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SUMMARY The main contribution of this paper is to present an effi-
cient GPU implementation of bulk computation of the CKY parsing for a
context-free grammar, which determines if a context-free grammar derives
each of a lot of input strings. The bulk computation is to execute the same
algorithm for a lot of inputs in turn or at the same time. The CKY pars-
ing is to determine if a context-free grammar derives a given string. We
show that the bulk computation of the CKY parsing can be implemented
in the GPU efficiently using Bitwise Parallel Bulk Computation (BPBC)
technique. We also show the rule minimization technique and the dynamic
scheduling method for further acceleration of the CKY parsing on the GPU.
The experimental results using NVIDIA TITAN X GPU show that our im-
plementation of the bitwise-parallel CKY parsing for strings of length 32
takes 395µs per string with 131072 production rules for 512 non-terminal
symbols.
key words: parallel algorithms, bulk computation, bitwise operations,
context-free grammar

1. Introduction

The GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [2]. Latest GPUs are designed for general
purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application devel-
opers [2], [3]. NVIDIA provides a parallel computing ar-
chitecture called CUDA (Compute Unified Device Architec-
ture) [4], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and
memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multi-
core processors [5], since they have hundreds of processor
cores and very high memory bandwidth.

In our previous paper [1], we have introduced the Bit-
wise Parallel Bulk Computation (BPBC) technique to ac-
celerate the computation. The BPBC technique supports
ultimate fine grained bit parallelism and thus can achieve
very high acceleration over the straightforward sequential
computation. The BPBC technique simulates a combina-
tional logic circuit for a lot of instances at the same time
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using the bitwise logical operations. More formally, let g
be a function computed by a combinational logic circuit and
X0, X1, . . . , XM−1 be the M inputs. By the BPBC technique
g(X0), g(X1), . . . , g(XM−1) can be computed very efficiently.
The idea of the BPBC technique is

• to store a bit of each input instance in a particular bit of
words of data, say 32-bit integers, and

• to simulate the combinational logic circuit for 32 in-
put vectors at the same time by bitwise logic opera-
tions supported by computing devices such as CPUs
and GPUs.

We will show that the CKY parsing of a context-free
grammar [6] for many inputs can be done very efficiently
using the BPBC technique. Let G = (N,Σ, P, S ) denote a
context-free grammar such that N is a set of non-terminal
symbols, Σ is a set of terminal symbols, P is a finite pro-
duction rules, and S (∈ N) is the start symbol. Let f (G, x)
be a function such that G is a context-free grammar, x =
x1x2 · · · xn is a string of length n, and f (G, x) returns a
Boolean value. Function f (G, x) returns TRUE if and only if
G derives x. It is well-known that the CKY (Cocke-Kasami-
Younger) parsing [7] computes f (G, x) in O(n3) time, where
n is the length of x. The idea of the CKY parsing is to com-
pute a 2-dimensional table T [i, j] called CKY table by the
dynamic programming technique. Each element of T [i, j]
stores a subset of non-terminal symbols that can derive sub-
string xixi+1 · · · x j by repeatedly applying production rules
in P. Usually, each element of T [i, j] is implemented as an
array of size |N| to maintain the subset of N. More specifi-
cally, T [i, j][k] = 1 if the k-th non-terminal symbol in N can
derive substring xixi+1 · · · x j by applying production rules.
In most implementations of the CKY parsing, the value of
each T [i, j][k] is stored in a word, such as an 8-bit character
or a 32-bit integer. Since each T [i, j][k] stores 1-bit Boolean
value, it is inefficient to use an array of words to store T [i, j].
Our idea to apply the BPBC technique to the CKY pars-
ing is to compute 32 CKY tables for 32 input strings at the
same time. Suppose that 32 input strings are given and we
want to perform the CKY parsing for each of them. Let
T0,T1, . . . ,T31 denote 32 CKY tables to be computed. We
store 32 values T0[i, j][k],T1[i, j][k], . . . ,T31[i, j][k] in a 32-
bit integer for each i, j, and k. The CKY parsing can be
done by iterative simulation of a combinational logic cir-
cuit [8], [9], the BPBC technique can be applied to it.

Further, we will present the minimization technique for
reducing the number of gates of a combinational logic cir-
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cuit of the CKY parsing. By reducing the number of gates,
we can further accelerate the CKY parsing. In addition, we
will introduce two scheduling methods, the static schedul-
ing and the dynamic scheduling to assign input strings to
CUDA blocks on the GPU. Our implementation results
show that the dynamic scheduling is more efficient than the
static scheduling if the number of CUDA blocks that we can
launch is limited.

