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A Describing Method of an Image Processing Software in C for a
High-Level Synthesis Considering a Function Chaining

SUMMARY  This paper shows a describing method of an image pro-
cessing software in C for high-level synthesis (HLS) technology consid-
ering function chaining to realize an efficient hardware. A sophisticated
image processing would be built on the sequence of several primitives rep-
resented as sub-functions like the gray scaling, filtering, binarization, thin-
ning, and so on. Conventionally, generic describing methods for each sub-
function so that HLS technology can generate an efficient hardware module
have been shown. However, few studies have focused on a systematic de-
scribing method of the single top function consisting of the sub-functions
chained. According to the proposed method, any number of sub-functions
can be chained, maintaining the pipeline structure. Thus, the image pro-
cessing can achieve the near ideal performance of 1 pixel per clock even
when the processing chain is long. In addition, implicitly, the deadlock due
to the mismatch of the number of pushes and pops on the FIFO connect-
ing the functions is eliminated and the interpolation of the border pixels
is done. The case study on a canny edge detection including the chain of
some sub-functions demonstrates that our proposal can easily realize the
expected hardware mentioned above. The experimental results on ZYNQ
FPGA show that our proposal can be converted to the pipelined hardware
with moderate size and achieve the performance gain of more than 70 times
compared to the software execution. Moreover, the reconstructed C soft-
ware program following our proposed method shows the small performance
degradation of 8% compared with the pure C software through a compara-
tive evaluation preformed on the Cortex A9 embedded processor in ZYNQ
FPGA. This fact indicates that a unified image processing library using
HLS software which can be executed on CPU or hardware module for
HW/SW co-design can be established by using our proposed describing
method.

key words:  high-level synthesis, FPGA, describing method, image pro-
cessing, function chaining

1. Introduction

The embedded products tend to include sophisticated image
processing in order to make their own added value increase.
In addition, many of them are desired to run long period
by battery. That is, the embedded products must achieve
the high performance and the low power consumption. To
overcome such problem, the hardware implementation of
the image processing is important. However, the hardware
design could be a significant burden to the product devel-
opers. To reduce the designing load of the hardware, the
high-level synthesis (HLS) technologies automatically con-
verting the software to the hardware module in the hardware
description language (HDL) have been researched and de-
veloped [1], [2]. From the viewpoint of device, the FPGA
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which has design flexibility due to the reconfigurable nature
is attractive to overcome the short life cycle of the embedded
products, compared with the ASIC.

The HLS has a good affinity to FPGA since the FPGA
has the similar flexibility as the software. Thus, the HLS
technologies on FPGA have been received a lot of attention
and the well-established commercial tools have come to be
provided [1], [2]. The HLS tools attempt to lead many soft-
ware engineers to the hardware development on FPGA in
order to support the embedded hardware engineering that a
few skillful hardware engineers have proceeded. As a re-
sult, the FPGA also may become a main stream of the hard-
ware implementation in the embedded systems. However,
the pure software code cannot be converted to the highly
optimized hardware module without careful considerations
yet[1], [2]. The software code targeted to the HLS must
be written taking into the account of the hardware specific
structures like the pipeline, parallelism, memory port limi-
tation, and memory buffering. This is one of the problems
that disturb the software engineers from utilizing a HLS tool
as the general purpose programming environment.

The providers and researchers of the HLS tool have
shown describing methods of HLS software to generate an
efficient image processing hardware [3]-[7]. They have con-
centrated on the individual single image processing primi-
tives such as the gray scaling, color-space conversions, bi-
narization, filters, DCT and so on. In general, the practical
image processing have several primitives mentioned above
as sub-functions. For example, the canny edge detection is
built on the sequence of sub-functions that are the gray scal-
ing, gaussian smooth filter, sobel filter, non-maximum sup-
pression, hysteresis thresholding, and the edge thinning [8].

Some researchers have taken into account of con-
necting sub-functions and proposed the new languages for
the image processing to be converted by their own HLS
tools [9], [10]. These proposals establish the function con-
nections by specifying the dedicated line buffers. However,
these specific languages cannot be compiled by a generic
compiler like gcc which supports many kinds of embedded
processors. The embedded engineers first describe the sys-
tem behavior in a general purpose language like C, C++,
and Java, then explore the computation centric parts to be
implemented as hardware [11]. Due to the performance pro-
filing and the resource limitation of the hardware, the de-
signer may decide to implement some part of image pro-
cessing as the software. Performing such trade-off and hard-
ware implementation in a unified general purpose language
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can make the HW/SW co-design process non-error-prone,
without limitation of kind of the embedded processors to be
used.

