
344
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

PAPER Special Section on Reconfigurable Systems

ArchHDL: A Novel Hardware RTL Modeling and High-Speed
Simulation Environment

Shimpei SATO†a), Ryohei KOBAYASHI††b), and Kenji KISE†c), Members

SUMMARY LSIs are generally designed through four stages including
architectural design, logic design, circuit design, and physical design. In
architectural design and logic design, designers describe their target hard-
ware in RTL. However, they generally use different languages for each
phase. Typically a general purpose programming language such as C or
C++ and a hardware description language such as Verilog HDL or VHDL
are used for architectural design and logic design, respectively. That is
time-consuming way for designing a hardware and more efficient design
environment is required. In this paper, we propose a new hardware mod-
eling and high-speed simulation environment for architectural design and
logic design. Our environment realizes writing and verifying hardware by
one language. The environment consists of (1) a new hardware descrip-
tion language called ArchHDL, which enables to simulate hardware faster
than Verilog HDL simulation, and (2) a source code translation tool from
ArchHDL code to Verilog HDL code. ArchHDL is a new language for
hardware RTL modeling based on C++. The key features of this language
are that (1) designers describe a combinational circuit as a function and
(2) the ArchHDL library realizes non-blocking assignment in C++. Using
these features, designers are able to write a hardware transparently from
abstracted level description to RTL description in Verilog HDL-like style.
Source codes in ArchHDL is converted to Verilog HDL codes by the trans-
lation tool and they are used to synthesize for FPGAs or ASICs. As the
evaluation of our environment, we implemented a practical many-core pro-
cessor in ArchHDL and measured the simulation speed on an Intel CPU
and an Intel Xeon Phi processor. The simulation speed for the Intel CPU
by ArchHDL achieves about 4.5 times faster than the simulation speed by
Synopsys VCS. We also confirmed that the RTL simulation by ArchHDL
is efficiently parallelized on the Intel Xeon Phi processor. We convert the
ArchHDL code to a Verilog HDL code and estimated the hardware utiliza-
tion on an FPGA. To implement a 48-node many-core processor, 71% of
entire resources of a Virtex-7 FPGA are consumed.
key words: hardware description language, RTL modeling, RTL simula-
tion

1. Introduction

VLSI chips such as high performance processors and SoCs
with many hardware elements are designed in the flow of (1)
architectural design, (2) logic design, (3) circuit design, and
(4) physical design. In architectural design and logic design,
simulations in register transfer level (RTL) are indispensable
for efficient debugging and logical verification.

Manuscript received May 2, 2017.
Manuscript revised September 8, 2017.
Manuscript publicized November 17, 2017.
†The authors are with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
††The author is with University of Tsukuba, Tsukuba-shi, 305–

8571 Japan.
a) E-mail: satos@ict.e.titech.ac.jp
b) E-mail: kobayashi@cs.tsukuba.ac.jp
c) E-mail: kise@cs.titech.ac.jp

DOI: 10.1587/transinf.2017RCP0012

Architectural design and logic design are also impor-
tant for hardware FPGA implementation. Available hard-
ware resources in FPGAs are increasing, and requirements
to implement a large scale hardware are also increasing. So,
the elapsed time of an RTL simulation for such large scale
design is becoming very long even if using a fast RTL sim-
ulator. Therefore, CAD systems which realize high-speed
RTL simulation are strongly required.

In this paper, we propose ArchHDL that is a novel
hardware RTL modeling and high-speed simulation envi-
ronment. This environment comprises of (1) a hardware de-
scription language called ArchHDL which enables to simu-
late a hardware faster than Verilog HDL simulation and (2) a
source code translation tool from ArchHDL to Verilog HDL.
In this environment, designers implement their target hard-
ware with a provided ArchHDL library based on C++. The
simulation is carried by executing an ArchHDL code which
implements a target hardware as a C++ program For the
following hardware design flow, the source code written in
ArchHDL is converted to a Verilog HDL code by the trans-
lation tool.

In ArchHDL, designers write and verify a hardware
using C++ language. Designers generally use a general-
purpose programming language such as C or C++ to de-
scribe a hardware in the architectural design phase. In logic
design phase, they use a hardware description language such
as Verilog HDL or VHDL to describe a hardware in RTL.
Designers typically have to describe their target hardware
twice by using different languages and it is time-consuming
way to design a hardware. ArchHDL realizes transparent
and efficient hardware design from the architectural design
phase to the logic design phase by using one programming
language.

