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SUMMARY A component-oriented FPGA design platform is proposed
for robot system integration. FPGAs are known to be a power-efficient
hardware platform, but the development cost of FPGA-based systems is
currently too high to integrate them into robot systems. To solve this prob-
lem, we propose an FPGA component that allows FPGA devices to be
easily integrated into robot systems based on the Robot Operating Sys-
tem (ROS). ROS-compliant FPGA components offer a seamless interface
between the FPGA hardware and software running on the CPU. Two ex-
periments were conducted using the proposed components. For the first
experiment, the results show that the execution time of an FPGA com-
ponent for image processing was 1.7 times faster than that of the original
software-based component and was 2.51 times more power efficient than an
ordinary PC processor, despite substantial communication overhead. The
second experiment showed that an FPGA component for sensor fusion was
able to process multiple sensor inputs efficiently and with very low latency
via parallel processing.
key words: FPGA, component-oriented development, ROS, ROS-
compliant FPGA component, robot

1. Introduction

Autonomous mobile robots with high intelligence [1], [2]
are expected to be used for nursing care of handicapped
and elderly people, disaster relief, and so on. They need to
be able to recognize their environment independently using
deep learning neural networks, simultaneous localization
and mapping (SLAM), and so on. They also need to perform
these intelligent processing tasks while consuming limited
power, as they run on batteries. These robots must therefore
perform intelligent image processing and other calculations
using enormous amounts of sensor data in real-time with
low power consumption. A high-performance, low-power
processing platform is greatly needed for such robots.

To satisfy these processing platform requirements
for robots, we focus on field-programmable gate arrays
(FPGAs). An FPGA is a processing platform that can be
used to create specialized circuits for parallel and high-
performance processing with low power requirements [3],
especially in fields such as image [4] and network packet
processing [5].

Robotics depends on a wide range of expertise [6], not
only in the logical design of hardware (HW) and software
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(SW) but also in electronics, mechanics, and so on. The fo-
cus of robot developers is not therefore on the design of the
FPGA itself but on integrating the FPGA as a component.
Currently, integrating an FPGA into a robot system is not
easy because it requires not only the design of the FPGA
HW but also of SW for controlling it. FPGAs should ideally
be much more easy to use in robot development.

In the context of developing computer systems, reusing
FPGA intellectual property (IP) modules requires providing
either the source code (in hardware description language
(HDL), C language for high-level synthesis (HLS), and so
on) or a black-box netlist. However, the cost of integrat-
ing IP provided in a source code or netlist form is very high
for robot development. Therefore, FPGA IP components for
robot development should be more loosely coupled.

The Robot Operating System (ROS) [7] has been pro-
posed as a software platform for component-oriented devel-
opment of robots. ROS provides communication libraries
and a build system for robotic application software. It is
widely used by robot engineers all over the world for proto-
typing novel robotic systems and is becoming a mainstream
platform for robotic application software development.

In this paper, we propose an ROS-compliant FPGA
component, namely, a component-based design principle
for easy integration of FPGAs into robot systems. ROS-
compliant FPGA components can achieve easy FPGA inte-
gration and high-performance, low-power processing. The
contributions of this paper are as follows:

• Proposal of ROS-compliant FPGA components for
easy integration of FPGAs into robot systems
• Presentation of detailed component implementations
• Evaluation of these components both in terms of pro-

cessing latency and power efficiency.

Compared with our initial proposal [8], this paper discusses
the background and design concept in significantly more
detail.

The structure of this paper is as follows. First, we
discuss the issues in robot system development in Sect. 2.
The design of our ROS-compliant FPGA components is de-
scribed in Sect. 3. Section 4 explains the implementation
of these components in detail. In Sect. 5, we consider two
case studies to highlight the benefits of the proposed compo-
nents and evaluate them in terms of processing latency and
power efficiency. Section 6 discusses our proposal in more
detail. Then, we survey previous research and highlight
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our proposal’s importance in Sect. 7. Finally, the paper’s
conclusions are presented in Sect. 8.

2. Issues in Robot Software System Development

In this section, the issues in robot software system develop-
ment are discussed in order to clarify the need to introduce
FPGAs into robot software systems.

2.1 Component-Oriented Development of Robot Software
Systems

The requirements for robot software system development
are generally quite diverse [6]. For example, in the initial
stages of research and development, functionality, perfor-
mance, and power consumption are important elements. As
development progresses and reaches a commercial level, the
system design needs to fulfill the requirements of cost, reli-
ability, manageability, and so on. In any case, the most im-
portant aspect of robot development is realizing the neces-
sary functions. Particularly for cutting-edge robot develop-
ment, the latest research in fields such as AI, computer sci-
ence, and control theory should be integrated, and the fastest
way to achieve this is with reusable components.