The Vivado HLS from Xilinx supporting C and C++
language [12] is seemed to be a most spreading HLS tool
due to easy and free use. The manual of this tool shows a de-
scribing method of the main image processing function con-
sisting of the sequential sub-functions which are provided
as the specific image processing library [12]. However,
this manual shows only an arrangement of sub-functions
as APIs. Since the insides of the APIs are not opened, all
engineers cannot apply this library and hidden describing
methodology to their own image processing software.

This paper shows a systematic describing method of
the C behavior including the chain of basic sub-functions to
realize the image processing for a HLS tool in C language.
To the knowledge of authors, few studies have focused on
this aspect. The C language is most popular language for
the embedded engineers [13] and HLS tools [1], [2]. Thus,
our proposal can significantly contribute to spread the usage
of the FPGA and HLS technology to the embedded software
engineers who are thinking to use an FPGA.

According to the proposed method, any number of sub-
functions can be chained by inferred FIFOs maintaining the
pipeline structure across the whole of hardware. The image
processing even if it has long function chaining can easily
achieve the near ideal performance of 1 pixel per clock. For
FIFO, the deadlock due to the mismatch of the number of
pushes and pops on the FIFO connecting the functions be-
comes a problem. The proposed method eliminates it im-
plicitly. In addition, the interpolation to the undefined bor-
der pixels caused by a window processing like special filter
is automatically performed.

The rest of the paper is organized as follows. Sec-
tion 2 explains the research motivation, indicating the re-
search prerequisites about the C hardware description where
this paper deals with. Then the research problems are shown
caused by the conventional methods in those prerequisites.
Section 3 shows the proposed describing method of hard-
ware behavior in C to overcome the research problems. Sec-
tion 4 develops a hardware platform to perform the practi-
cal experiments and demonstrates the case study applying
our proposal to a canny edge detection. Then the results
of FPGA implementation and performance evaluation are
shown and discussed. Finally, Sect.5 concludes the paper
indicating future work.

2. Motivation and Problem

The HLS technology is good at converting the software
showing the stream memory access patterns to the efficient
hardware. Since the HLS is hard to handle the dynamic
and random complicated memory access patterns, the hard-
ware/software co-design combining the software execution
doing the sophisticated memory accesses and the hardware
execution doing the high performance stream processing are
generally performed [7], [11]. To realize the pipelined hard-
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1l:data t,[];
rdata t,[];

N

:data t.[]1; ty
stop_f(x[1, y[1){

:#pragma MEMBURST x, y
:#pragma FIFO t,,..,t,

:#pragma CONCURRENT t
sub_fi(x, t; );
sub_fy(ty, t; )3

W ~NOV & W

10: sub_f (t;., t;);

11: sub_f (t,., Vv );
}

(a) Software
pseudo code based on C

sub_f; i

(b) HLS hardware

Fig.1  Top function organization.

ware with the performance of 1 pixel per clock including the
chained sub-functions shown in Fig. 1, each sub-function
must be converted to the pipelined sub-hardware with 1
pixel per clock. In addition, the memory interface has to
support a burst bus transfer.

This section summarizes the top function and sub-
functions showing streamable memory accesses convention-
ally targeted by HLS. Then, we would like to indicate the
research problems that appear when connecting the sub-
functions on this conventional hardware description.

2.1 Top Function

Figure 1 shows an organization of the top function including
a sequence of sub-functions. The top function as shown in
Fig. 1 (a) includes the some sub-functions (sub_f; to sub_f},).
The sub-functions are connected by the arrays (t; to t,).

For the arguments of the top function, the array of x is
the input data and that of y is the output data. The arguments
of the top function to the data array are generally assigned to
the external memory by a HLS technology used. Although
omitted, the top function is able to have some arguments for
any parameters. Those parameters are generally assigned
into the direct ports or the memory mapped registers. For
the data arrays in the arguments, the HLS tools have some
pragma to specify the memory ports as the bus interface sup-
porting a burst transfer. In this figure, this pragma is indi-
cated as #pragma MEMBURST x, y atline 5.

For the arrays connecting sub-functions, the HLS tools
mostly try to assign them to embedded memories on an
FPGA used as default. However, it is not practical that
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sub_f(*x, *y){
L1:for(i=0;i<H;i++){

L2: for(J=0; j<W; j++){ E 1
#pragma PIPELINE
y[i*W+j]=core(x[i*W+j]);

} I
} =3

(a) 1D scanning (b) HLS hardware

Fig.2 1D scanning.

the whole image is stored to a small embedded memory
whose capacity is limited. Thus, the HLS tool generally
supports the FIFO as the communication media between
sub-functions. The sub-functions across the FIFO have to
act as a producer and consumer individually running. The
producer pushes the processed data into the FIFO while
the consumer pops them from the FIFO immediately. The
FIFO have only to hold the needed data at communicating
point not whole image. The HLS tools have pragmas to
make the sub-functions concurrently run and to assign ar-
rays to FIFOs bridging the sub-functions. These pragmas
are described as #pragma FIFO tl,..,tn at line 6 and
#pragma CONCURRENT at line 7.

