area should be set based on a log analysis or heuristics
of VoD service providers. In fact, although a large fraction
of the modified LRU area will improve the cache hit rate
under a situation with frequent changes in access patterns,
such setting degrade the hit rate under static access patterns.
Therefore, the fraction of the two cache areas should be
carefully set by assuming how frequently the access pattern
changes. For example, when a VoD service provider knows
that the access pattern changes in 30% every hour based on
a preliminary log analysis, they may set the fraction of the
hybrid cache capacity to (modified LRU) : (colored LFU) =
10% : 90%, which is known to maintain the hit rate between
the periodic updates of color tags based on a preliminary
simulation.

3.2 Color Tags Management Algorithm

The contents’ tags are periodically updated according to
their popularity ranks. The origin server gathers access logs
from cache servers and calculates contents’ popularities. In
particular, server logs contains variations of information that
are not necessary to calculate the popularity ranks such as
clients’ web browsers and protocol versions. Since such in-

Fig. 2 Structure of colored hybrid caching strategy and its basic
instructions.
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Table 1 Popularity classes and corresponding tags in a four-color case.

Tag’s bit patterns
Popularity class content popularity ranking # of colors R G B Y

high 1–22 4 1 1 1 1

mid-high 23–26 3 1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

middle 27-47 2 1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

mid-low 48–305 1 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

low 306– 0 0 0 0 0

formation increases an overhead of log gathering process,
we assume that each cache server makes a list of tuples
<content id, access count> from the access logs, and sends
it to the origin server periodically. This list can be gener-
ated with O(n) where n is the number of lines of the raw log
file. Such logs are sufficiently small compared with the gi-
gabytes of video files since a list of the tuples is only 3.4MB
for 100,000 video contents when we assume content id and
access count are 32bytes and 4bytes, respectively. After
gathering the logs, the contents are grouped into several
popularity classes based on their popularity ranks to spec-
ify the appropriate number of colors before colorizing them.
Table 1 shows an example of popularity classes and the
number of colors to be set when we use four colors. The
number of contents in each popularity class is decided based
on the bias of contents popularity estimated with the access
logs. For example, a content with rank 35 will be catego-
rized with a middle popularity class and two colors will be
assigned to it. In the proposed system, each color tag is de-
scribed as a bit vector, and the color tags are applied in a
cyclic fashion. As a result, the content with popularity rank
35 will have color tag “1001”.

We suppose that the users issue their requests with a
gamma distriution [15], since it can give us more realis-
tic content accesses than other distribution like Zipf and
Weibull distributions. In this assumption, the number of
contents in each popularity class depends on the skewness
of the curve representing the access probability against the
content popularity rank. To decide the number of contents in
each popularity class, we use a set of bias parameter k of the
gamma distribution and corresponding separator ranks that
are the last popularity index in each popularity class. For
example, appropriate separator ranks for different k values,
when we divide 1000 contents into five popularity classes,
are shown in Table 2. The bias parameter k could change in
time according to access patterns’ changes.

Our goal is to find the optimal separator ranks for a

Table 2 Separator ranks for each gamma parameter when 1000 contents
are classified into five popularity classes.

bias parameter k separator ranks

0.1 [38, 43, 58, 265]
0.2 [34, 39, 54, 277]
0.3 [30, 34, 55, 285]
0.4 [24, 28, 49, 303]
0.5 [21, 22, 43, 318]
0.6 [15, 15, 42, 332]
0.7 [10, 11, 32, 351]
0.8 [4, 5, 26, 369]
0.9 [0, 0, 10, 392]

Algorithm 1 Iterative calculation for separator ranks

1: Initialization: S ← {0, 0, . . . , 0}, S prev ← {0, 0, . . . , 0}, Tmin ← ∞
2: S [N − 1]← N ×C
3: while S � S prev do
4: S prev ← S
5: for i← 0 to N − 2 do
6: for v←Max{0, S [Max{1, i} − 1]} to Min{S [i + 1],N ×C} do
7: S tmp ← S
8: S tmp[i]← v
9: S tmp[N − 1]← calculate tail(S tmp)