Our environment realizes high-speed hardware RTL
simulation. Typical Verilog HDL simulator takes a long
time to simulate a hardware because it can simulate a de-
tailed situation including some delays. Such detailed simu-
lation is necessary for hardware design. However, require-
ment for high-speed logic level simulation in RTL is also
thought to be high. The RTL simulation of a hardware writ-
ten in ArchHDL is realized by executing the program com-
piled with a typical C++ compiler. Then, it achieves high-
speed simulation compared to Verilog HDL simulation. Ad-
ditionally, the ArchHDL library supports parallel execution
of the simulation. This realizes more high-speed simulation
of a large scale hardware which uses many modules such as
many core processors by parallel execution.

Copyright c⃝ 2018 The Institute of Electronics, Information and Communication Engineers



SATO et al.: ARCHHDL: A NOVEL HARDWARE RTL MODELING AND HIGH-SPEED SIMULATION ENVIRONMENT
345

This paper is based on our previous works [1]–[3],
where we proposed ArchHDL and showed preliminary eval-
uation results. In this paper, we show the following contri-
butions:

• Providing a detailed description of ArchHDL with its
library implementation.
• High-speed RTL simulation of a practical hardware

model by ArchHDL.
• Efficiently parallelized RTL simulation on Intel Xeon

Phi processor by ArchHDL.

2. A Novel Hardware RTL Modeling Environment

2.1 Concept of ArchHDL

ArchHDL is a hardware description language based on
C++. It provides a C++ library for hardware RTL mod-
eling. The characteristics of ArchHDL are:

1. Verilog HDL-like coding style.
2. Description of a combinational circuit as a function us-

ing lambda expression of C++11.
3. Supporting non-blocking assignment.
4. Supporting user-defined data types and object-oriented

programming style.
5. Cycle based simulation (not event driven).
6. Parallel simulation using OpenMP without decreasing

the simulation accuracy.
7. Simple library (only about 200 lines in total).

The ArchHDL library includes definitions of the Mod-
ule class, the reg class, the wire class, and functions for sim-
ulation. Using these classes and supported non-blocking as-
signment, hardware designers can write a hardware in Ver-
ilog HDL-like style. More abstracted description such as
functional level is allowed because a hardware written in
ArchHDL is just a C++ program. It realizes transparent de-
sign of hardware from abstracted level description to RTL
level description.

To describe a combinational circuit as a function, the
lambda expression which is newly added to the C++ stan-
dard library called C++11 is used. Non-blocking assign-
ment, which is generally supported in hardware descrip-
tion languages such as Verilog HDL or VHDL, is not sup-
ported in general purpose programming languages. Arch-
HDL supports non-blocking assignment by the ArchHDL
library which realized by using C++ operation overload.

The simulation of a hardware is carried by the execu-
tion of the source code written in ArchHDL compiled with
general C++ compilers. The simulation speed is faster than
the simulation using Verilog HDL simulator.

2.2 Hardware RTL Modeling in ArchHDL

Figure 1 is a block diagram of the sample circuit used for
explanation of ArchHDL hardware modeling in this section.
The circuit is a 32-bit pseudo random value generator using

Fig. 1 A block diagram of sample circuit used for explanation of hard-
ware description in ArchHDL. (Xorshift random value generator)

Fig. 2 A description of Xorshift pseudo random value generator in Arch-
HDL.

Xorshift algorithm [4]. It employs four registers and gener-
ates random value by XOR and shift operations. Initializa-
tion mechanisms of register values and input of seed, which
are contained in the sample description we present later, are
omitted in this figure.

Figure 2 is a sample description of Xorshift random
value generator in ArchHDL. Descriptions about inclusion
of libraries are omitted.

The Xorshift class is declared as a subclass of the Mod-
ule class and it represents the hardware module. A hardware
module is declared as a subclass of the Module class which
is defined in the ArchHDL library. Behavior of hardware
modules is mainly described by using the reg class, the wire
class, the Assign function, and the Always function, which
are also defined in the library. A class defined by inheriting
the Module class corresponds to a module in Verilog HDL.

Five wires and Four registers are declared in the mod-
ule. An instance of the wire class and the reg class can be re-
garded as a wire and reg in Verilog HDL respectively. These
classes are implemented as template classes in the ArchHDL
library. Therefore, users must specify a data type into the an-
gled bracket when they declare an instance of the wire class
or the reg class. In Fig. 2, uint 1 and uint 32 are used as data
types for wire and reg. The wire class and the reg class are
implemented as functional objects in the library, so a value
of these instances can be referred by a function call of the
class instance.