The hardware generated by a HLS tool would have the
structure shown in Fig. 1 (b). On this structure, the pipeline
from the input port to the output port can be shifted every
clock cycle unless a pipeline stall occurs due to the mem-
ory stall. As a result, the processing of 1 pixel per clock is
achieved after some latency until the pipeline is filled.

2.2 Sub-Function: 1D Scanning

A memory access pattern of the 1D scanning accesses the
single pixels successively in the raster scan order. The typ-
ical examples are Thresholding and Color space conver-
sions [14], [15].

Figure 2 shows a pseudo C code and HLS hardware
of the sub-function with the 1D scanning. As shown in
Fig.2 (a), the 1D scanning gets the single pixel and pro-
cesses it in a core calculation. The processed single pixel
is stored into the memory. The pixels previously loaded
or processed can be used in the core calculation to make
new pixel. Note that single read and single write are per-
formed to respective arguments of the sub-function. In this
case they are x and y which are converted to single read and
write ports. If each argument has multiple accesses to differ-
ent addresses, the HLS cannot make the pipelined hardware
with 1 pixel per clock due to the port conflict.

By using a pragma for pipelining such as #pragma
PIPELINE in Fig. 2 (a), the HLS generates a pipelined hard-
ware such as Fig.2(b) handling 1 pixel per clock, while
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b
W Undefined W
sub_f(*x, *y){
data win[WH][WW];
for(i=WH/2; i<H-WH/2;i++){
for (G=WW/2; j<W-WW/2;j++){
for(k=0;k<wWH; k++)
for(1=0;1<Wh; 1++)
win[k][1]=x[i*W+j+idx[k][1]];
y[i*W+j]=win_kernel(win);
}
}
}

Fig.3  Window processing from software view.

sub_f (*x,*y){
data 1b [WH][W];
data t [WH];
data win[WH][WW];
L1:for(i=0; i<H; i++){
L2:for(j=0; j<W; j++){
#pragma PIPELINE
pix=x[1*W+j];
for(k=0; k<WH-1; k++){
1b[Kk1[31=1b[k+11[3];
t [k =1b[k 1[3;

}

t[WH-1]=1b[WH-1][§]=pix;

for(k=0; k<WH; k++)
for(1=0;1<Wn-1;1++)

win[k][1]=win[k][1+1];

for (k=0;k<WH; k++)
win[k][WH-1]=t[k];

val = win_kernel(win);

if(i>=WH && j>=WM)
y[i*W+j]=val;

win_kernel

} Y

}

(a) Reconstructed window processing (b) HLS hardware

Fig.4 Reconstructed window processing for HLS.

pipelining the core calculation.
2.3 Sub-Function: 2D Scanning

Figure 3 shows a window processing using the center pixel
and its local neighbors as the typical concept of 2D scanning
access pattern from the viewpoint of software. Since this
type of the processes accesses the multiple pixels with dif-
ferent addresses from the arguments, the HLS cannot gener-
ate the pipelined hardware handling 1 pixel per clock due to
the resource conflicts. The reconstruction methods of such
software description have been proposed so that the HLS
can generate an ideal pipelined hardware with 1 pixel per
clock [3]-[5]. Figure 4 shows a pseudo C code of the recon-
structed window processing and the HLS hardware respec-
tively.

The line buffers (1b) are used to hold the image lines
spatially accessed by 2D window. The line buffer has the
same width as the image. The number of line buffers is
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equal to the height of the window. Since the line buffer
would have many entries to hold the line of the image, it
would be assigned to the embedded memory of the FPGA
used. The single input pixel is pushed from the input port
into the targeted column of the line buffer. A temporal regis-
ter file (t) is prepared to hold the targeted column from the
line buffer. The 2D window is represented as a register array
(win) whose row forms the shift register. The window ker-
nel (win_kernel) performs a kernel processing using the
values of the center and its neighbor pixels in this register
array. The window processed pixel is output to the exter-
nal port one by one. The actions mentioned above proceed
clock by clock in a pipeline fashion. By limiting memory
reading and writing to one, HLS technology can generate
the ideal pipelined hardware with 1 pixel per clock without
resource conflicts for the load/store.

2.4 Research Problem

The describing method of 2D window processing mentioned
above is well-established for a single window processing.
However, since chaining such window processing is not
considered, some problems occur to generate the pipelined
hardware built on the sequence of the reconstructed window
processing.