10: Test ← estimate traffic(S tmp)
11: if Test < Tmin then
12: Tmin ← Test

13: S ← S tmp

14: end if
15: end for
16: end for
17: end while
18: return S

S , S prev, S best , S tmp array of separator ranks, with N elements
Tmin minimum traffic in the whole calculation
N the number of colors
C the number of contents a cache server can store
Test traffic size estimated by estimate traffic()

given access pattern, which corresponds to find the adequate
number of contents with the adequate popularities that result
in a minimum traffic. For example, we suppose to use N = 4
colors for 1000 contents, and each cache server allows a
maximum storage of C = 100 contents to be cached. We
initially set the separator ranks equal to [0, 0, 0, 400] which
means that first 400 contents belong to the mid-low popu-
larity class, and the rest of the contents are categorized into
the low popularity class. Then, we use the iterative calcula-
tion shown in Algorithm 1 to find the best set of separator
ranks that minimize the traffic. This algorithm searches the
best set of separator ranks that minimize traffic by gradu-
ally changing each separator rank until no more better sepa-
rator ranks can be found. The lines 5–16 are correspond-
ing to an iteration to find a better set of separator ranks.
The calculate tail() function calculates a maximum value of
S tmp[N−1] that does not overflow the cache capacities. The
estimate traffic() function calculates traffic by calculating

Test =
∑

I

∑

J

∑

K

ei j pikyi jk (1)

from the cache locations that could be specified by the rank
separators, where Test is the total traffic, ei j is a hop count for
end-user i to fetch a content from cache server j, pik is the
request probability that end-user i fetches content k, and yi jk

is a binary variable indicating whether cache server j storing
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Fig. 3 The first separator rank and traffic size.

content k is the nearest server from end-user i, respectively.
This calculation is almost the same with [5], however we
do not use bandwidth and latency constraints. The cache
locations are uniquely determined from the servers’ colors
and the contents’ colors. The servers’ colors are determined
by the server colorization algorithm [10], while and the con-
tents’ colors are specified according to the color tags man-
agement algorithm using separator ranks, which is explained
in Sect. 3.2. Figure 3 shows the traffic size variation when
we change the first separator rank, or the number of contents
categorized in the highest popularity class. This calculation
is performed with lines 6–15 in Algorithm 1, and the traf-
fic size in Fig. 3 is corresponding to the Test in the line 9.
Figure 3 shows that the optimal rank is about 30. We repeat
this procedure to find the separator rank for the other classes.
However, once the next separator rank for mid-high popular-
ity class is decided, the separator of the first popularity class
may no longer be appropriate. Hence, we repeat the calcu-
lation until the separator ranks converge, which corresponds
to the while loop starting from the line 3 in Algorithm 1. It
is important to mention that the iterative calculation can be
performed in advance creating a table like Table 2, since the
separator ranks do not change as long as the cache capac-
ity, network topology, and the bias of the content popularity
are the same. As a result, the origin server can set appro-
priate separator ranks with only a small calculation over-
head by only estimating the bias parameter k and selecting
the corresponding separator ranks from Table 2. We esti-
mate the parameter k that minimizes the Sum of Squared
Residuals (SSR) to the measured content popularity from
access logs, which requires O(n) where n is the number of
contents in the library. Since such relationship between k
and SSR forms a convex downward graph, a parameter k
that minimizes the SSR can be found using the golden sec-
tion search [16], which is an algorithm to find an extreme
value in unimodal functions with the calculation complexity
of O(log(m)) where m is the number of potential k. As a re-
sult, we can select a set of gamma parameters from Table 2
with O(n log(m)) calculation.