For example, in the robot vision field, AI technologies
are expected to be used together with small, light-weight
image sensors with high resolution and sensitivity, and with
deep learning neural networks. Here each module should be
a connectable component. Such components will inevitably
be reusable and updateable to meet any requirement.

The performance of software is as important as its func-
tionality. For real-time systems, including robot software,
functionality innovations are intimately related to perfor-
mance improvements. For example, in movement tracking
for robot vision, the number of frames that can be processed
per second has a direct impact on potential next-generation
applications. Furthermore, power consumption, processing
performance, and battery life all limit the size and weight
of systems. The functionality, performance, and power con-
sumption requirements all influence each other.

Architecture exploration involves searching for trade-
offs among functionality, performance, and power consump-
tion. In architecture exploration, it is not realistic to imple-
ment a complete robot system because of the high cost and
long time required for implementation. As a result, model
simulations are usually carried out instead.

The models used for exploration should generate, or at
least be closely related to, runnable software implementa-
tions for an existing processing platform. Any difference
between the model and the implementation leads to a long
turn-around time and reduces the quality, reliability, oper-
ability, and reusability of the system.

Component-oriented development [9] is a straightfor-
ward approach to directly connecting a model with its
implementation. Here, a “component” is a module that
can interface with other components and which can be
replaced by another component with the same interface.

Fig. 1 Conceptual overview of an ROS system

Component reusability is one of the main benefits of
component-oriented development. Using a well-designed
component library enables rapid system prototyping.

In other words, realizing this approach, if it enables
the performance requirements to be met while reducing
power consumption, will enable significant progress in next-
generation robot system applications.

2.2 Robot Operating System (ROS)

To incorporate FPGAs into robot systems, we chose the
Robot Operating System (ROS) [7] as a framework for robot
software system development. This is a software platform
for component-oriented development of robotic application
software on Linux or Microsoft Windows. It is an open-
source project managed by the Open Source Robotics Foun-
dation (OSRF) [27] and provides communication libraries
and a build system for robotic application software. ROS
mainly runs on the Ubuntu Linux operating system. Each
ROS software component corresponds to a software pack-
age in the ROS system [7], and each package provides a
different function, such as an image processing filter, cam-
era input, or motor control. Many open-source, reusable
software packages are available on the official ROS web-
site [27], and ROS is becoming mainstream in robot devel-
opment [10].

The primary model for data communication among
ROS software components is publish/subscribe messaging
(Fig. 1). Service invocation can also be used to control node
status. Each software component, called a node, communi-
cates by sending and/or receiving messages (data) through
communication channels called topics. Nodes have two pos-
sible roles: publisher and subscriber. Publishers can publish
messages to any topic, and the messages are queued in the
topic. Subscribers, in turn, can subscribe to any topic: when
a topic is updated, all subscribers receive a message from
the topic and execute a callback task.

In ROS, nodes need not know which peer nodes they
are communicating with. Since they are loosely connected,
components can easily be added to or removed from the sys-
tem. This loose binding among components improves pro-
ductivity in designing and debugging robot software.
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2.3 Using FPGAs in an ROS System

Normal ROS systems are purely implemented in software
and do not use FPGAs. ROS nodes are written either in C++
or Python. When data input, processing, or output is done
using these programming languages, FPGAs can be used in
an ROS system in the same way as normal software. How-
ever, there are too many degrees of freedom in the above-
mentioned development method to directly use FPGAs in
the ROS package distribution scheme.

The advantage of using ROS is that there are several
thousand packages available [27], and any package released
by any other developer can be used on any PC. On the other
hand, with FPGAs, the operating environments of the FPGA
developer and FPGA user are not always the same. Gener-
ally speaking, ROS nodes (including FPGA nodes) designed
for one environment cannot be used in any other environ-
ment. This portability problem with ROS packages, includ-
ing FPGA modules, must be resolved.

With FPGA systems, it is generally left to developers to
work out how to connect software with the FPGA and share
data. That is, the frameworks for accessing data, shared be-
tween software and FPGA, and communication, e.g., using
PCI express or Ethernet, are different for each environment.
In the future, component developers and users should share
a suitable software and communication framework.

2.4 Requirements for FPGA Components for Robots

The requirements for FPGA components for robots can be
summarized as follows:

A) Seamless connection between the FPGA and the pri-
mary robot software platform (i.e., ROS)

B) Can be deployed within the ROS package scheme
(portability)

C) No need to use FPGA design tools
D) Good performance with low power consumption.

3. Design of ROS-Compliant FPGA Components

In order to make the introduction of FPGAs into robot
development easier, we propose the concept of an “ROS-
compliant FPGA component” that meets the above FPGA
component requirements for robots. In this section, we give
a conceptual overview, discuss the requirements, and de-
scribe the structure of the components.