For example, as shown in Fig.5, a deadlock can oc-
cur on a FIFO connecting the window processing since the
number of pushes and pops is differ. This example shows
the connection of a smoothing filter using 5x5 window for
the denoising and the sobel filter using 3x3 window to detect
the edges. In the window processing, all pixels of the input
image have to be traversed while the processed center pixel
is stored into the output image. Thus, a window processing
reads Wx H pixels and writes {W—-(WW-1)}x{H-(WH-1)}
pixels. The W and H are the width and height of the image.
The WW and WH are the width and height of the window.
In this case, the smooth filter pushes the (W —4) x (H — 4)
pixels to the FIFO while the sobel filter tries to pop W x H
pixels. The sobel filter cannot pop the rest of 4(W + H + 4)
pixels then the deadlock occurs.

In addition, concerned on generating the optimize hard-
ware for a single window processing, this method applies a
simplest way neglecting the undefined border pixels shown

data t,[W*H]; (W-4) X (H-4)

top_f(x[WH], y[WH]){ writes

#pragma MEMBURST x, y

#pragma FIFO t, FIFO—

#pragma CONCURRENT
smooth(x , t;);//5x5
sobel (t,, y );//3x3

}

Fig.5 Deadlock across FIFO.
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in Fig.3. Leaving the border pixels undefined may badly
affect the result of the window processing following.

So, this paper proposes a systematic describing method
of C software on the chain of sub-functions shown in Fig. 2
and Fig. 4 to realize a relatively large image processing for
a HLS tool. The proposed method maintains the pipeline
structure across the whole of hardware while eliminating
the deadlock across the FIFO and interpolating the border
pixels.

3. Proposed Method

Figure 6 shows an overview of the proposed C behavior and
its HLS hardware. The key feature is the pixel feeder (PF)
inserted after a sub-function performing a window process-
ing. The PF interpolates the input pixels decreased by a win-
dow processing with the nearest neighbor pixels, making the
number of pixels the same as the original image.

data t,[], t.[]1, ts[1;
top_f(x[1, y[1){
#pragma MEMBURST x, y
#pragma FIFO t,,t,,t;
#pragma CONCURRENT

smooth(x , t,, W, H );//5x5
PF (ty, t W, Hy 5, 5);
sobel (t,, t;, W, H );//3x3
PF (tBJ Yo w) H: 3) 3)5

}

PF(*X) *y.l w) h) wwl Wh){
data 1b[W], t;
for( i =0; i < h; i++ ){
for( j =9; j < w; j++ ){
#pragma PIPELINE
if((i>=188&i<=wh/2)||(i>=h-wh/28&i<=h-1))
*y++=1b[3j];
else
if((§>=188&j<=ww/2)| | (F>=w-ww/28&j<=w-1)){
*yse=t; 1b[5]=t;
}else{
1b[j]=*x++; *y++=1b[j]; t=1b[]];

(a) Pseudo C Behavior

WXH
reads

WW X WH window [ 4]
processing x|(W-WW) X (H-HW) data
W-WW) X (H-WH) B PF
writes
Pixel feeder [ ~ W
(G I N .
i 4 =
Q WX H T —T]
EIFO writes b4
: £t
= o
7
reads y
WxH data ¥
T [

(b) HLS Hardware of PF

Fig.6  Proposed C behavior.
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Fig.7  Execution snapshots of pixel feeder.

The PF has the line buffer with the same width as the
original image (1b) and the temporal register (t). For the
border pixels on the left and right most side, the PF interpo-
lates by duplicating the successive pixels to the line buffer
and memory. For the top and bottom of the image, the con-
tent of the line buffer is replicated.

Figure 7 shows an execution snapshots of the PF. This
example assumes that the pixel feeder interpolates input pix-
els decreased by a 3x3 window processing and the original
image has 5x5 size. As shown from Fig.7 (a) to (d), the
PF stores the input pixels into the line buffer and memory,
duplicating the border pixels with adjacent pixels. This line
stored into the memory corresponds to the interpolated bor-
der line of the top of the processed image. As shown in
Fig. 7 (e), the PF stores the content of the line buffer into the
memory as the processed top line of the image. Then, the
PF executes as well as Fig. 7 (a) to (d) for the middle part of
image, interpolating the edge pixels on the lines as shown in
Fig. 7 (f) and (g). To the bottom line of the output image, the
PF stores the content of the line buffer as shown in Fig. 7 (h).
As a result, the PF finishes pushing the pixels interpolated
by the nearest neighbors with the same number of all pixels
in the original image.

4. Experiment and Discussion
4.1 Experimental Setup

The hardware cost and achievable clock frequency can be
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Fig.8 Hardware platform.

evaluated by an FPGA implementation tool. A theoretical
performance can be estimated by a logic simulation. In addi-
tion, to evaluate a practical performance including the actual
effects such as the real memory latency and the on-chip bus
conflict, we have developed a hardware platform on a real
machine shown in Fig. 8. The Digilent ZYBO is an FPGA
board that has ZYNQ FPGA (XC7Z010-1CLG400C) and
512MB DDR3 SDRAM. The ZYNQ has the Cortex A9 at
650MHz as the embedded processor (PS) and the reconfig-
urable fabric as Artix-7 FPGA (PL). The DDR3 SDRAM is
mainly used for the frame buffers of the image. A CMOS
camera (OmniVision OV9655) and a general purpose dis-
play supporting SXGA are attached to the ZYBO.