4. Light-Weight Routing Algorithm Usiung Color Tags

Our color-tag based caching could achieve good traffic re-
duction even when using the conventional shortest path rout-
ing that minimally reaches the origin server. This is due to
the fact that a request based on color tags will encounter
an appropriate colored cache server on its path. However,

Fig. 4 A proposed color-based routing that finds the nearest cache server
with the requesting color-tag.

Fig. 5 Structure of the color-tag based cache server.

the nearest server with a matching color may be located in
a different direction to the origin server. Hence, we also
propose a routing algorithm that utilizes the color informa-
tion to further reduce traffic by forwarding requests to the
nearest servers with matching colors. Figure 4 shows a
basic concept of our color-based routing. The user sends
a request for a content with an information of content’s
tag. The tags of contents are preliminarily embedded in the
URLs as a request parameter by the origin server, such as
http://example.com/video01.mp4?tag=0011. Therefore the
users and the cache servers can easily know color tags of
the requests. Once a cache server receives the request, it
first checks the color information in the request URL, and
find the nearest server that matches any of the content’s col-
ors. Thus, cache servers do not require a large routing table
that associates contents and server IDs.

Figure 5 shows a block diagram of a cache server that
enables color based routing based on Algorithm 2. The
numbers in the parenthesis in Fig. 5 correspond to those in
Algorithm 2. Each cache server has request and response
routing tables, LFU/LRU hybrid cache area, routing agent,
and network interfaces. (1) When a cache server receives
a request, it first checks the cache storage if the requested
content is cached locally. When the requested content is
cached, (2) the server retrieves the desired content from the
cache area by fetchFromCache(). Since the LFU area stores
contents that match the server’s color, the server searches
the LFU area only when the color of the request matches
the server’s. Otherwise, the server searches the LRU area
and responds the cached content if available. After that,
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Algorithm 2 Color based routing algorithm

1: if received a request then � (1)
2: if desired content is cached then
3: content ←fetchFromCache(request) � (2)
4: ipaddr←sourceAddress(request)
5: inter f ace← f indResponseInter f ace(ipaddr) � (3)
6: sendContent(content, inter f ace) � (4)
7: else
8: tag←colorTagOf(request)
9: inter f ace←findRequestInterface(tag) � (5)

10: sendRequest(request, inter f ace) � (6)
11: end if
12: end if
13: if received a response then � (7)
14: content ← contentO f (response)
15: if colorTagOf(response) & server color > 0 then
16: cacheContent(content) � (8)
17: end if
18: ipaddr ← destinationAddress(response)
19: inter f ace← findResponseInterface(ipaddr) � (5)
20: sendContent(content, inter f ace) � (4)
21: end if

request
content request message from end-user, containing
content ID, color tag, and source IP address

response
response message from the origin or a cache server,
containing content data, color tag, and destination IP

inter f ace network interface to transfer data
server color color tag bit of the server like 0010

Table 3 An example of a response routing table.

Destination Output I/F

10.0.0.0/8 3
20.1.0.0/16 4
20.2.0.0/16 3
30.0.0.0/8 1
default 2

Table 4 An example of a request routing table.

Color mask Output I/F

0100 3
0001 4
0010 2
1000 1
default 2

(3) the server checks the response routing table to find the
appropriate interface to respond the content by findRespon-
seInterface(). Then, (4) the content is sent according to the
response routing table by sendContent(). Table 3 shows an
example of the response routing table. It is an ordinary rout-
ing table that stores network addresses and corresponding
output interfaces. If the content is not cached, (5) the server
tries to find a network interface to forward by findRequestIn-
terface() and (6) sends the request according to the request
routing table by sendRequest(). Table 4 shows an exam-
ple of the request routing table. It stores information of
colors and their corresponding network interface IDs. The
color masks are sorted by minimum hops to color-matching
servers, which allows the cache server to forward the re-
quest to the first color-matching interface. When no color-
matching interface is found, it forwards the request to the
default interface. (7) When the cache server receives the re-
quested content from the origin or the other cache server,
the server checks if the content color matches the server’s
color and (8) it caches the content and (4) responds to it

Fig. 6 NTT-like mesh topology [18] and its coloration with four colors.

according to the response routing table. Thus, our routing
method utilizes the color tag information in addition to the
IP address by the software-based routing algorithm, which
enables flexible and efficient routing to forward requests to
the nearest color-matching server.