3.1 Conceptual Overview

An “ROS-compliant FPGA component” can be defined as
an ROS component made from an FPGA whose functional-
ity is equivalent to that implemented in software. That is,
the message types and data formats used in ROS-compliant
FPGA components are equivalent to those implemented in
normal ROS software.

The goal with ROS-compliant FPGA components is
to replace pure-software ROS components with function-
ally equivalent FPGA-accelerated components. Therefore,
an FPGA integrated into a robotic system must have equiva-
lent functionality and must send/receive ROS messages us-
ing the proper ROS protocol, imitating the original pure-
software ROS component. As long as the ROS messages
sent/received to/from other ROS components in the system
are equivalent, users of ROS-compliant FPGA components
can obtain better performance, compared with the original
pure-software ROS component, while maintaining the same
functionality.

Next, we clarify the meaning of “ROS-compliant.” The
word “compliant” generally means that something has been
manufactured or produced in accordance with a specified
body of rules. It is therefore natural to state that a compo-
nent is “ROS-compliant” if it has been manufactured or pro-
duced in accordance with the rules given by the official ROS
provider. However, ROS is an open-source project and does
not provide detailed specifications or conformance tests, and
we only have software implementations and their documen-
tation. As discussed above, the goal with ROS-compliant
FPGA components is to realize functionally equivalent ROS
components that can send/receive ROS messages according
to the proper ROS protocol. Therefore, in this paper, we
define “ROS-compliant” components to be components that
send/receive ROS messages using the proper ROS protocol.
An overview of the proper ROS message protocol is given
on the ROS/Technical Overview page of the ROS wiki [28].

3.2 Satisfying the FPGA Component Requirements

The four FPGA component requirements are listed in
Sect. 2.4. The mapping between FPGA signal semantics and
ROS messages needed to satisfy Requirement A is discussed
in Sect. 3.3, and the structure used to realize this mapping is
described in Sect. 3.4.

It is possible to partly satisfy Requirements B and C
using compiled FPGA configuration data. However, when
using external pins, the bitstream must then be re-complied
using FPGA design tools for the external pin assignment of
the user’s board.

Requirement D can be satisfied by reducing both the
processing and communication times for the FPGA compo-
nent. User application logic (for example, image process-
ing) is responsible for the processing time, and the frame-
work of the FPGA component is responsible for the com-
munication time. Communication latency is discussed in
Sect. 3.4.

Finally, the overall performance, including processing
and communication, should be verified via case studies on a
number of example designs. In this paper, two examples are
presented in Sect. 5.

3.3 Mapping between FPGA Signals and ROS Messages

In order to achieve seamless connection between the FPGA
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Table 1 Some built-in ROS message types (taken from [29])

Fig. 2 Example mapping between an ROS message (a) and the corre-
sponding Verilog HDL module (b)

Fig. 3 Structure of ROS-compliant FPGA components

and ROS, it is necessary to set up a mapping between FPGA
signals and ROS messages. ROS defines message types in
an implementation-neutral fashion because ROS nodes can
be implemented in C++ or Python.

ROS message types are defined in [29], together with
mappings to C++ and Python. These types can either be
built-in primitive types (as shown in Table 1), arrays of
such types, or combinational types defined in message files
(.msg) in packages. Interface signals from HDL modules
written in Verilog HDL (VHDL) can be mapped according
to the bit width of each signal; an example mapping is shown
in Fig. 2. In the case of HLS from C/C++, the mapping can
be more straightforward, i.e., the same mapping can be used
for both.

3.4 Structure of ROS-Compliant FPGA Components

Figure 3 shows the proposed ROS-compliant FPGA compo-
nent structure, which realizes a semantic mapping between
FPGA signals and ROS messages. On the basis of the re-
quirements discussed in the previous section, components
must implement the following functions:

Fig. 4 Expected component latency range

• Encapsulation of FPGA circuits
• Interface between ROS software and FPGA circuits
• Interface for subscribing/publishing to a topic.

The FPGA performs all accelerated processing, and
each component has two interfaces. The first one is an input
interface that subscribes to topics to receive input data and
is responsible for formatting the data so that it is suitable
for FPGA processing and sending the formatted data to the
FPGA. The second one is an output interface that receives
processing results from the FPGA and is responsible for re-
formatting these results so that they are suitable for the ROS
system and publishing them to the relevant topic.

Developers can implement any message mapping pro-
cedure they wish in these two interfaces. For example,
in image processing, there are many different image data
arrangements (i.e., pixel formats), e.g., RGB, BGR, or
grayscale. FPGA image processing circuits could be im-
plemented for any one of these pixel formats. In addition,
ROS has a standard image type (defined in “sensor msgs/
Image.msg”). In many cases, it is therefore necessary to
convert between the ROS and FPGA formats, although the
conversion can either be implemented in the FPGA or in
software.