The parsing of context-free languages has many appli-
cations in various areas including natural language process-
ing [10], [11], compiler construction [7], informatics [12],
among others. Several studies have been devoted for ac-
celerating the parsing of context-free languages [11], [13]–
[15]. It has been shown that parsing of a string of length
n can be done in O((log n)2) time using n6 processors on
the PRAM [14]. Also, using the mesh-connected proces-
sor arrays, the parsing can be done in O(n2) time using n
processors as well as in O(n) time using n2 processors [15].
Later in [13], an algorithm that runs on a systolic array with
n2 finite-state processors with one-way communication run-
ning in linear time has been presented. In [16], it was shown
that parsing can be accomplished on a one-way linear ar-
ray of n2 finite-state processors in linear time. Since these
parallel algorithms need at least n processors, they are un-
realistic for large n. Ciressan et al. [17], [18] and Bordim
et al. [8], [9] have presented hardwares for the CKY pars-
ing for context-free grammars and have tested them using
FPGAs. In [8], it has been shown that the CKY parsing
with 64 non-terminal symbols and 8192 production rules
can be done in 162µs for an input string of length 32 us-
ing an APEX20K family FPGA. Because the circuit can run
in about 35MHz, by estimating that the performance of the
latest FPGA is about 10 times higher than the previous one,
we can expect that the same circuit implemented in the lat-
est FPGA may run in approximately 350MHz. Our GPU
implementation can perform the same task only in 1.97µs.
Hence our implementation is still more than 8 times faster
than the hardware implementation even if the circuit is im-
plemented on the latest FPGA and runs in 350MHz. Quite
recently, GPU implementations of the CKY parsing have
been presented [19], [20]. However, these implementation
uses the straightforward bottom-up process, which performs
only one CKY parsing. On the other hand, for a large num-
ber of inputs, the CKY parsing is performed in bioinformat-
ics [21] and decision support systems [22]. In [21], to find
RNA secondary structures from database, the CKY parsing
is used. Also, in [22], the CKY parsing is used as prepro-
cessing to parse a financial text stream consisting of millions
of words. After that, by checking the sentiment of contexts
whether it is positive or negative, the trend of the stock mar-
ket is analyzed. The proposed CKY parsing with the BPBC
technique can be performed if the size of 32 instances com-
puted by each thread is the same. Our GPU implementation
can be used for the above applications.

In the preliminary version of this paper [1], we have
introduced the BPBC technique for the CKY parsing and
its GPU implementation. Besides, in this paper, we show

the rule minimization technique and the dynamic schedul-
ing method for further acceleration of the CKY parsing on
the GPU. The experimental results using NVIDIA TITAN X
GPU show that our implementation of the bitwise-parallel
CKY parsing for strings of length 32 takes 395µs per string
with 131072 production rules for 512 non-terminal symbols.

This paper is organized as follows: In Sect. 2, we
briefly explain the CKY parsing for context-free grammars
and evaluate the performance. In Sect. 3, we show how we
apply the BPBC technique to the CKY parsing and evalu-
ate the performance. In Sect. 4, we explain the minimiza-
tion technique for further acceleration of the CKY parsing.
Section 5 shows the GPU implementation and the dynamic
scheduling method. In Sect. 6, we show experimental results
on the performance of the BPBC technique for the CKY
parsing. Section 7 provides concluding remarks.

2. The CKY Parsing

The main purpose of this section is to briefly describe the
CKY parsing and evaluate the performance.

Let G = (N,Σ, P, S ) denote a context-free grammar
such that N is a set of non-terminal symbols, Σ is a set of
terminal symbols, P is a finite production rules from N to
(N ∪ Σ)∗, and S (∈ N) is the start symbol. A context-free
grammar is said to be in Chomsky Normal Form (CNF), if
every production rule in P is in either form A → BC (bi-
nary rule) or A → a (unary rule), where A, B, and C are
non-terminal symbols and a is a terminal symbol. Note that
any context-free grammar can be converted into an equiva-
lent CNF context-free grammar. For later reference, let p2

and p1 denote the numbers of binary and unary production
rules, respectively.

We are interested in the parsing problem for a context-
free grammar in CNF. More specifically, for a given CNF
context-free grammar G and a string x over Σ, the parsing
problem is a problem to determine if the start symbol S de-
rives x by applying production rules in P. For example, let
Gexample = (N,Σ, P, S ) be a context-free grammar such that
N = {S , A, B}, Σ = {a, b}, and P = {S → AB, S → BA, S →
S S , A → AB, B → BA, A → a, B → b}. The context-free
grammar G derives abaab, because S derives it as follows:

S ⇒ AB⇒ ABA⇒ ABAA⇒ ABAAB⇒ · · · ⇒ abaab.

We are going to explain the CKY parsing scheme that
determines whether G derives x for a CNF context-free
grammar G and a string x. Let x = x1x2 · · · xn be a string
of length n, where each xi (1 ≤ i ≤ n) is in Σ. Let T [i, j]
(1 ≤ i ≤ j ≤ n) denote a subset of N such that every A
in T [i, j] derives a substring xixi+1 · · · x j. The idea of the
CKY parsing is to compute every T [i, j] using the following
relations:

T [i, i] = {A | (A→ xi) ∈ P}

T [i, j] =
j−1⋃

k=i

{A | (A→ BC) ∈ P, B ∈ T [i, k], and
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Fig. 1 The CKY table for Gexample and abaab.