The number at the end of these data types represents



346
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

the bit width of the data. The number is just used to specify
the bitwidth when translating the source code by the trans-
lation tool, and these are actually implemented as an alias of
unsigned int in the library. Therefore, a value declared with
these data type is not masked by the represented bit width.
Also, user defined structure is able to use as a data type for
a wire class or reg class instance.

A module description in ArchHDL does not employ
ports which are usually supported in hardware description
languages. Therefore, the description about connections be-
tween modules is implemented by referring directly to wire
or reg class instances declared in a module. To simplify the
analysis by the translation tool, some naming rules are ap-
plied. As indicated from the 3rd line to the 6th line in Fig. 2,
an instance name starts from “i ” is an input port and an
instance name starts from “o ” is an output port.

Combinational circuits are defined by assigning a func-
tional object to a wire class instance. All of assignment
statements to wire instances should be written in Assign
function as denoted from the 14th line to the 17th line in
Fig. 2. In the case of this example, combinational circuits
that are able to describe in Verilog HDL assign statements
are only used. However, using the lambda expression of
C++11 denoted in the 15th line, designers are able to define
various combinational circuits in ArchHDL.

The ArchHDL library supports non-blocking assign-
ment to reg class instance. Statements of non-blocking
assignment are described using “<<=” operator, and they
should be written in a Always function as indicated from
the 18th line to the 32nd line in Fig. 2. The Always function
is equivalent to “always @(posedge CLK)” in Verilog HDL.

2.3 Testbench in ArchHDL

Figure 3 shows a sample testbench in ArchHDL for the ran-

Fig. 3 A sample testbench for Xorshift in ArchHDL.

dom value generator shown in Fig. 2. Descriptions of inclu-
sion of libraries are omitted. This code is to display gen-
erated random values for 30 cycles. The seed value for the
random value generator is set as 1.

In the main function from the 40th line, the TestTop
module is generated and then the Step function, which pro-
vided by the library, is called in the do-while loop. At the
time of the TestTop instance is generated, all of reg, wire, and
Module class instances are stored in a data area prepared in
the ArchHDL library. The Step function calls the Always
function of all Module class instances stored in the library
data area. Therefore, the call of the function simulates the
hardware behavior in one cycle.

The PortConnect function is used to connect ports of
the Xorshift module as denoted from the 15th line to the
20th line. The role of this function is same to the Assign
function mentioned above. However, it is necessary to de-
scribe the PortConnect function and the Assign function sep-
arately to simplify the analysis of the translation tool. From
the 24th line to the 27th line, register initializations are de-
scribed in the Initial function. The role of this function is
equivalent to initial block in Verilog HDL.

2.4 ArchHDL Library Implementation

2.4.1 Software Architecture

Seven classes are defined in the ArchHDL library. They are
the Module class, the ModuleInterface class, the wire class,
the WireInterface class, the RegInterface class, the reg class
and the Singleton class. In this subsection, we explain about
the implementation of the ArchHDL library while showing
its source code.

Figure 4 shows the definition of the RegisterInterface
class, the ModuleInterface class, the WireInterface class, the
Singleton class and the Step function.

The ModuleInterface class, the WireInterface class and
the RegisterInterface class are interface classes of Module
class, wire class and reg class respectively. ArchHDL adopts
the singleton pattern, and Singleton class consolidates in-
stances of Module child class, wire class and reg class. This
class is the most important class in the ArchHDL library.

The Singleton class has three dynamic arrays as the
member variables, which keep pointers to instances of Mod-
ule class, wire class and reg class (denoted in the line from
23 to 25). When an instance of Module child class, wire
class or reg class is created, a pointer to the instance is
passed to the instance of Singleton class. At that time, the
pointer is upcasted to its interface class automatically (de-
noted in the line from 32 to 40).

The Step function is the function to do one cycle sim-
ulation of implemented hardware. In Step function, an As-
sign function, an Initial function and an Exec function in
the Singleton class are called. Multi-cycle simulation can be
carried by iterative call of the Step function.