Since our routing algorithm requires only two small
color-based routing tables, it does not require large routing
overhead. In fact, the number of columns in the request rout-
ing table is at most the number of colors + 1. This is consid-
erably small since there are usually millions of contents in
the origin’s library. Compared to the routing table of Con-
tent Centric Networking (CCN) which are based on content
categories [17], our routing table is considerably small since
only 8 to 16 colors are sufficient to reduce the traffic, as we
will see in the evaluation results.

5. Evaluation

5.1 Evaluation Methodology

Evaluations are performed using an NTT-like topology in
Japan [18]. Figure 6 shows the adopted topology in our eval-
uations. The colors of servers are set by the modified version
of Welsh-Powell algorithm proposed in [10] in such a way to
distribute the server colors in the network. We assume two
cases, the first there is a single origin server in Tokyo area
only, and a case of two origin servers in Tokyo and Osaka
regions, respectively. The two origin servers case is only
used for the last experiment, and the rest of experiments are
conducted on a single origin server case. We also assume
that content access requests are generated from clients inter-
connected to each node of the topology.

The content requests are generated by the Gamma dis-
tribution, which generates more realistic access patterns
than other distributions [15] (e.g., Zipf and Weibull distribu-
tion). The number of total contents, cache capacity, gamma
parameters, and topology information are shown in Table 5.
The number of colors applied to each content are decided
based on separator ranks that are calculated by Algorithm 1
for all the evaluations. All the calculations are done us-
ing a single host with the configuration shown in Table 6.
We evaluate normalized traffic size through all the evalu-
ations where a normalized traffic without cache servers is
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Table 5 Simulation parameters.

Total content 1000
Cache capacity 100

Popularity distribution Gamma distribution
Gamma parameter k 0.475
Gamma parameter θ 170.6067

Topology NTT-like network [18]
Number of servers 55

Table 6 Specification of a computing host.

CPU Intel Core i7-3930K @3.80GHz
CPU Core 6 physical cores / 12 logical cores

RAM 64GB

Fig. 7 Normalized traffic on the NTT-like network.

1.0. The cache servers manage their whole storage area
with the colored-LFU algorithm (without hybrid caching) in
Sects. 5.2, 5.4, 5.6, 5.7, where we evaluate traffic size under
static access patterns. The hybrid caching strategy is eval-
uated in Sect. 5.3, using various storage ratios between 0%
and 10% of the modified LRU area.

5.2 Traffic Reduction and Color Management

We evaluate traffic size compared with no-cache, LFU, and
GA [5] strategies as shown in Fig. 7. Cache servers forward
requests and contents by the traditional shortest-path rout-
ing [19]. The GA strategy tries to find the best cache loca-
tions that minimize traffic, where a set of cache locations
forms a gene, and the new cache locations are generated
from two genes in the crossover step [5]. The calculation
is almost the same with [5] using Eq. (1). Note the exter-
nal traffic is the traffic between the origin server and a Yel-
low node in Tokyo area, and the internal traffic is the rest of
traffic in the network. No-cache is simply a network with-
out any cache servers only for the performance comparison,
and all the caching strategies use the conventional shortest
path routing. Although LFU is known to be optimal under
the static access patterns, it cannot reduce much traffic be-
cause of the limited cache capacity due to the absence of
cooperative caching. Our color based caching eliminates al-
most half of the traffic compared to the result of LFU, and
when compared to the GA strategy, the difference in hit ra-
tio is lower than 2.3% in a case of 4-color result. The results
of 8 and 16 colors increase traffic compared to the 4-color.
This is because cache servers cannot forward the request to
the nearest color-matching server when we use the shortest-

Fig. 8 The number of colorized contents in the network.