C ∈ T [k + 1, j]}
A two-dimensional array T is called the CKY table. A

grammar G generates a string x if and only if S is in T [1, n].
Let ⊗G denote a binary operator 2N × 2N → 2N such that
U ⊗G V = {A | (A → BC) ∈ P, B ∈ U, and C ∈ V}. The
details of the CKY parsing are spelled out as follows:

[CKY parsing]
1. T [i, i]← {A | (A→ xi) ∈ P} for every i (1 ≤ i ≤ n)
2. T [i, j]← ∅ for every i and j (1 ≤ i < j ≤ n)
3. for j← 2 to n do
4. for i← j − 1 downto 1 do
5. for k ← i to j − 1 do
6. T [i, j]← T [i, j]

⋃
(T [i, k] ⊗G T [k + 1, j])

The first two lines initialize the CKY table, and the next
four lines compute the CKY table. Figure 1 illustrates the
CKY table for Gexample and the string abaab. Since S ∈
T [1, 5], one can see that Gexample derives abaab.

Clearly, the last four lines are dominant in the CKY
parsing. Let t be the computing time necessary to perform
an iteration of the line 6. Then, line 6 is executed for

T (n) =
n∑

j=2

j−1∑

i=1

j−1∑

k=i

t = t
n∑

j=2

j−1∑

i=1

( j − i) =
1
6

t(n3 − n)

times.
Let us evaluate the computing time t necessary to per-

form line 6, i.e., necessary to evaluate the binary operator
⊗G. A traditional software approach (i.e, sequential algo-
rithm), checks whether B ∈ U and C ∈ V for every produc-
tion rule A → BC in P. Clearly, using a reasonable data
structure, this can be done in O(1) time. Hence, U ⊗G V can
be evaluated in O(p2) time. Thus, using the above approach,
the CKY parsing can be done in O(n3 p2) time.

Lemma 1: The CKY parsing for an input string of length n
takes O(n3 p2) time, where p2 is the number of binary rules.

3. Bitwise Parallel Bulk Computation for CKY Parsing

This section is devoted to show how we apply the BPBC

Fig. 2 The circuit for computing ⊗Gexample .

Fig. 3 A pseudocode for computing ⊗Gexample in Fig. 2.

technique to the CKY parsing.
Suppose that a CNF context-free grammar G =

(N,Σ, P, S ) is given. Let N = {N1,N2, . . . ,Nb} be a set
of non-terminal symbols, where b is the number of non-
terminal symbols. Recall that the CKY parsing repeatedly
computes U⊗G V = {A | (A→ BC) ∈ P, B ∈ U, and C ∈ V}.
We will show that computation of U ⊗G V can be rep-
resented by a combinational logic circuit. Let U and V
(∈ 2N) be represented by b-bit binary vectors u1u2 · · · ub and
v1v2 · · · vb, respectively, such that ui = 1 iff Ni ∈ U. Also, let
U ⊗G V = w1w2 · · ·wb. For a particular wk (1 ≤ k ≤ b), we
are going to show how wk is computed. Let Nk → Ni1 Nj1 ,
Nk → Ni2 Nj2 , . . . , and, Nk → Nis N js be the production rules
in P whose non-terminal symbol in the left-hand side is Nk.
Clearly, we can compute wk by the following formula:

wk ← (ui1 ∧ v j1 ) ∨ (ui2 ∧ v j2 ) ∨ · · · ∨ (uis ∧ v js ).

This formula corresponds to a combinational circuit with s
AND gates and s − 1 OR gates and, the value of wk can be
computed by simulating the circuit. Figure 2 illustrates a cir-
cuit for Gexample in Sect. 2. Clearly, the combinational circuit
for ⊗G has p2 AND gates and less than p2 OR gates. Fig-
ure 3 shows a pseudocode for computing ⊗Gexample in Fig. 2.

Since the computation of ⊗G can be done by simulating
a combinational logic circuit, we can use the BPBC tech-
nique for the CKY parsing, which repeatedly computes ⊗G.
We assume that M input strings X0, X1, . . . , XM−1 of length
n each are given. Our goal is to determine if G = (N,Σ, P, S )
can generate Xi for all i (0 ≤ i ≤ M−1) by the CKY parsing.
We assume that a CPU used for the CKY parsing operates
on d-bit words. We partition the input strings into M

d groups
of d strings each. Let xi, j denote the j-th character of Xi.
We show how we determine if G can generate Xi for the first
group. We use |N| d-bit integers to represent subsets of non-
terminal symbols N for d input strings of the first group.
Each bit of d-bit integers corresponds to one of the d input
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Fig. 4 The computation of ⊗G for four instances.