The Assign function in the Singleton class (denoted in
the line from 41 to 53) calls PortConnect functions and As-



SATO et al.: ARCHHDL: A NOVEL HARDWARE RTL MODELING AND HIGH-SPEED SIMULATION ENVIRONMENT
347

Fig. 4 The source code of each interface class, Singleton class and Step
function in the ArchHDL library.

sign functions of all Module child class instances which are
held in the Singleton class. By this process, all of wires
in target hardware are connected by assignment of lambda
expression. Note that, the Assign function in the Singleton
class is only called at the first call of the Step function.

The Initial function of the Singleton class (denoted in
the line from 54 to 58) calls Initial functions of all Module
child class instances which are held in the Singleton class.
By this process, initial values are assigned to registers in the
module. Note that, the Initial function in the Singleton class
is only called at the first call of the Step function.

In Exec function (denoted in the line from 59 to 67),
at first Always functions of all Module child class instances
held in Singleton class are called (denoted in the line 62).
Next, Update functions for reg class instances, in which
their value is changed by the Always function, are called (de-
noted in the line 65). By this process, “always @(posedge
CLK)” block for one clock cycle is simulated.

Values for the next cycle of all registers are computed
by calling Always function, but it is not allowed to refer in
the current cycle. The values of registers are updated to

Fig. 5 The source code of reg class in the ArchHDL library.

the new values by calling Update function. The process of
Always function and Update function realizes non-blocking
assignment of Verilog HDL.

2.4.2 Definition of reg Class

Figure 5 shows the definition of reg class. This class is a
template class which takes a data type to use in its class
instance as the template argument. The RegisterInterface
class is inherited as the interface class.

The reg class has two variables, curr and next , which
data type is given by the template argument. Value of the
curr is a current value in a certain cycle, and value of the
next is a value for the next cycle. A value is assigned to the
variable next by calling the Always function. A value of the
variable next is assigned to the variable curr by calling Up-
date function which is a member method of reg class. In this
way, non-blocking assignment to a register is implemented.

To assign a value to the variable next in reg class ob-
ject, “<<=” operator is used. We redefine the “<<=” oper-
ator by using operator overload. If values of next and curr
are different, the pointer to the reg class instance is stored to
the array that keeps pointers to the registers to be updated.

After calling Always functions of all Module class
instance, the Update functions of reg class instances are
called. Thus, a value of the variable curr in reg class is
kept while the function call of the Always functions.

The constructor of reg class initializes the member vari-
ables. Blocking assignment to reg class object by “=” op-
erator is also defined for description of test bench or setting
of initial value. A value assigned to a reg class object by
the “=” operator updates the variable next immediately. A
reference to a reg class value is given by calling the instance
as a function.

2.4.3 Definition of wire Class

Figure 6 shows the definition of wire class. This class is
a template class which takes a data type to use in its class
instance as the template argument. The WireInterface class
is inherited as the interface class.



348
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Fig. 6 The source code of wire class in the ArchHDL library.

The wire class has a variable lambda to hold a lambda
function. Data type of return value of this lambda function
is a data type given by template argument. Assignment to
a wire class object is limited to assignments from a lambda
function, a wire class instance, and a reg class instance.

The constructor of the wire class initializes the member
variables and pass a pointer to itself to the Singleton class.
Calling a object of wire class as a function returns a return
value of the lambda function evaluation. Thus, a value of a
wire in a certain cycle can be get from function call of the
wire class instance.

2.4.4 Definition of Module Class

Figure 7 is the definition of the Module class. This class in-
herits the ModuleInterface class. We use the Module class
as the parent class to describe a hardware module in Arch-
HDL.

The constructor of the Module class gives a pointer to
itself to the Singleton class. The PortConnect function, the
Assign function, the Initial function, and the Always func-
tion are declared as virtual functions in the ModuleInterface.
Therefore, they are also declared as virtual functions in the
Module class.

2.5 Parallelization Using OpenMP

Figure 8 is the Exec function of the Singleton class. There
are two loops in the function. Both of them are able to exe-
cute in parallel because they do not have loop dependency.
We use OpenMP for parallelization. This parallelization is
supported by the ArchHDL library and users do not need to
change their source code. The accuracy of the simulation
does not change by parallelization.

In Fig. 8, the modules holds all pointers to module

Fig. 7 The source code of the Module class in the ArchHDL library.

Fig. 8 Parallelized Exec function of ArchHDL.

classes of a target hardware. First for-loop calls the Always
function of every modules in parallel by using OpenMP,
which calculate register value for the next cycle. At this
time, if the next has different value to the curr in a reg
class instance, the pointer to the instance is added to the
vector update registers . The adding process sometimes oc-
curs simultaneously in the Always function call of different
threads. Therefore, we prepare the array for each thread to
prevent the conflict. The second for-loop calls the Update
function of registers in each update registers of threads.