3.5 Expected Latency Range in Components

The goal of introducing FPGAs into ROS systems is to ac-
celerate processing. If the user application logic (e.g., im-
age processing) processing time is very short, the communi-
cation latency (i.e., overhead) introduced by componentiza-
tion may make the total latency worse. However, there are
inevitable communication delays in any robot system, intro-
duced by the need to have components at physically remote
locations.

As shown in Fig. 4, the communication latency be-
tween remote ROS nodes ranges from several milliseconds
to a second, for publish/subscribe communication among
arbitrary ROS nodes in the system. Topic communication
among ROS nodes is normally done over TCP/IP sockets,
so real-time communication is not expected for remotely lo-
cated ROS nodes. The ROS’s main benefit is easy compo-
nent integration for rapid prototyping; real-time communi-
cation between ROS nodes is not expected.

On the other hand, processing latencies inside com-
ponents can be reduced to microseconds or nanoseconds,
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owing to the programmability of FPGAs and their abil-
ity to realize arbitrary digital circuits operating at more
than 100 MHz. The latency between ROS software and
FPGA hardware can thus be in the range of microseconds to
milliseconds.

Developers of ROS-compliant FPGA components
should take the assumed latency range into account when
allocating tasks to software and FPGA components.

4. Implementation of ROS-Compliant FPGA Compo-
nents

This section discusses the implementation of the proposed
ROS-compliant FPGA components using programmable
SoCs in detail.

4.1 Target Platform

To satisfy the requirements summarized in Sect. 2.3, we fo-
cus on programmable SoCs to implement the proposed com-
ponents. Programmable SoCs offer large-scale integration
of an FPGA and a microprocessor on a single chip, wired
so that the FPGA can be directly accessed through a bus.
Thus, developers and users can both use the same method
for accessing the FPGA via software.

Many recent programmable SoC products, such as the
Zynq-7000 platform [30] from Xilinx, use ARM [31] pro-
cessors. ROS mainly runs on Linux and can thus easily be
used on ARM processors. Programmable SoCs therefore
provide a good environment for ROS software to handle
FPGAs. For the above-mentioned reasons, we investigate
programmable SoCs as a way of using FPGAs as part
of ROS systems. Portability among different FPGA ven-
dors should, however, be considered. For example, Intel’s
SoC [32] is an alternative to the Xilinx Zynq.

For Requirement B in particular, ROS packages that
use a programmable SoC make it possible to encapsulate
the HW and SW in one package, since the communication
channels between the SW and HW are fixed once the pro-
grammable SoC has been specified.

4.2 Example HW/SW Interface Implementation

In this study, Xillinux [33] is used to communicate between
the FPGA logic and the ARM processor. The Xillinux plat-
form integrates Linux (Ubuntu) and FPGA design for the
Zynq-7000 series and is developed by Xillybus Ltd. User
applications on Xillinux can access FPGA logic through
specific device files (e.g., /dev/xillybus write 32). Figure 5
shows the mechanism for communicating between user-
defined hardware logic and the ARM processor in Xillinux.
Software has FIFO access via reading/writing data from/to
device files, and the FPGA reads/writes data from/to the
FIFO buffer by controlling the read-/write-enable port at any
given time.

To realize ROS-compliant FPGA components, HW/SW
interfaces are implemented using the input/output FIFO

Fig. 5 Mechanism for communication between the ARM processor and
an FPGA in Xillinux

Fig. 6 HW/SW interface for ROS-compliant FPGA components using
Xillinux on programmable SoCs

Fig. 7 Example state machine used for FIFO access (exclusive input and
output access)

buffers of the Xillinux platform as communication chan-
nels, as shown in Fig. 6. Essentially, the user logic HDL
input is assumed to be combinational, and the output is as-
sumed to be registered. This assumption is useful in min-
imizing the effect of signal latency between the FIFO con-
trol circuit and the user logic. Figure 7 shows an example
state machine used for FIFO access. Here, the RCV DATA/
SND DATA states are repeated until all necessary data has
been received/sent, and POSE waits until processing is com-
plete. In this simple example, the FIFO input states are sep-
arated from the FIFO output states, which means that the
input and output are exclusive.

With respect to portability, Xillinux has also been re-
leased for the Intel Cyclone V, although this port is no longer
maintained. This means that an abstract HW/SW interface
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layer (Linux device driver for the FPGA FIFO buffer) can
be provided by Xillinux even when a different FPGA vendor
is used. The HW/SW interface for ROS-compliant compo-
nents is therefore portable in principle, as are components
implemented using it.

4.3 Discussion

The implementation discussed above is somewhat naive. To
achieve better FPGA performance, it is better to use stream
processing to exploit pipeline parallelism [3]. For stream
processing, control of the input and output FIFO buffers
should be separated, and synchronization signals, indicat-
ing whether to start/stop processing, should be provided by
user logic. Therefore, some rules must be added to the user
HDL logic module. Sometimes, it may be straightforward to
modify the user logic: when using HLS, synthesized mod-
ules often include synchronization signals that can be used
to control the HW/SW interface.