strings. Using these integers, we can compute ⊗G by the
bitwise operations very efficiently. Figure 4 illustrates the
computation of ⊗G for an example of a context-free gram-
mar shown in Sect. 2. It uses three 4-bit integers to represent
subsets of non-terminal symbols. Each of the 4 bits corre-
spond to the following computation in terms of ⊗G:

0: {S , B} ⊗G {S , A} → {S , B}
1: {A} ⊗G {B} → {S , A}
2: {B} ⊗G {S } → {}
3: {S , A, B} ⊗G {A, B} → {S , A, B}
Since the computation of ⊗G can be represented by a

combinational logic circuit, we can compute ⊗G for d pairs
of inputs by bitwise logic operations. For example, the com-
putation illustrated in Fig. 4 can be done by bitwise logic
operations as follows:

WS ← (UA ∧ VB) ∨ (UB ∧ VA) ∨ (US ∧ VS )

WA ← UA ∧ VB

WB ← UB ∧ VA

Using this idea, we can perform the CKY parsing
shown in Sect. 2. We perform the CKY parsing for d input
strings at the same time. The computation of ⊗G performed
in line 6 of the CKY parsing can be done by O(p2) bitwise
logic operations. Hence, the CKY parsing for d input strings
can be done in O(n3 p2) time. Since we have M

d groups, we
have

Theorem 2: The CKY parsing of M input strings of length
n each can be done in O( Mn3 p2

d ) time by the BPBC technique.

From Lemma 1, the CKY parsing for M input strings of
length n can be done in O(Mn3 p2). Thus, the BPBC tech-
nique can accelerate it by a speed-up factor of d.

Suppose that the BPBC technique is used on a parallel
machine with P processor cores. Clearly, it can perform the

CKY parsing for dP input strings at the same time. Thus,
we have,

Corollary 3: The CKY parsing of M input strings of
length n each can be done in O( Mn3 p2

dP ) time by the BPBC
technique on a parallel machine with P processor cores.

From Lemma 1, the CKY parsing of M input strings takes
O(Mn3 p2) time on a single CPU. Hence, we can say that a
parallel machine with P processor cores may accelerate the
CKY parsing by a speed up factor of up to O(dP). For ex-
ample, NVIDIA TITAN X utilized in our experiments has
P = 3584 cores and each word has d = 32 bits. Thus, the
BPBC technique on the GPU can achieve a speed up factor
of up to 3584 × 32 = 114688 over the conventional word-
wise computation on a single processor core. Of course, this
speedup factor is just a theoretical upper bound and actual
speedup factor is much smaller, because a GPU processor
core has less computing power than a processor core of a
CPU and the GPU has larger overhead than the CPU due
to large memory access latency, limited memory bandwidth
and smaller clock performance, among others.

4. Minimization Technique for CKY Parsing

The main purpose of this section is to show the minimization
technique for the combinational logic circuit of the CKY
parsing. Since the computation cost for the CKY parsing by
the BPBC technique is proportional to the number of gates,
we can accelerate the CKY parsing if the size of the corre-
sponding logic circuit is reduced.

Suppose that a grammar G = (N,Σ, P, S ) is given. We
assume that the production rules whose non-terminal sym-
bol in the left-hand side is S are {S ← S S , S ← S B, S ←
AA, S ← AB, S ← BS , S ← BB}. As we have mentioned in
Sect. 3, we can compute wS by a combinational logic circuit
as follows:

wS ← (uS ∧ vS ) ∨ (uS ∧ vB) ∨ (uA ∧ vA)

∨ (uA ∧ vB) ∨ (uB ∧ vS ) ∨ (uB ∧ vB)

In this formula, we can compute wS using 11 logic gates. On
the other hand, we can see that both the first rule (uS ∧ vS )
and the second rule (uS ∧ vB) have uS . Hence, we can join
these rules as follows:

(uS ∧ vS ) ∨ (uS ∧ vB)

⇓
uS ∧ (vS ∨ vB)

By joining the rules, we can reduce the number of gates from
11 to 10. Using this idea, we minimize the combinational
logic circuit of the rules. Our minimization technique con-
sists of two steps, factoring step and simulated annealing
step.

4.1 Factoring Step

We create a matrix for each non-terminal symbol as illus-
trated in Fig. 5. Each element of the matrix (ui, v j) is 1 if
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Fig. 5 The production rule matrix of wS .

Fig. 6 Updating the production rules matrix.

(ui ∧ v j) is included in the combinational logic circuit of P,
and 0 if it is not included for all i, j (∈ N). After creating
the matrix, we count the number of 1’s in each row and each
column as shown in Fig. 5. We repeatedly select a column/
row with the maximum number of 1’s and join the rules. For
example, since a column corresponding to vB has the maxi-
mum number of 1’s, rules for it are joined as follows:

wS ← (uS ∧ vS ) ∨ (uS ∧ vB) ∨ (uA ∧ vA)

∨ (uA ∧ vB) ∨ (uB ∧ vS ) ∨ (uB ∧ vB)

⇓
wS ← ((uS ∨ uA ∨ uB) ∧ vB)

∨ (uS ∧ vS ) ∨ (uA ∧ vA) ∨ (uB ∧ vS )

After joining the rules, all values in the column set to 0 as
illustrated in Fig. 6. We repeat the same joining procedure
until all elements of the matrix becomes 0.