We do not set any specific thread scheduling type for
OpenMP in our library. Therefore, thread scheduling de-
pends on a default setting of a compiler and typically it will
set as static.

2.6 Translation Tool from ArchHDL to Verilog HDL

We are developing a code translator from ArchHDL code to
Verilog HDL code. As shown in some examples of hard-
ware description in ArchHDL, ArchHDL is able to describe
a hardware in Verilog HDL-like description style by using
classes such as the reg class and the wire class provided
by the library. The code translation from ArchHDL to Ver-
ilog HDL is realized by simple code parser and replacement
function. Especially, designers are expected to describe the
same statement about assignments and arithmetic expres-
sions in ArchHDL and Verilog HDL. Thus, the code trans-
lator does not optimize the code during translation.

Figure 9 shows the translation flow from ArchHDL
code to Verilog HDL code. The tool receives an ArchHDL
code as an input and outputs a Verilog HDL code. The
translation is delivered as follows: (1) code scanning and
(2) information generation for Verilog HDL code by string
replacement and parsing.

In the parsing process, statements which are not able
to describe in Verilog HDL syntax are analyzed. Basically
it is not necessary to parse statements written in ArchHDL
in detail, because they must be the same statements in Ver-
ilog HDL.



SATO et al.: ARCHHDL: A NOVEL HARDWARE RTL MODELING AND HIGH-SPEED SIMULATION ENVIRONMENT
349

The main restrictions of description in ArchHDL
which can be converted to Verilog HDL are as follows: (1)
using only the reg class and the wire class as a data type and
(2) using up to 2-dimensional array for instance declaration.

In particular, the reason of the limitation for the ar-
ray depends on that the Verilog HDL syntax limitation and
the multidimensional array are not supported in some Ver-
ilog HDL simulator. We think that we can describe a prac-
tical hardware sufficiently in ArchHDL under such restric-
tions.

2.7 Advantages and Disadvantages of ArchHDL over Ver-
ilog HDL

The advantages of ArchHDL are (1) the intuitive module de-
scription by object-oriented programming and (2) the flexi-
ble testbench description using C++ standard environment.

Hardware resources on LSIs or FPGAs are increasing,
and opportunities to describe a hardware which implements
a lot of the same module like many-core processors are also
increasing. In ArchHDL, designers are able to declare mod-
ules, registers, or wires using array. Therefore, they also
able to use for statements to describe the behavior of such
hardware intuitively.

Architectural verification needs plenty of simulations
using various parameters, and requires flexible description
to its testbenches. The testbench description in ArchHDL
is able to use the random value generators, variable-length
array and so on which are included in C++ standard li-
brary. Therefore, the flexibility of testbench description is
equal to typical software simulators. Furthermore, the sim-
ulation speed is faster than Verilog HDL simulation which
described in the same abstraction level.

To simplify the implementation of ArchHDL library
and the source code translation tool, the current ArchHDL
has some restrictions compared with the description capabil-
ity of Verilog HDL. The main restrictions are (1) described
hardware may use only one clock signal, (2) the assignment
of values to registers is done only in a positive edge of the
clock, and (3) designers describe registers and wires using
C++ integer type like 32-bit int or 64-bit int.

ArchHDL supports hardware which allows assigning
values to registers at positive edges of a single clock. There-
fore, it does not support to use multiple clocks and to assign
values at negative edges of the clock. Although SFL [5] has
similar constraint, it was used for variety of hardware de-

Fig. 9 Translation flow from ArchHDL code to Verilog HDL code.

scriptions [6], [7].
ArchHDL uses C++ integer type like 32-bit int or 64-

bit int for a data type of registers and wires. The declaration
of registers and wires of any bit width are not supported.
ArchHDL supports C++ common operators, and does not
support bit selection operation and bit concatenation opera-
tion which are supported in Verilog HDL.

The ArchHDL library is implemented with about 200
lines of a source code and it is simple. Users are able to
expand the library to introduce other clock signals or data
types. We think that these restrictions are caused by an ini-
tial stage implementation of the library. Therefore, they will
be eliminated by the progress of this work.

3. Experimental Results

We evaluate our proposed hardware modeling environment
which consists of ArchHDL and the source code translation
tool in two aspects: (1) The simulation speed and paral-
lelization efficiency of a hardware described in ArchHDL,
and (2) The FPGA resource utilization of a hardware syn-
thesized from Verilog HDL code generated by the source
code translation tool.