To improve performance, shared memory access is im-
portant between software on the ARM processor and user
logic in hardware. This can be implemented in user logic,
independent of the proposed component framework.

5. Evaluation

In this section, we evaluate the performance of the proposed
ROS-compliant FPGA components using two types of user
logic: an image processing filter for connected-component
labeling and sensor input processing to estimate attitude an-
gle by sensor fusion.

5.1 Evaluation 1: Image Processing Filter Node

Here, we describe an implementation of image labeling
based on an ROS-compliant FPGA component to investi-
gate the issues involved in accelerating image processing in
robot vision systems. We gave a partial introduction to this
topic in [8].

Image labeling assigns numeric labels to groups of
white pixels in binary images. Such labeling is used to mea-
sure areas, angles, and target lengths in many robotic sys-
tems, and an example labeling result is shown in Fig. 8. To
produce correct results, labeling requires two steps because
a simple raster scan may split a single region into several re-
gions, a problem that is easily resolved by the second step.

Fig. 8 Connected-component labeling of an image

This paper, however, focuses on the first step of labeling,
which tends to be time-consuming in software.

Figure 10 shows a hardware block diagram. The pro-
cessing target is a full HD image (1920× 1080 pixels, about
2 MB). In this case, labeling is carried out line-by-line, since
the block RAM of the FPGA is too small to store the entire
HD image. In order to maximize the processing efficiency
of the FPGA hardware implementation, we designed it to
label pixels using modular arithmetic.

Table 2 shows the roles of each of the five hardware
modules. First, memory img stores a line of the input
image. Immediately after that, the pixel data is sent to
label generator, which carries out labeling pixel by pixel.
The labeling algorithm needs the pixel data and label num-
bers from the previous line and previous pixel, so two
memories, label data0 and label data1, are used. Specifi-
cally, label generator writes the result for the current line to
label data1 while reading from label data0. For the next
line, label generator then reads from label data1 and writes
to label data0.

The labeling hardware labels pixels using modu-
lar arithmetic. Figure 9 shows a circuit diagram for
label generator. There are four 8-bit inputs: one, called
“New Pixel,” for the input image’s pixel data and the oth-
ers for previous label numbers. In addition, there is a single
8-bit output, called “Output Label,” for the label numbers.

If the “Reference Labels” are all 0, the circuit outputs
the previous label number incremented by 1, which is stored
in the “Current Label” register. On the other hand, if there
are any non-zero numbers in “Reference Labels,” the mini-
mum of these is output as the “Output Label” result.

The message format for this task includes the following
fields:

• int32 frame ID: frame number (32-bit integer)
• int16 width: image width (16-bit integer)
• int16 height: image height (16-bit integer)
• int32[] pixels: image pixels (32-bit integer array).

The structure of the implemented component is illus-
trated in Fig. 11. The labeling circuit is implemented using
the FPGA part (PL) of the Zynq-7020, and the ROS topic
communication is done by the ARM part (PS). These are

Fig. 9 Circuit for label generator
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Fig. 10 Circuit block diagram for the image labeling task

Table 2 Module functions

Fig. 11 ROS-compliant FPGA image processing component using a pro-
grammable SoC (Xilinx Zynq-7020)

Table 3 Hardware resource utilization (Zynq-7020)

connected via a FIFO buffer provided by Xillinux. Table 3
shows the hardware utilization of the FPGA.

The component was evaluated under the following
three conditions:

(1) PC (SW only: PC)
(2) Software only (SW only: ARM)
(3) ROS-compliant FPGA component (ARM + FPGA).

Fig. 12 Processing time for connected-component labeling (measured
by gettimeofday() in software, via FIFO communication)

The environment for Condition 1 was an ordinary PC
equipped with an Intel Core i7 870 @ 2.93 GHz with 16 GB
of RAM running Ubuntu Linux 12.04 LTS. The environ-
ment for Conditions 2 and 3 was a ZC7Z020 (Zynq-7020,
Xilinx Ltd.) on Zedboard. The ZC7Z020 is a programmable
SoC equipped with an ARM Cortex-A9 @ 666 MHz and an
Artix-7 FPGA on a single chip. The OS was Ubuntu 12.04
LTS (Xillinux-1.2-eval), and the operating frequency of the
labeling hardware for Condition 3 was 100 MHz.