Using this technique for the matrix in Fig. 5, we finally
obtain 3 joined rules as follows:

wS ← ((uS ∨ uA ∨ uB) ∧ vB)

∨ ((uS ∨ uB) ∧ vS )

∨ (uA ∧ vA)

From these joined rules, we can see that the number of gates
is reduced from 11 to 8.

4.2 Simulated Annealing Step

We will show that we can further reduce the number of gates
by the simulated annealing technique using an example. In
Sect. 4.1, both the joined rules ((uS ∨ uA ∨ uB) ∧ vB) and
((uS ∨ uB) ∧ vS ) have (uS ∨ uB). Hence, we can join these 2
rules as follows:

((uS ∨ uA ∨ uB) ∧ vB) ∨ ((uS ∨ uB) ∧ vS )

⇓
((uS ∨ uB) ∧ (vS ∨ vB)) ∨ (uA ∧ vB)

Since the joined rule ((uS ∨ uA ∨ uB) ∧ vB) has uA, we must
add rule (uA∧vB). Thus, the number of gates can be reduced
by 1. However, in general, we may need to add more rules,
and the number of gates may increase.

We use the simulated annealing technique [23], [24] for
reducing the number of gates. First, we select two rules
at random from the joined rules by the factoring technique
and evaluate the number of gates that can be reduced if we
join them. If the number of gates is reduced, we actually
join them. It makes no sense to join them if the number
of gates increases. However, since we use the simulated
annealing technique, we actually join them with some small
probability even if the number of gates increases. We repeat
this procedure until we are not able to find better formula in
enough many trials.

5. GPU Implementation

This section shows the GPU implementation of the CKY
parsing using the BPBC technique.

CUDA uses two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [4]. The
shared memory is an extremely fast on-chip memory with
capacity of 16–96 Kbytes. The global memory is imple-
mented as an off-chip DRAM, and thus, its capacity of 1.5–
12 Gbytes is large, but its access latency is very long. The
efficient usage of the shared memory and the global mem-
ory is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the coalesc-
ing of the global memory access [5], [25]. To maximize the
bandwidth between the GPU and the DRAM chips, the con-
secutive addresses of the global memory must be accessed
at the same time. Thus, CUDA threads should perform coa-
lesced access when they access the global memory.

We use the global memory of the GPU to store the
CKY tables since the size of the shared memory is not large
enough to store the tables in it. The CKY parsing computes
elements of the CKY table in the order illustrated in Fig. 7.
The elements are computed from the bottom row. In each
row, they are computed from right to left. Hence, we use the
local memory of CUDA to cache the value of a row currently
computed. Note that the local memory may be allocated in
registers in the streaming multiprocessor if small, and in the
off-chip DRAM if large. Hence, it makes sense to use the
local memory to cache a row. Also, since the capacity of
the local memory is limited, it is not possible to store all
elements of the CKY table in it.

Each thread performs the CKY parsing for 32 input
strings at the same time using bitwise operations for 32-bit
integers. We arrange 32 threads for each CUDA block, a
group of threads of CUDA. Since each CUDA block per-
forms the CKY parsing for a subset of 32 · 32 = 1024 input
strings, M

1024 CUDA blocks are invoked for M input strings.



2862
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.12 DECEMBER 2017

Fig. 7 The computation order of the CKY table.

Fig. 8 The timeline of the static scheduling.

However, if M is quite large, it is not possible to launch M
1024

CUDA blocks, because the total size of the CKY tables for
them exceeds that of the global memory of the GPU. Since
the number of CKY tables that can be stored in the global
memory is limited, it makes sense to invoke fewer CUDA
blocks each of which performs the CKY parsing for multi-
ple subsets of 1024 input strings each. In other words, the
space for the CKY tables in the global memory is reused.

We will show two scheduling methods to assign multi-
ple subsets to each CUDA block, the static scheduling and
the dynamic scheduling. In the static scheduling method,
each block simply performs the CKY parsing for the same
number of subsets. Since the computing time for the CKY
parsing may vary, CUDA blocks do not terminate at the
same time. In Fig. 8, 4 CUDA blocks are invoked for the
CKY parsing of subsets s0, s1, . . . , and s15. In the static
scheduling, each block performs the CKY parsing for fixed
16
4 = 4 subsets and block 3 runs much longer than the others.