3.1 A Sample Hardware for Practical Evaluation

We implemented M-Core Architecture [8], a many-core pro-
cessor employs scratchpad memories, as a sample hardware
for evaluation. Figure 10 shows the construction of M-Core
Architecture. Each node of M-Core Architecture is com-
posed of a core and a router. The core consists of a Process-
ing Element (PE), a memory controller (MC), a local mem-
ory, and a Network Interface Controller (NIC). The PE is a
32-bit five-stage pipelined MIPS processor [9]. Each node is
connected to the mesh network via the router. The router ar-
chitecture is a conventional Input-buffered Virtual Channel
router [10] with five-stage pipeline, four virtual channels per
input port, and 4-flit buffer per virtual channel.

For a data transfer between cores, DMA transfer is
used. DMA command is sent from a PE to its NIC via
memory-mapped IO. The NIC loads sending data from the
local memory using information of the DMA command. Af-
ter that, packets are generated and injected into the network.
When the packets arrives at a destination node, information
in the packet is used to store the received data to the local
memory.

Fig. 10 M-Core Architecture used as a practical hardware for evaluation.



350
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Table 1 Hardware Configuration

Xeon CPU Xeon Phi

Model E5-2687W 31S1P
Architecture SandyBridge Knights Corner
Frequency 3.1GHz 1.1GHz

Threads/core 2 4
Cores 8 57

Total Threads 16 228
Memory 64GB 8GB

OS Ubuntu 14.04.2 MPSS 3.4.3

3.2 Evaluation of Simulation Speed

We implement the many-core processor introduced in the
previous section in ArchHDL and measure the simulation
time while running an application on the processor. The
simulation time is compared with the time of Verilog HDL
simulation using Synopsys VCS version H-2013.06. The
Verilog HDL code used in the VCS simulation is automati-
cally generated from the ArchHDL code by our translation
tool. For ArchHDL source code compilation, GCC 4.7.3
(g++) and Intel Compiler 14.0.1 (ICPC) are used. The com-
piler optimization option is Ofast for both compilers. The
detailed computer environment for simulation is concluded
in Table 1.

Firstly, we show the simulation speed of ArchHDL
compared with that of Verilog HDL simulation on Intel
Xeon CPU. For the simulation, the number of nodes of
the many-cores processor are varied (from 2×2 to 10×10).
The many-core processor executes an application that ev-
ery cores communicate with each other in every 100 cycles.
The total execution cycles of the simulation is 100,000 cy-
cles. The simulation is performed 10 times for each con-
figuration, and the average simulation time of them is used
as the final result. The parallelized simulation accuracy is
the same as single-thread execution of the simulation. For
the parallelized simulation, we use a computer with Xeon
CPU, which has the 8 physical cores (16 logical cores using
SMT).

Figure 11 illustrates the simulation results under single
thread. The X-axis indicates the model size of the sample
many-core processor and the Y-axis represents the simula-
tion time in second.

We can see that the simulation time increases when
the number of nodes increases. The simulation by VCS is
fastest (maximum 2.9 times faster than GCC and maximum
2.7 times faster than Intel Compiler). However, the speedup
of the VCS simulation compared to other simulations (GCC
and Intel Compiler) decreases when the number of nodes
increases, In particular, the speedup is maximum when the
number of nodes is 4 (2×2 network) and minimum when the
number of nodes is 100 (10×10 network).

Figure 12 shows the simulation results in case of par-
allelized simulation (with 8-thread and 16-thread). “VCS”
and “ICPC 1 thread” in Fig. 12 are same as ones illustrated
in Fig. 11.

Fig. 11 Single-threaded simulation time on Xeon CPU. VCS, g++, and
ICPC represent simulation speed by Verilog HDL simulator of Synopsys,
GNU compiler (GCC) for C++, and Intel compiler for C++, respectively.

Fig. 12 Multi-threaded simulation time on Xeon CPU. Note that the sim-
ulation time of VCS is single-thread. VCS and ICPC represent simulation
speed by Verilog HDL simulator on Synopsys, and Intel compiler for C++,
respectively.

We can see that every parallelized simulation is faster
than the VCS simulation. The parallelized simulation is 4.5
times faster in maximum than the VCS simulation when us-
ing 16-thread. The simulation results also show that the
speedup of the parallelized simulation compared to the VCS
simulation increases when the number of nodes increases.