On the hardware platform, the PL consists of some
memory mapped registers via the AXI GP bus, the cam-
era and display interfaces and HLS hardware connected to
the AXI HP bus. The camera IF, the display IF and the
HLS hardware can access the DDR3 SDRAM of the frame
buffers as the AXI HP bus master through an implicit bus ar-
bitration on the PS. The base addresses of the frame buffers
on the DDR3 SDRAM can be specified by the memory
mapped registers. To make the AXI HP bus masters easily
share the same image, the pixel format of the image on the
frame buffer is unified such that each pixel has 32bit width
including 8bit R, G and B. All hardware on the PL run at
100MHz clock frequency.

For the HLS, FPGA implementation and logic simu-
lation, we used Xilinx Vivado HLS 2016.4. This tool was
launched on a personal computer with Intel Core 15-4570
at 3.20GHz and 16GB memory. The operating system was
Microsoft 64bit Windows 10.

4.2 Case Study of Proposed C Description
To demonstrate and evaluate the characteristic features of

our proposal, we apply our description method to a canny
edge detection built on the chain of primitive image pro-
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typedef struct {
uint8_t mag; //Magnitude
uint8_t dir; //Direction
} data;

: u32 ibuf[W*H],obuf[W*H];

: u8  gval[W*H],t1[W*H],t2[W*H];

: data t3 [W*H],t4[W*H];

:u8  t5 [W*H],t6[W*H],t7[W*H],t8[W*H],t9[W*H];
: u32 obuf[W¥H];

B WKl R

6: tiny_canny(u32 x[W*H], u32 y[W*H]){

7: #pragma HLS INTERFACE m_axi port=x bundle=d
8: #pragma HLS INTERFACE m_axi port=y bundle=d
9: #pragma HLS DATAFLOW

0: #pragma HLS STREAM variable=ibuf dim=1

1: #pragma HLS STREAM variable=tl1 dim=1

12: #pragma HLS STREAM variable=obuf dim=1
13: memcpy (ibuf,x ,W*H*4);//for AXI burst

14: gray (ibuf,gval,W,H );//Gray scaling(1D)

15: smooth (gval,tl ,W,H );//Gaussian filter(5x5)

16: PF (t1 ,t2 ,W,H,5,5);

17: sobel (t2 ,t3 ,W,H );//Sobel filter(3x3)

18: PF (3 ,t4 ,W,H,3,3);

19: nmax_sup(t4 ,t5 ,W,H );//Non-max. suppression(3x3)
20:  PF (t5 ,t6 ,W,H,3,3);

21:  hyst_th (t6 ,t7 ,W,H );//Hysteresis thresh.(1D)
22:  simp_th (t7 ,t8 ,W,H );//Simple thinning(3x3)
23:  PF (8 ,t9 ,W,H,3,3);

24: pix_gen (t9 ,obuf,W,H );//Bin. to 32bit pixel(1D)
25: memcpy (y ,obuf,W*H*4);//for AXI burst

26: }

Fig.9  Simplified canny edge detection on vivado HLS tool.

cessing. Figure 9 depicts an overview of the C program list
of the top function including sub-functions.

In Fig. 9, to specify an AXI bus master port supporting
burst transfer, the pragma, #pragma HLS INTERFACE...,
and memcpy are written to the arguments, x and y. They cor-
respond to the pragma, #pragma MEMBURST x, y, shown
in Fig. 1. To specify that each function runs in parallel syn-
chronizing over a FIFO bridging the former sub-function
and latter sub-function, the pragmas, #pragma HLS
DATAFLOW and #pragma HLS STREAM..., are written.
They correspond to the pragmas, #pragma CONCURRENT
and #pragma FIFO.. ., shown in Fig. 1.