On the other hand, in the dynamic scheduling method,
each subset is dynamically assigned to each CUDA block.
In this method, each CUDA block is assigned to a subset
for the CKY parsing one by one. After a CUDA block com-
pletes the CKY parsing for the assigned subset, a new subset
is assigned to it as illustrated in Fig. 9. To implement the dy-
namic scheduling, we use atomic add instruction supported
by CUDA for a global variable c initialized to 0. When
CUDA blocks are launched, the first thread of each block

Fig. 9 The timeline of the dynamic scheduling.

executes atomicAdd(c,1), which exclusively adds 1 to c and
returns the value of c before adding. A CUDA block per-
forms the CKY parsing for a subset si, where i is the re-
turn value of atomicAdd(c,1). Each CUDA block repeats
the same procedure until the CKY parsing for all subsets
is completed. If the return value is larger than the num-
ber of subsets, it terminates. Since atomicAdd(c,1) returns
0, 1, 2, . . . in each call, the CKY parsing for every subset is
done one by one properly. Using this technique, a CUDA
block which takes a lot of time for the CKY parsing is as-
signed a new subset later. Thus, the running time of CUDA
blocks is equalized so that they terminate almost at the same
time, and the computing time for completing all CKY pars-
ing is shortened.

The CKY parsing by the dynamic scheduling runs
faster than that by the static scheduling. In particular, if all
CUDA blocks are allocated to streaming multiprocessors at
the same time and they run in parallel, then the dynamic
scheduling approach runs much faster. On the other hand, if
a kernel invokes more CUDA blocks and they are allocated
to streaming multiprocessors in turn, the advantage of the
CKY parsing by the dynamic scheduling is small. The rea-
son is as follows. In CUDA, the number of CUDA blocks
that can reside and concurrently run on a streaming multi-
processor is limited. It depends on the numbers of threads
and CUDA blocks, the size of the registers and shared mem-
ory used by each CUDA block. If all CUDA blocks reside
and run on streaming multiprocessors, the running time of
them varies and the worst one determines the running time
of the CKY parsing as illustrated in Fig. 8. Suppose that a
kernel invokes more CUDA blocks than the total number of
CUDA blocks that can run on all streaming multiprocessors
at the same time. CUDA blocks that cannot be allocated to a
streaming multiprocessor wait for termination of execution
of running CUDA blocks. When a CUDA block running
on a streaming multiprocessor terminates, one of waiting
CUDA blocks is allocated to it. This scheduling is done by
the CUDA block scheduler. We can think that the CUDA
block scheduler performs the CUDA-blockwise dynamic
scheduling, which equalizes the running time of stream-
ing multiprocessors. In other words, the static scheduling
for the CKY parsing automatically performs the CUDA-
blockwise dynamic scheduling. Our dynamic scheduling is
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finer-grained than the CUDA-blockwise dynamic schedul-
ing in the sense that the running times of CUDA blocks
are equalized in subsetwise for each subset of 1024 input
strings. Hence, we can expect the dynamic scheduling runs
faster than the static scheduling for this case, but the dif-
ference of the performance is not large. The experimental
results in Sect. 6 show the correctess of this observation.

6. Experimental Results

This section shows experimental results using Intel Core i7-
6700K (4.0GHz) CPU and NVIDIA TITAN X (1.4GHz)
GPU. NVIDIA TITAN X has 28 streaming multiprocessors
with 128 cores each. Hence, it has totally 28 × 128 = 3584
processor cores. We use the BPBC technique both for the
CPU implementation and the GPU implementation. Al-
though Intel Core i7-6700K has 4 processor cores, we have
used only one processor core to evaluate sequential algo-
rithm. We may accelerate the computation by a speedup
factor of up to 4 if we implement a parallel algorithm that
uses all 4 processor cores. Since our goal is not to compare
the computing powers of Intel Core i7-6700K and NVIDIA
TITAN X, we have not implemented a 4-parallel algorithm
on Intel Core i7-6700K.

Table 1 The number of gates of the combinational logic circuit of the CKY parsing and the ratio of
min to original.

32 non-terminals 64 non-terminals 128 non-terminals 256 non-terminals 512 non-terminals
p2 original min ratio original min ratio original min ratio original min ratio original min ratio
32 64 63 0.98 - - - - - - - - - - - -
64 128 124 0.97 128 128 1.00 - - - - - - - - -

128 256 245 0.96 256 254 0.99 256 254 0.99 - - - - - -
256 512 466 0.91 512 496 0.97 512 507 0.99 512 511 1.00 - - -
512 1024 864 0.84 1024 963 0.94 1024 1008 0.98 1024 1020 1.00 1024 1023 1.00

1024 2048 1582 0.77 2048 1854 0.91 2048 1986 0.97 2048 2028 0.99 2048 2042 1.00
2048 4096 2802 0.68 4096 3469 0.85 4096 3886 0.95 4096 4031 0.98 4096 4076 1.00
4096 8192 4722 0.58 8192 6318 0.77 8192 7437 0.91 8192 7939 0.97 8192 8119 0.99
8192 16384 7436 0.45 16384 11300 0.69 16384 13883 0.85 16384 15471 0.94 16384 16134 0.98

16384 32768 11834 0.36 32768 19662 0.60 32768 25338 0.77 32768 29674 0.91 32768 31841 0.97
32768 - - - 65536 32924 0.50 65536 45420 0.69 65536 55452 0.85 65536 61973 0.95
65536 - - - 131072 56097 0.43 131072 80471 0.61 131072 101236 0.77 131072 118600 0.90

131072 - - - 262144 101484 0.39 262144 140777 0.54 262144 182008 0.69 262144 221668 0.85

Table 2 The running time (in seconds) of the bitwise-parallel CKY parsing on the GPU for 4194304
strings of length 32 each.