Fig. 9 Transition of cache hit rates when five new popular contents are
inserted.

path routing. Cache misses are more likely happened since
part of colors may not exist on the shortest-path, resulting
to forward the cache miss request to the origin server more
when we increase the number of colors. This kind of cache
miss can be reduced by a Color-Based Routing which is dis-
cussed in Sect. 5.4.

Figure 8 shows the distribution of contents in the net-
work under the different number of colors compared with a
sub-optimal result calculated by GA. It is clear that the con-
tent distribution with 16-color has a better fit to GA than that
of 4-color which should help in the traffic reduction. This
result implicates that the color based routing will further re-
duce traffic utilizing the nearest color-matching servers, and
the large number of colors could bring a better balance of
content distribution and duplication of popular contents.

5.3 Hybrid Caching Evaluation

We evaluate additional traffic size increased by sudden inser-
tions of popular contents. Our caching scheme follows grad-
ual changes in access patterns by periodic updates of content
tags and rapid changes by the hybrid caching scheme. Fig-
ure 9 shows the cache hit rates after inserting five popular
contents with the lowest popularity (tag=0000), using 10%
of modified LRU and 90% of colored LFU areas. While the
single use of colored LFU drops its hit rate in 13.9%, our hy-
brid caching limit the degradation to 2.3%. This is because
the no-color LRU area cached newly inserted contents re-
gardless of the color tags.

Figure 10 shows the normalized traffic increase after
inserting popular contents against the LRU ratios in a cache
area. We can see that a small LRU area effectively reduces
the additional traffic. In fact, 5% of LRU area reduced
96.3%, 86.0%, and 71.7% of the additional traffic when in-
serting of 1, 5, and 10 contents, respectively.
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Fig. 11 Traffic reduction under different routing and caching strategies.

Fig. 10 Traffic increase after inserting popular contents.

5.4 Color Tag Based Routing Scheme

We compare the proposed Color Based Routing (CBR)
against the Shortest-Path Routing (SPR) presented in Dijk-
stra’s algorithm [19], the Hash-Based Routing (HBR) pro-
posed in [13], and the Nearest Replica Routing (NRR)
which routes requests to the nearest server with the cached
content [20]. We numbered cache servers from southwest
nodes, and the servers store contents when (content id mod
N) = (server id mod N) in the HBR strategy, where N is the
number of colors. Figure 11 shows the normalized traffic
under different routing and caching algorithms. The adopted
caching strategy is shown in the parenthesis of x-label. CBR
(4-color) reduces 23.2% of traffic compared to the SPR (4-
color) which proves the benefits that the proposed routing
algorithm could bring to the initially proposed caching strat-
egy. CBR (8-color) obtains the best reduction (saves 31.9%
of traffic compared to the SPR (4-color)) for aggregated traf-
fic of internal and external links. This is because the large
number of colors often slightly increases the number of av-
erage hops, since there are a few contents with low popular-
ities in the network. However, CBR (16-color) reduces the
most traffic on the external link in our CBR schemes, since
the large number of colors could increase the effective cache
capacity in the network. The appropriate number of colors
could be set by considering several constraints such as traffic
cost and power consumption. Moreover, the optimal number
of colors may differ according to the target network. For ex-
ample, a large number of colors could be effective for large
networks and small cache capacity. Our CBR schemes also
achieve better traffic reduction than the HBR schemes. The
HBR (mod10) satisfies all content requests in the internal
network, and HBR (mod4) achieves a good traffic reduction
among other HBR schemes. However, HBR schemes gen-
erate additional internal traffic since users should fetch pop-

Table 7 Computational time in advance for deciding separator ranks.