Figure 12 shows the average measured processing time
for the labeling task. The input image resolution was
1920× 1080 pixels, and the measurements were made using
the standard C library function gettimeofday() in software
and repeated 10 times. The processing time for Condition
2 (ARM only) was 835 ms, which was 11.1 times slower
than the time for Condition 1 (PC). Both Conditions 1 and 2
are measures of pure-software performance. The slowdown
ratio was much larger than the ratio of the CPU clock fre-
quencies (2.93 GHz/666 MHz = 4.4 times), possibly owing
to other factors (e.g., memory speed) reducing processing
performance.

For Condition 3 (FPGA +ARM), the measured latency
included the communication between the FPGA and ARM
CPU through the FIFO buffers. In this case, the average was
32 ms per frame, with minimum and maximum times of 28
and 35 ms, respectively. The processing time for the FPGA
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Fig. 13 Latency analysis for the ROS components

component was thus 26 times faster than that for software
running on the ARM processor and even 2.3 times faster
than that for the PC.

Ideally, the number of clock cycles used for processing
should be 1,920 clocks per line. Owing to the overhead of
changing the line, however, the period was actually 2,400
clocks, which means that each frame (1,080 lines) required
2.6 M clocks, giving a processing time per frame of 26 ms
for the FPGA (1 clock is 10 ns at 100 MHz). The differ-
ence between the measured processing time (32 ms) and this
calculated value (26 ms) is due to the communication time
between the ARM processor and the FPGA. Even including
the communication time in the processing time, the FPGA
component still performed faster than the pure-software
implementation.

Figure 13 shows an analysis of the measured times for
the different components, broken down into the following
segments:

[1] ROS node communication (Subscribe)
[2] Time from receiving data to starting processing
[3] Connected-component labeling processing
[4] Time from completing processing to publishing
[5] ROS node communication (Publish).

For Condition 3, the execution time was 1.99 s, which
was about 1.7 times faster than software only with the ARM
processor (3.33 s). For Conditions 2 and 3, ROS node com-
munication consumes much of the execution time.

To investigate the feasibility of introducing FPGAs
into robots to reduce power consumption, the power con-
sumption and efficiency of the FPGA were estimated. The
power supplied to the labeling hardware of the FPGA com-
ponent was estimated using the XPower Analyzer included
in the ISE Design Suite. The estimated total power draw
was 0.33 W, composed of 0.20 W of dynamic power and
0.13 W of idle power. The measured power reported for the
Zedboard is 6.1 W [11], and the power consumption of
a high-performance processor is approximately 90 W [12]
(Intel Core i7). The power consumption of the proposed
ROS-compliant FPGA component is therefore much lower
than that of a PC.

The estimated power efficiency of the FPGA compo-
nent is shown in Table 4. On the basis of the measured exe-
cution times for the three conditions (PC, ARM, and FPGA

Table 4 Estimated power efficiency (throughput/power) of the ROS-
compliant FPGA component

Table 5 Robot Power consumption

+ ARM), processing throughputs (frames per second) were
calculated. The relative power efficiency was also calcu-
lated for ARM and FPGA + ARM, normalized to the PC
value, and the resulting power efficiency for FPGA + ARM
was 2.51. Compared with the improvement in processing
time for connected-component labeling shown in Fig. 12,
the power efficiency is not as high, owing to the commu-
nication delay caused by ROS messaging.

Table 5 shows the absolute power consumed by several
household robots, all of which are at least 22 W, compared
with the 6.4 W consumed by the FPGA component. The
component can therefore be expected to reduce power con-
sumption, which is important if the robots are to operate for
as long as possible.

In summary, this experiment has shown that the com-
munication latency experienced by the proposed ROS-
compliant FPGA component is very large. However, it can
still contribute to improving the performance of robots while
maintaining low power usage.

5.2 Evaluation 2: Sensor Input Node

In order to explore another application of FPGA compo-
nents in robot systems, an ROS-compliant FPGA compo-
nent that combines (fuses) input from multiple sensors was
evaluated. We gave a partial introduction to this topic in
[13], [14].

Sensor fusion [15] is a method for obtaining highly re-
liable information by combining input from multiple sen-
sors. Robot systems depend on sensor inputs to recognize
their environment independently, and sensor fusion is very
important for obtaining reliable measurement values.

First, we focus on an open-source implementation [37]
of sensor fusion processing using the Mahony algo-
rithm [16] for attitude angle estimation. An overview of the
target hardware is given in Table 6. The target software
was written in C++ and compiled in the ARMmbed [38]
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Table 6 Target environment for sensor fusion processing

Fig. 14 Measured processing times for the sensor fusion software

Fig. 15 Parallelization of sensor inputs

environment.
The measured processing times for the software imple-

mentation are given in Fig. 14, showing that sensor input
processing occupied 98% (217 + 217 + 341 = 775 µs) of
the entire main loop (788 µs). The majority of this time is
consumed by communication (the I2C I/F at 400 kHz in this
case). If this communication could be parallelized, the input
time could therefore be reduced drastically.