Second, we show the parallelization efficiency of the
ArchHDL simulation using Intel Xeon Phi processor. Fig-
ure 13 shows the speedup ratios depending on the num-
ber of used physical cores in Xeon Phi and Fig. 14 shows
the speedup ratios of Xeon Phi 57 cores (total 228 threads)
against Xeon CPU 8 cores (total 16 threads).

From Fig. 13, we can see that the performance of paral-
lel execution on Xeon Phi is higher when the model size of
simulation is larger and 57-core execution is about 48 times
faster than the 1-core execution in 16×16 size. Also from
Fig. 14, we can see that Xeon Phi 57-core is slower than
Xeon CPU 8-core when the size is 4×4 and 8×8, but on the
biggest size (16×16) Xeon Phi is 1.4 times faster than Xeon
CPU.

When the number of nodes is divisible by the number
of threads, the chunk size for multi-threaded simulations fits
to the multiple of node size. Thus, load balance of such sim-
ulation becomes almost uniformly and the multi-threaded



SATO et al.: ARCHHDL: A NOVEL HARDWARE RTL MODELING AND HIGH-SPEED SIMULATION ENVIRONMENT
351

Fig. 13 Speedup of many-core on Xeon Phi

Fig. 14 Speedup of Xeon Phi (57-core) against Xeon CPU(8-core)

simulation performs well.

3.3 FPGA Resource Utilization of the Many-Core Proces-
sor Synthesized from Converted Verilog HDL Code

Here, we estimate the FPGA resource utilization of M-
Core architecture. The target device is Xilinx Virtex-7
XC7VX485 on the evaluation kit VC707.

The number of nodes to implement is 48 (8×6). The
register files on the Processing Element of each node is im-
plemented using LUT-RAM. The local memory in each core
and the input buffers in each router are implemented using
Block-RAM. Parameters of the local memory on each core
are 32-bit data width, 32 KB total size, and 3 port (2 read, 1
write). Parameters of the input buffer are 38 bit data width,
16 entry (4 entry for each 4 virtual channels in a port), and
2 port (1 read, 1 write). The number of router port except
the edge node of the processor is 5. Therefore, five Block-
RAMs are used for input buffers in a router.

Table 2 shows the hardware utilization of the processor
on the Virtex-7 FPGA. The result is obtained from a syn-
thesis report of place and route. According to the synthesis
report, the processor occupied 54,509 slices which is 71%
of entire resources, and runs at 114.9 MHz. The number of
slices for each element in a node are about 460 slices for
Processing Element, about 25 slices for Memory Controller,
about 280 slices for Network Interface Controller, and about
400 slices for router.

Table 2 Hardware utilization of a 48-node many-core processor on the
Virtex-7.

Slice Reg LUT BRAM (RAMB36E1))

Used 54,509 79,641 158,103 1,007
Utilization 71% 13% 52% 97%

From the result of hardware utilization, we found that
the size of the hardware generated from the converted Ver-
ilog HDL code by the translation tool is practicable. For ex-
ample, Heracles [11], that is an RTL based many-core sim-
ulation environment, implements a similar many-core pro-
cessor to our processor. Its node mainly consists of a 7-
stage pipelined 32-bit MIPS processor core, instruction/data
caches, and virtual channel NoC router. In [11], in spite of
using of hand-written Verilog HDL design methodology and
a Virtex-6 LX550T FPGA which has 10% more slices than
our targeted FPGA, the authors could implement an at most
25-node many-core processor because of its core complex-
ity, whose node has a 32 KB local memory. Compared with
that, our processor core is simpler but ArchHDL are able
to generate a many-core processor with about twice core
counts instead. Given the above, it is possible to conclude
that the hardware size of our many-core processor generated
from our proposed ArchHDL is practicable.

4. Related Works

Chisel [12], SystemC [13], MyHDL [14], and PyMTL [15]
are hardware description languages that are able to compile
as a program of general-purpose programming language.
Although hardware designers are able to describe hardware
in RTL in these languages, the hardware description style
in those languages is very different from the style of Ver-
ilog HDL.

SystemC [13] is designed based on C++ and it is im-
plemented as a C++ class library. The hardware described
in SystemC is able to compile and execute as a C++ pro-
gram. Hardware designers describe hardware using classes
and macros which are provided in the SystemC library.
While most of the HDLs like Verilog HDL, VHDL and pro-
posed ArchHDL support the RTL of design, SystemC orig-
inally supports the design at a higher abstraction level to
model large hardware systems.