# of colors calculation time

4-color 2m2s
8-color 4m1s
16-color 16m2s

GA 763m35s

Fig. 12 Traffic size against each server’s cache capacity.

ular contents from distant cache server resulting to increase
the average hops. Consequently, our CBR (8-color) reduces
41.4% of traffic compared to the HBR (mod4).

5.5 Computational Overhead for Color Management

Computational time overhead is considerably reduced for
calculating the optimal separator ranks as well as assigning
contents’ color tags compared with GA. Table 7 shows the
computational time for separator ranks for a single gamma
parameter. It takes less than 20 minutes while the GA takes
more than 750 minutes in our evaluation. The estimation of
popularity’s bias from access logs takes less than six sec-
onds with a log data with 1,000,000 requests. Moreover,
it requires only a few seconds to apply color tags to con-
tents, since our color tags management algorithm only sorts
contents by their popularities and applies tags to the con-
tents in a cyclic fashion. These results demonstrate that our
color-based caching can follow the changes in access pat-
terns, even with changes in the popularities’ skewness.

5.6 Cache Capacity Evaluation

We also evaluate the traffic under several cache capacities.
Figure 12 shows the aggregate traffic of the internal and the
external links when varying the cache capacity of a single
server from 1% to 40% of the whole content library in the
origin server. Our colored caching schemes with 4, 8, and
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Fig. 13 Origin server locations and normalized traffic size.

16 colors achieve a performance close to the one of GA in
all the cache capacity cases. The difference between caching
strategies is significant under small cache capacities because
of the large penalty of cache misses for popular contents.
Moreover, the result of our colored caching scheme gets
closer to that of the GA as the cache capacity increases.
This is because a large cache capacity stores most of the
popular contents and usually diminish the role of caching
algorithms.

5.7 Traffic Reduction under Multiple Origin Servers

We also evaluate the traffic size in an environment with mul-
tiple origin servers. The origin servers are connected to
cache servers in Tokyo (TKY) and Osaka (OSA) as shown
in Fig. 6. Figure 13 shows the traffic size of our color-
based caching strategy compared with the conventional LFU
caching strategy. Firstly, the proposed 4-color based caching
reduces internal and external traffic, for both cases of a sin-
gle and two origin servers, compared to LFU. These are
mainly derived because of the cooperating caching effect.
Secondly, the internal traffic is reduced for both cases of
LFU and 4-color when we increase the number of origin
servers. These reductions are caused by reducing the num-
ber of average hops to/from nearer origin servers. Finally,
the external traffic size is maintained in both LFU and 4-
color cases regardless whether the number of origin servers
is one or two. This is because the total number of contents
stored in cache servers and in-network cache hit ratios are
only affected by the underlying cache policies. Hence the
proposed 4-color caching is effective not only in the single
origin server case but also in the case of two origin servers.

6. Conclusion and Future Work

We have proposed a light-weight cooperative caching
scheme introducing simple color tags and their management
strategy. The colored caching scheme follows changes in
access patterns by a combination use of the colored hybrid
caching strategy and the color-based routing algorithm. The
evaluation results demonstrate that the proposed caching
scheme achieves close to the sub-optimal result calculated
by GA, with maintaining high cache hit rates even when
access patterns change rapidly. The proposed color man-
agement strategy limits the computational overhead to less
than six seconds to follow access patterns even with changes
in access patterns’ biases. The color-based routing further

reduces more than 30% of traffic compared to the shortest-
path routing by adding two small routing tables to cache
servers. Moreover, our evaluation results demonstrated that
the proposed caching scheme is effective under various en-
vironments. As future work, we plan to extend our col-
oration scheme to follow access patterns by predicting the
future access patterns. It is also interesting to support envi-
ronments based on a hierarchical topology that consists of
access, metro, and longhaul networks, where each video file
is separated into a number of chunks and transmitted to the
end-user’s video player.
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