All sub-functions of the primitive image processing in
the top function (tiny_canny) are made as fixed point ver-
sion. The gray converts the input color pixel to the gray-
scaled 8bit pixel in a 1D scanning fashion. The smooth
smooths the gray-scaled image with a Gaussian filter using
5x5 window as shown in Fig.4. The sobel performs the
sobel filter using 3x3 window on the smoothed gray-scaled
image as shown in Fig. 4. To simplify the hardware, we em-
ployed the absolute values to calculate the magnitude in-
stead of the square and square root operations [8]. The edge
direction was acquired by using constant value of arc tan-
gent corresponding to the decline of the gradient calculated
by the kernel of sobel filter. The directions were limited to 4.
The nmax_sup performs the non-maxima suppression with
3x3 window [8] to extract only maxima points on the edge
direction by eliminating the non-maxima points as shown in
Fig. 4. Finally, the hyst_th of 1D scanning and simple_th
of 2D scanning thin the edges constructed of the maxima
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Fig.10  Practical execution of canny edge detection (1280x1024).

points along the edge direction. The hyst_th performs hys-
teresis thresholding to mark the strong and weak edges using
a low threshold and a high threshold [8]. The simp_th is a
simplified thinning process using 3x3 window on the pixels
marked by hysteresis thresholding. A full canny edge de-
tection like OpenCV would perform a connectivity analysis
to detect and link edges globally on the whole image using
a global stack. The stacking access pattern of such algo-
rithm is out of range for the assumption described in Sect. 2.
Therefore, we approximated an edge thinning by eliminat-
ing the weak pixel without a strong pixel on 8 neighboring.
The survive pixels are set to 1 as the true edges and elim-
inated other pixels are set to 0 as nothing. The binarized
edged image is converted by pix_gen to the image data with
32bit pixel on the DDR3 SDRAM.

Note that the pixel feeders (PF) are inserted after the
sub-functions performing 2D scanning.

Figure 10 is a picture showing a practical execution of
the canny edge detection on ZYBO board. The upper side
of Fig. 10 captures the board picture by the CMOS cam-
era and passes though it to the display. The image size is
1280x1024. The lower side of Fig. 10 performs the devel-
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Table 1  Hardware size and clock frequency with constraint of 9ns.
Proposed HLS HW (ZYNQ, xc7z010c1g400-1)
Image [W*H] | 320x240 | 640x480 1280x1024
LUT 2305 2341 2365
FF 2491 2541 2589
DSP 15 15 15
BRAM 18 18 18
CLK [MHz] 115 116 117

Conventional HLS HW (ZYNQ, xc7z010clg400-1)

Image [W*H] | 320x240 | 640x480 1280x1024
LUT 1926 1942 1947
FF 2194 2224 2248
DSP 15 15 15
BRAM 13 13 13
CLK [MHz] 113 114 118

Straightforward HLS HW (Virtex7, xc7v2000tfthg1761-1)

Image [W*H] | 320x240 | 640x480 1280x1024
LUT 2936 3905

FF 2125 2314

DSP 15 15 n/a
BRAM 574 1962

CLK [MHz] 104 71

oped canny edge detection to the captured image and outputs
the edged image on the display.

4.3 Hardware Size and Clock Frequency

Table 1 shows the results of FPGA implementation after the
place and route via Vivado HLS 2016.4. Before launching
FPGA implementation, we set the constraint of the clock pe-
riod to 9 ns. The top table shows the result of the canny edge
detection reconstructed by our proposal shown in Fig.9.
The middle table means the result of the conventional re-
constructed one removing PFs from Fig. 9. The bottom table
indicates the result of the straightforward software without
any software level reconstructions.

We implemented the proposed and conventional meth-
ods into the ZYNQ (xc7z010) considering the practical ex-
ecution on the hardware platform shown in Fig.8. While,
we implemented the straightforward method into Virtex7
(xc7v2000t) due to the resource limitations of ZYNQ
FPGA. For the pure software implementation to 1280 X
1024 image, we were not able to finish the implementation
due to memory heap error reported by Vivado HLS 2016.4
on the used personal computer.

The proposed and conventional methods are converted
to such hardware modules that show almost same amount
of hardware regardless of the image size. In contrast, the
straightforward method meaningfully increases the amount
of hardware as the image size grows. Especially, the number
of embedded memories (BRAMSs) shows significant differ-
ence between the proposed method and the straightforward
method. The proposed and conventional methods limit the
parts dependent on the image size to the line buffers, con-
necting the sub-functions by the shallow FIFOs with 2 en-
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Fig.11  Performance of software (CSW: conventional pure software,
PSW: proposed reconstructed software).

tries inferred as LUT-based shift registers*. In contrast, the
straightforward method has inferred BRAMS instead of the
FIFOs to communicate the processed image among the sub-
functions. That is why the differences of the hardware size
become bigger as the image size grows.

Compared with the conventional one, our proposal in-
creases the hardware size. This is because the proposal
includes the PFs that the conventional method does not
include. However, the PFs would be needed to prevent
the deadlock across FIFO and perform pixel interpolation.
Thus, this hardware investment is expected as valid. This
aspect will be discussed in 4.5 in detail.

For the clock frequency, the proposed and conventional
methods can achieve almost consistent clock frequency over
the image sizes. The proposed and conventional methods
construct the pipelined hardware on the whole hardware
over several sub-functions. Thus, we think that the critical
pass was cut well by the pipeline registers. In contrast, the
straightforward method made a BRAM chain to construct
the large embedded memories holding the processed image.
Since this chain led a large critical pass, the straightforward
one significantly degraded the clock frequency as the image
size grows.