In evaluating the FPGA component, a simpler comple-
mentary filter was applied to the data to obtain stable attitude
angle values using two sensors operating on different prin-
ciples, namely, a gyro sensor and an acceleration sensor.

The concept behind sensor input parallelization is
shown in Fig. 15. FPGAs can be programmed to realize ar-
bitrary digital circuits, and by implementing two dedicated
sensor input circuit modules, sensor input processing can be
fully parallelized.

Figure 16 shows the design of the sensor fusion com-
ponent for attitude estimation. Two 9-axis sensor mod-
ules (MPU9250 InvenSense, Inc.) were used as a gyro sen-
sor and an acceleration sensor. The target user logic com-

Fig. 16 ROS-compliant FPGA component for sensor fusion using two
sensor inputs (Xilinx Zynq-7020, InvenSense MPU9250 x 2)

Fig. 17 Measured latency for sensor fusion processing using two sensor
inputs

Table 7 Environment of the sensor fusion FPGA component

prised MPU gyro controller, which obtained gyro sensor
values, and MPU accel controller, which obtained acceler-
ation sensor values.

The measured processing times for the component are
shown in Fig. 17. Since receiving input data from sensor
modules is slow, the sensor inputs were parallelized using
a dedicated FPGA hardware implementation, achieving sig-
nificantly lower sensor input latency (102 µs) than the pure-
software implementation (204 µs).

This shows that an FPGA component for sensor fusion
can process input from multiple sensors efficiently and with
very low latency via parallel processing.

6. Discussion

In this section, we would like to discuss the design produc-
tivity and the limitations of the proposed ROS-Compliant
FPGA component.

There are two aspects of design productivity concern-
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ing the proposed ROS-compliant FPGA component. First
is the design productivity of ROS system integration by us-
ing a ROS-compliant FPGA component. Development of
ROS system with FPGA, which is based on the concept of
ROS-compliant FPGA component, is not different from the
development of normal ROS systems, which are purely im-
plemented in software and do not use FPGAs. As defined in
the Sect. 3.1, an “ROS-compliant FPGA component” is an
ROS component made from an FPGA whose functionality
is equivalent to that implemented in software. For exam-
ple, if there are two ROS components: (1) “process sw” is
a pure software ROS node, (2) “process fpga” is a ROS-
compliant FPGA component which has same functionality
as “process sw” with accelerated processing time. In ROS
system, it is very easy to run a ROS node by command-
line or a launch file [28]. Therefore, “process sw” and
“process fpga” can switch easily. However, it is noted
that the functional equivalence must be verified in the ROS
system.

The other aspect is the design productivity of ROS-
compliant FPGA component itself. The development pro-
cess of ROS-compliant FPGA component is complicated
and requires both knowledge of FPGA and software. There-
fore, the development of the ROS-compliant FPGA compo-
nent may become the bottleneck process of the entire project
in robot development. To solve the problem, we are also
working on an automated tool for designing the proposed
ROS-compliant FPGA components, called cReComp [14].
By using cReComp, experimental results show that only less
than one hour is enough for novice designers to implement a
ROS-compliant FPGA component into programmable SoC.
The experiments of 1-day development were done in or-
der to evaluate the design productivity. Six novice users
(subjects) developed a ROS-compliant FPGA component
with cReComp. As a component ultrasonic distance sensor
(Parallax Inc PING) was given. The subjects were given
user logic (a HDL file described control ultrasonic distance
sensor) at the beginning of the experiment and they followed
experimental instruction manual described by the author.

Considering from the two aspects, the proposed ROS-
compliant FPGA component is effective to improve the de-
sign productivity of robot system with FPGA. Especially,
if experts of FPGA design provides ROS-compliant FPGA
component with very high-performance, robot developer
can use the FPGA component very easily.

The limitation of ROS-compliant FPGA component is
portability among FPGA devices. As long as the FPGA
configuration (bitstream) generated by the component de-
veloper is applicable for another FPGA device of the user,
the component can be used without any trouble. For exam-
ple, however, in the case of using different external pins, the
bitstream must be re-compiled using FPGA tools. As dis-
cussed in the Sects. 4.1 and 4.2, if the user circuit written in
HDL follows the connection manner of HW/SW interface,
component may be reused with slight modification and re-
compile. These kinds of issues about portability remain as a
future work.

7. Related Work

A significant number of papers have reported the application
of FPGAs to robots, so some examples will be discussed in
this section.

In traditional component-oriented development, robots
are generally equipped with computational hardware re-
sources that consume large amounts of power [6]. With
these hardware resources, current autonomous mobile
robots cannot operate for more than one to three hours
continuously [17], [18]. Operating longer will require high
processing performance using embedded processors, rather
than high-performance processors. Therefore, to save power
in robots, FPGAs are an effective way to achieve high-
performance processing with low power consumption.