32 non-terminals 64 non-terminals 128 non-terminals 256 non-terminals 512 non-terminals
2048 blocks 1024 blocks 512 blocks 256 blocks 128 blocks

p2 static dynamic spd-up static dynamic spd-up static dynamic spd-up static dynamic spd-up static dynamic spd-up
32 0.794 0.806 0.985 - - - - - - - - - - - -
64 1.08 1.11 0.975 1.46 1.51 0.967 - - - - - - - - -

128 1.18 1.19 0.990 1.95 1.99 0.977 2.75 2.86 0.964 - - - - - -
256 1.12 1.14 0.979 2.39 2.29 1.05 3.75 3.76 1.00 6.14 5.48 1.12 - - -
512 1.11 1.12 0.991 2.14 2.15 0.995 5.30 5.13 1.03 11.9 10.8 1.10 30.6 16.2 1.89

1024 1.21 1.20 1.01 2.22 2.22 1.00 7.66 7.64 1.00 19.7 17.8 1.10 49.0 24.5 2.00
2048 1.28 1.27 1.01 2.53 2.53 1.00 8.50 8.11 1.05 26.4 23.5 1.13 96.0 35.9 2.67
4096 1.32 1.26 1.05 5.40 5.16 1.05 10.4 9.17 1.13 41.5 36.9 1.12 173 65.0 2.67
8192 3.60 3.46 1.04 8.32 7.92 1.05 15.9 14.3 1.12 72.0 63.8 1.13 332 114 2.92

16384 6.58 6.49 1.01 10.9 10.1 1.08 25.9 22.5 1.15 136 122 1.11 647 222 2.91
32768 - - - 16.7 15.2 1.10 42.7 36.3 1.18 263 236 1.11 1310 414 3.16
65536 - - - 34.5 31.8 1.09 72.3 60.5 1.19 484 461 1.05 2600 819 3.17

131072 - - - 60.7 55.6 1.09 125 104 1.21 930 847 1.10 5890 1660 3.56

Table 1 shows the number of gates of the combina-
tional logic circuit of the CKY parsing. The experiment
is performed for 32, 64, 128, 256, and 512 non-terminal
symbols and 32, 64, . . . , 131072 binary production rules.
Note that the number p2 of binary production rules must
be |N| ≤ p2 < |N|3, where |N| is the number of non-terminal
symbols. If |N| > p2, there exists a non-terminal symbol
that are not in the left-hand side of a binary production rule.
Since a binary production rule in form A → BC includes
3 non-terminal symbols, it make no sense to have |N|3 or
more distinct binary rules. Thus, the table does not include
the experiment for values p2 out of this range. We have
selected p2 production rules from |N|3 distinct rules at ran-
dom. In each non-terminals, the first column original and
the second column min represent the number of gates for an
original logic circuit and that obtained after minimization
shown in Sect. 4. The third column ratio represents the ratio
of min to original. We can see that the number of gates can
be reduced for almost pairs of non-terminals and rules. The
value of ratio is decreased as the number of rules increases
in each non-terminals. In other words, we can reduce the
number of gates more if the number of rules is larger. On
the other hand, the ratio is increased as the number of non-
terminal symbols increases in each rules, because the num-
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Table 3 The running time (per string in microseconds) of the bitwise-parallel CKY parsing for strings
of length 32.

32 non-terminals 64 non-terminals 128 non-terminals 256 non-terminals 512 non-terminals
p2 CPU GPU spd-up CPU GPU spd-up CPU GPU spd-up CPU GPU spd-up CPU GPU spd-up
32 3.25 0.278 11.7 - - - - - - - - - - - -
64 5.62 0.350 16.1 5.97 0.448 13.3 - - - - - - - - -

128 10.3 0.369 27.8 10.5 0.565 18.7 14.7 0.761 19.3 - - - - - -
256 18.9 0.356 53.2 19.8 0.632 31.3 26.3 0.985 26.7 28.9 1.40 20.7 - - -
512 33.6 0.352 95.6 39.1 0.601 65.0 51.9 1.31 39.7 55.4 2.66 20.8 60.9 3.95 15.4

1024 57.2 0.376 152 74.1 0.617 120 104 1.91 54.6 106 4.34 24.4 119 5.92 20.2
2048 95.6 0.387 247 136 0.690 197 199 2.02 98.4 210 5.68 36.9 216 8.65 25.0
4096 167 0.385 434 234 1.32 178 375 2.27 165 401 8.89 45.1 429 15.6 27.5
8192 244 0.914 267 411 1.97 209 635 3.49 182 774 15.3 50.6 811 27.2 29.8