4.4 Performance Evaluation of Software

In HW/SW co-design, the decision of whether an image pro-
cessing is implemented as software or hardware is the de-
signer’s responsibility through several trade-offs. That is, it
is desired that the image processing software for the HLS
can also achieve well performance as software processing
on a used CPU compared with the pure software implemen-
tation so as not to intricately mix the HLS software and pure
software.

Figure 11 shows the result of a comparative evaluation
between the proposed software reconstructed for the HLS
and the conventional pure software. We used Vivado SDK

"To make hardware size small as much as possible, we just set
the depth of FIFO to 2. Effect of the FIFO depth to the performance
is out of scope from this research.
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PF [ Loop
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- Loop 1 76800 76800 2 1 1 76800 yes
Fig.12  Latency report of vivado HLS 2016.4.

2016.4 to compile the software by gcc with O2 option and
executed them on the Cortex A9 processor on ZYNQ. The
Cortex A9 used the instruction and data cache. The value
of the bar graph is the averaged value of 10 times execu-
tions. The number of clocks was acquired from a 32bit per-
formance counter which is one of the memory mapped reg-
isters we developed on the PL of ZYNQ. This counter runs
at 100MHz clock frequency (clock period of 10 ns). Thus,
the execution times shown on the top of the bar were calcu-
lated by multiplying the number of clocks with 10 ns.

The proposed software degraded the performance of
about 8% to the conventional software. This is because
some overheads such as shifting the buffers and registers and
interpolating the number of pixels which do not exist in the
conventional software have been introduced to the proposed
software. However, the performance degradation is a rela-
tively small such as 8%. This fact indicates that a unified
image processing library using only HLS software executed
on CPU or hardware module for HW/SW co-design can be
established.

4.5 Performance Evaluation of Hardware

4.5.1 Latency Reported by High-Level Synthesis
The high-level synthesis tool, Vivado HLS 2016.4, attempts
to generate the pipelined hardware where each sub-function
has the pipelined structure with 1 of the initiation interval
according to the pipeline pragma inserted. Table 2 shows the
latency estimated by the high-level synthesis to the proposal,
the conventional, and the straightforward methods.

The ideal throughput of the pipelined hardware is 1
pixel per clock. So, the number of pixels for each image
size is shown as the ideal latency in the first row of the ta-

Table 2  Latecny estimated by high-level synthesis [Clocks].
HW Image size | 320x 240 | 640x 480 | 1280x 1024
Ideal 76800 307200 1310720
Proposed 76842 307242 1310762
Conventional 76838 307238 1310758
Straightforward 2111487 8523487 36539173

ble. As the latency of each hardware is closer to the ideal
latency, the HLS hardware has a well-pipelined structure.

The latency of the proposed and conventional hardware
is closer to the ideal latency. Thus, we think that they have
well-pipelined structure. For example, sub-functions and
PFs in the proposal are pipelined with 1 of the initiation in-
terval as shown in Fig. 12. The reason why the proposed and
conventional hardware show slightly longer latency than the
ideal one is caused by the number of pipeline stages. Un-
til the pipeline is filled by the pixels, the number of clocks
same as the pipeline stages is added to the latency.

The latency of proposal is slightly larger than that of the
conventional. This is because the PFs inserted into the pro-
posal make the pipeline stage longer than that of the conven-
tional. That is, compared with the conventional hardware,
the PF dose not contribute the performance improvement al-
though this difference of latency is very little as neglectable.
Its contributions are to avoid the deadlock across FIFO and
to perform the pixel interpolation implicitly.

As expected, the straightforward hardware shows the
significant large latency compared with the proposed and
conventional hardware. According to the report generated
by Vivado HLS 2016.4, all attempts of pipelining were
failed by resource conflict. Thus, the latency becomes sig-
nificant larger than the proposed and conventional hardware
with well-pipelined structure.
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Finish feeding input image

Deadlock

No more further writing

Fig.13  Deadlock across FIFO on logic simulation.

4.5.2 Logic Simulation

To confirm whether our proposal can actually generate a
well pipelined hardware of 1 pixel per clock although sub-
functions are chained by the pixel feeders, we evaluated the
performance of the HLS hardware on the logic simulation
as a near ideal execution environment. The logic simulation
was performed by the C/RTL co-simulation of Vivado HLS
2016.4.