As described previously, an effective way to employ
FPGAs in robots is to develop a combined HW/SW sys-
tem using a programmable SoC. This will also reduce the
development cost of the HW/SW communication interface.
Yanbing Li et al. have developed Nimble to support HW/SW
co-design [19]. The Nimble framework generates two out-
puts from C code input. First, it analyzes the input and iden-
tifies loops in the code. Then, it generates a HW/SW co-
system, composed of hardware that implements the loops
in the original C code and a software binary that runs on a
CPU.

Throughput has generally been regarded as the most
important performance criterion for computing systems.
However, cyber-physical systems such as robots require not
only logical processing but also physical processing that is
closely connected to the real world. In addition, physical
processing must be parallel and low latency, since sequen-
tial processing is slow [20]. In FPGAs, when very low delay
processing is required, it is effective to design at the register-
transfer level using HDL.

As they allow digital logic to interact with real world
interfaces, FPGAs are often used for robot manipulators that
need advanced control logic. This is because most non-
linear controllers need real-time mobility, which is difficult
to achieve with general-purpose microprocessors [21], [22].
Autonomous fuzzy behavior control and sensor-based be-
haviors for self-driving cars have been implemented using
FPGAs [23], both of which are needed if such mobile robots
are to have human-like driving skills.

Another aspect of the application of FPGAs to robotic
systems is the environment used for designing FPGA-based
systems. The development of FPGA-based systems is more
difficult than that of software since they must be imple-
mented using an HDL, which is still difficult for conven-
tional software engineers to handle. Finding ways to reduce
the development cost of FPGA-based systems is therefore
very important. It has previously been suggested that the
development of FPGA-based systems using traditional pro-
gramming languages, such as C, C++, or MATLAB, would
improve developer productivity [24].

The development of sensor fusion devices using
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FPGAs (Zynq-7020 programmable SoC) has also been re-
ported [25]. In that report, fusion of two visual (image)
sensors and two inertial sensors (gyro and accelerometer)
was implemented and evaluated for the purpose of pre-
processing sensor data for accurate visual simultaneous lo-
calization and mapping (SLAM). Since ROS is often used
in SLAM applications, this would be a good target for ap-
plying our component.

There are two communication mechanisms in ROS:
publish/subscribe messaging for data communication and
service invocation for controlling nodes in the system. This
paper has mainly focused on data communication, but con-
trol is also important for building ROS systems. Our
group has previously developed a remote call mechanism for
FPGAs: ORB Engine [26] is a distributed object platform
that requires a broker compliant with the Common Object
Request Broker Architecture (CORBA) standard. As an ex-
ample, an inverted-pendulum system was built using a high-
level synthesis tool that generates HDL code from pure Java
code. The system’s control logic was greatly accelerated by
an FPGA designed using Java, without the need to write the
HDL code [26].

8. Conclusion

We have proposed the concept of ROS-compliant FPGA
component for easy integration of FPGAs into robot sys-
tems. In order to achieve seamless connection between
the FPGA and the robot software platform (ROS), we have
discussed a mapping between FPGA signal semantics and
ROS messages. Using a programmable SoC, FPGA hard-
ware processing and software on a CPU can be combined
into a portable ROS package. The design of the proposed
FPGA components has been described in detail, particu-
larly the communication channels between the FPGA and
the ARM processor, in terms of a state machine using FIFO
communication.

Two experiments were conducted to demonstrate the
execution time and power efficiency performance of the pro-
posed component. First, we designed an ROS-compliant
FPGA component for use as an image processing filter. The
execution time of the proposed component was 1.99 s, 1.7
times faster than the pure-software implementation running
on the ARM processor (3.33 s). The execution time mostly
consisted of the time taken for publish/subscribe messaging
by the ROS system. Then, the power efficiency (through-
put/power) was estimated, showing that the proposed com-
ponent was 2.51 times more efficient than an ordinary PC
processor, despite the communication overhead.

The second experiment involved a component for sen-
sor fusion. This example demonstrated that sensor input
processing in robot software systems is slow and can be par-
allelized by utilizing the programmability of an FPGA. An
ROS-compliant FPGA component with independent circuits
for each of two sensor inputs achieved much lower latency
(102 µs) for the sensor input than a system implemented
purely in software (204 µs).

Two aspects of design productivity concerning the pro-
posed ROS-compliant FPGA component were discussed.
Users of ROS-compliant FPGA component can benefit from
it. And the design and implementation of the FPGA compo-
nent itself can be partly automated. However, the portability
is limited and still remains as future work.

The large communication time overhead required for
publish/subscribe messaging in the ROS system remains a
significant problem for ROS-compliant FPGA component.
If this overhead can be reduced, it will lead to substantial
improvements in the power efficiency of FPGA components
used to accelerate processing in robots.
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