16384 339 1.63 208 745 2.48 300 1170 5.44 215 1430 29.2 49.1 1630 53.1 30.7
32768 - - - 1230 3.70 333 2340 8.73 268 2520 56.4 44.6 2900 98.7 29.4
65536 - - - 1900 7.66 248 3950 14.5 272 4660 110 42.3 5380 195 27.6

131072 - - - 3720 13.4 278 6210 24.8 251 9160 202 45.4 10900 395 27.7

ber of rules that can be joined is decreased. From the table,
using the minimization technique, the number of gates can
be reduced by 18% on average.

Table 2 shows the running time of the CKY parsing
by our BPBC technique for 4194304 strings of length 32
with the static scheduling and the dynamic scheduling on
the GPU. We use the minimized circuit in Table 1 for each
implementations. Also, we use 32-bit unsigned integers and
arrange 32 threads for each CUDA block. Thus, a CUDA
block performs the CKY parsing for 32 · 32 = 1024 input
strings in parallel. Thus, we partition 4194304 strings into
4194304

1024 = 4096 subsets and the CKY parsing for each subset
is performed by a CUDA block. From the capacity of the
global memory of NVIDIA TITAN X, 2048, 1024, 512, 256,
and 128 CUDA blocks are invoked for 32, 64, 128, 256, and
512 non-terminals, respectively, which occupies 8 Gbytes in
the global memory of the GPU for the CKY tables.

From Table 2, we can see that the dynamic schedul-
ing runs much faster than the static scheduling if the num-
ber of non-terminals is large. For example, the dynamic
scheduling can run more than 1.89–3.56 times faster for
512 non-terminals. However, the running times are not so
different for smaller number of non-terminals. This is be-
cause all CUDA blocks reside and run on streaming multi-
processors at the same time for 512 non-terminals. From
the CUDA profiler executed for our CKY parsing by the
BPBC technique, each streaming multiprocessor can exe-
cute 8 CUDA blocks. Thus, at most 28 × 8 = 224 CUDA
blocks run at the same time on 28 streaming multiprocessors
in NVIDIA TITAN X. Since a kernel invokes 128 CUDA
blocks for 512 non-terminals, all CUDA blocks run at the
same time and the dynamic scheduling runs much faster
than the static scheduling. On the other hand, 256 CUDA
blocks are invoked for 256 non-terminals and so 256−224 =
32 CUDA blocks are not dispatched to streaming multipro-
cessors when a kernel is called. Thus, since the CUDA-
blockwise dynamic scheduling works for the CKY parsing
by the static scheduling, the dynamic scheduling runs a little
faster than the static scheduling.

Table 3 shows the running time per string of the CKY
parsing for strings of length 32 on the CPU and the GPU.

We use the minimized circuit in Table 1 both for the CPU
and the GPU implementations. Also, we use the dynamic
scheduling method for GPU implementations. Clearly, the
running time of the CPU implementation is almost propor-
tional to the number of gates of the minimized circuit. For
the same number of binary production rules, the CPU imple-
mentation for more non-terminal symbols takes more time.
However, the running time is sublinear to the number of
non-terminal symbols, although it must be linear from the
theoretical point of view. This is because the locality of
memory access. If the context-free grammar has fewer non-
terminal symbols, then each of them are accessed more fre-
quently and the memory cache mechanism works more effi-
ciently.

Similarly, the GPU implementation also takes more
time if the context-free grammar has more non-terminal
symbols. In addition to the locality of memory access, fewer
active threads increase the running time. For example, if
the context-free grammar has 32 non-terminal symbols, we
can launch 2048 · 32 = 65536 threads. On the other hand,
if the context-free grammar has 512 non-terminal symbols,
we can launch only 128 · 32 = 576 threads. In general, to
maximize the memory access bandwidth, more threads must
be invoked at the same time. Hence, the running time per
input string is rather increased because fewer CKY tables
are computed using fewer threads. From Table 3, the GPU
implementation is 434 times faster than the CPU implemen-
tation when the context-free grammar has 32 non-terminal
symbols and 4096 binary production rules.

7. Concluding Remarks

In this paper, we have presented an efficient GPU implemen-
tation of the bulk computation of the CKY parsing. We have
used the Bitwise Parallel Bulk Computation (BPBC) tech-
nique for accelerating the bulk computation. Also, we have
presented the minimization technique for reducing the num-
ber of gates of the combinational logic circuit of the CKY
parsing. In addition, we have used the dynamic schedul-
ing method for efficiently assignment of subsets of input
strings to CUDA blocks. The experimental results using
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NVIDIA TITAN X GPU show that our implementation of
the bitwise-parallel CKY parsing for strings of length 32
takes 395µs per string with 131072 production rules for 512
non-terminals.
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