In the logic simulation, the conventional hardware was
not able to finish the execution correctly. Certainly the co-
simulation on Vivado HLS returned the completion of the
logic simulation of the conventional hardware. The co-
simulation made the startup signal (ap_start) always valid
through the whole simulation period. As a result, the
hardware of the memory reading part was re-executed, the
same image was fed again from first, and the finish signal
(ap-done) was forced to ‘1’. That is, since the invalid pixels
are pushed into the FIFO, the consumer that pops FIFO pro-
ceeded accidentally its own process using the pushed invalid
pixels without deadlock. When using our test bench feeding
the input image once, it has confirmed that the conventional
hardware stalls at certain point as shown in Fig. 13. Also,
we have confirmed that the same stall has occurred on the
real FPGA board. This is because the deadlock across FIFO
has occurred as expected. Thus, we would like to ignore the
conventional hardware in the subsequent performance eval-
uations.

Figure 14 shows the result of the logic simulation for
the proposed hardware, and the straightforward hardware as
a reference. The straightforward hardware was generated
from the pure software without any software level recon-
struction while the proposed one was generated from the re-
constructed software following our proposal. The number
of clocks of the ideal hardware is equal to the number of all
pixels of the image. The execution times shown on the top
of the bar were calculated as well as those of Fig. 11.

Comparing the proposal and the ideal hardware, the
proposed hardware can achieve almost ideal performance of
1 pixel per clock. This fact indicates that our proposal can
be converted to a well pipelined hardware as expected. The
little performance degradation to the ideal hardware about 1
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Fig.15  Real performance of hardware on ZYBO.

to 4% is introduced by the Vivado HLS 2016.4 supporting
the 16 burst transfer of the AXI bus. Every 16 burst transfer,
the generated AXI interface outputs the valid addresses to
the read and write channels. This overhead led to such little
performance degradation.

To confirm the performance impact of our proposal on
a real machine, we evaluated the performance on the hard-
ware platform implemented into the ZYBO shown in Fig. 8.
Figure 15 shows the result of the practical execution. Since
the HLS hardware generated from the pure software with-
out any software level reconstruction was not able to be im-
plemented to the FPGA used, we evaluated only the HLS
hardware generated from our software description on the
real machine. The ideal number of clocks is same as that
of Fig. 14. In addition, Table 3 indicates the speedup ratios
of the hardware calculated by dividing the execution time of
the software with that of the HLS hardware. In Table 3, the
PRHW means the result of the real HLS hardware generated
from our proposed software description. The SHW means
the result of the HLS hardware generated from the pure soft-
ware description without any software level reconstruction,
which is the estimated value from the logic simulation as a
reference.

The proposed real hardware shows the performance
degradations of 22% to 25% than the ideal hardware. Com-
paring with the result of the logic simulation shown in
Fig. 14, these degradations are larger. This is because
the bus conflict between the read and write channels, the
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Table3  Speedup ratios calculated as SW/HW (CSW: conventional pure
software, PSW: proposed software, PRHW: proposed real hardware, SHW:
straightforward hardware estimated by logic simulation).

Image [W*H] 320x240 640x480 1280x1024

HW SW CSW PSW | CSW PSW | CSW  PSW
PRHW 74.4 81.0 75.7 81.2 74.5 80.8
SHW (Est.) 3.39 3.69 3.36 3.60 3.26 3.53

resource conflict on the 16 bit data port of the DDR3
SDRAM and the characteristic of DDR3 SDRAM such as
bank switching and refreshing might badly affect the perfor-
mance. These practical influences are not considered by the
C/RTL co-simulation on the Vivado HLS 2016.4. However,
as shown in Table 3, the proposed real hardware was able
to achieve a good performance of more than 70 times to the
software execution although there are many influences in the
real environment degrading the performance.

The straightforward hardware can also improve the per-
formance of image processing by converting to the HLS
hardware as shown in Table 3. However, the results indicate
that our proposed describing method can extract the high
performance nature of the hardware significantly.

5. Conclusion

This paper has shown a describing method of an image pro-
cessing software in C for a high-level synthesis (HLS) tech-
nology to realize an efficient hardware, considering function
chaining. According to the proposed method, any number
of sub-functions can be chained, maintaining the pipeline
structure over the HLS hardware. In addition, the deadlock
due to the mismatch of the number of pushes and pops on
the FIFO connecting the functions is eliminated and the in-
terpolation of the border pixels is done implicitly. Thus,
it is expected that an image processing hardware to which
the HLS technology converts our proposed description can
achieve a near ideal performance of 1 pixel per clock al-
though the chain of sub-functions is even long.

The case study of a canny edge detection on ZYNQ
FPGA demonstrates that our proposal can easily describe a
top function to be converted to the expected hardware men-
tioned above. The experimental results show that our pro-
posal can be converted to a well-pipelined hardware with a
moderate size then achieve a performance gain of more than
70 times compared with a software execution.

As future work, we will apply our proposed describing
method to more applications and evaluate them. In addition,
we will develop a general purpose image processing library
including the HLS software following our proposal.
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