MyHDL is designed based on Python. The hardware
described in MyHDL is compiled and is executed as a
Python program. The project provides a tool to convert
a source code in MyHDL to Verilog HDL and VHDL for
hardware synthesis. It is reported that the architectural sim-
ulation speed of MyHDL is about 3 times faster [16] than
the speed of Verilog HDL compiled by Icarus Verilog. Al-
though this project is unique using Python, MyHDL has not
been used extensively.

Chisel is designed based on Scala. The hardware de-
scription in Chisel is converted to C++ code for high-speed
simulation, and also is converted to Verilog HDL code for
ASIC synthesis. It is reported that the simulation speed of
Chisel C++ simulation is 7.8 times faster against Synopsys



352
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

VCS.
PyMTL is a Python based hardware design framework

and function level, cycle level and register transfer level sim-
ulations can be done within the same framework. In cycle
level and RTL level simulation, it uses a JIT compiler to
generate a simulation binary. It converts Python code into
Verilog HDL and further converts the Verilog files into C++
simulation code by using Verilator [17]. In this way, PyMTL
offers high coding usability thanks to Python while it sup-
presses the simulation speed degradation within 4 to 6 times
compared to a tuned C++ simulation.

SFL [5] is a unique language and PARTHENON is a
high-level CAD tool for SFL developed by NTT(Nippon
Telegraph and Telephone Corporation). In SFL, the de-
signer does not describe a clock signal explicitly and the
system assumes the existence of the global clock implic-
itly. This strategy is the same as ArchHDL. Although SFL
is an attractive language, development and maintenance of
PARTHENON system had stopped.

A number of works have studied parallel RTL simula-
tion and some works used GPUs or many-core.

In [18], [19], authors investigate the parallel RTL sim-
ulation of SystemC [13] using GPUs. SystemC is a hard-
ware description language implemented as a C++ class li-
brary. They are based on discrete event-driven simulation
and [19] propose a method whose aim is to reduce syn-
chronization events. On the other hand, [20] converts Ver-
ilog files to GPU source code. The simulation method is
based on Chandy-Misra-Bryant (CMB) algorithm, which is
asynchronous parallel simulation protocol. Although these
works achieve high speedup (more than 10x - 100x), the
simulated circuits are simple such as AES or 8b/10b decod-
ing/encoding and do not evaluate the methods with practical
hardware designs. We use complex and large hardware de-
signs and therefore our simulation environment is practica-
ble.

In [21], authors studied parallel simulation of SystemC
using Intel Single-chip Cloud Computer (SCC) [22] which
has 48 cores connected by a 2D mesh network. The simu-
lation algorithm is also based on CMB. They used several
sizes of Hermes Multi-Processor System [23] models run-
ning MPEG applications for evaluation. It showed that sim-
ulation on 48 SCC cores speedup up to 30x compared to that
on 1 SCC core. However, they did not compare the simula-
tion time on SCC with that on general multi-core systems.
We compared the simulation time on Xeon Phi to that on
Xeon CPU and showed that the simulation on Xeon Phi is
truly faster than Xeon CPU.

5. Conclusion

In this paper, we propose a new hardware RTL modeling
and high-speed simulation environment for architectural de-
sign and logic design. The environment comprises of (1)
a hardware description language called ArchHDL and (2) a
source code translation tool from ArchHDL to Verilog HDL.
The goals of the proposed environment are to attain follow-

ing: (1) transparent and efficient hardware modeling, (2) re-
alizing the environment which is able to verify both archi-
tectural design and logic design in one description, and (3)
high-speed simulation compared to the Verilog HDL simu-
lation.

We evaluate our proposed environment in two aspects:
(1) the simulation speed and parallelization efficiency of a
hardware described by ArchHDL and (2) the amount of re-
sources usage of hardware when synthesizing Verilog HDL
code generated from ArchHDL code by the translation tool.
For practical evaluation, we implemented a many-core pro-
cessor in ArchHDL and also converted the source code to
Verilog HDL by the translator. The simulation speed of
ArchHDL was about 4.5 times faster than the simulation
speed using Synopsys VCS which is one of the fastest Ver-
ilog HDL simulator. The parallelization efficiency of the
simulation on the Intel Xeon Phi processor was high in the
case of a large scale hardware simulation. The resource
utilization of the 48-node many-core processor on Virtex-
7 was 71% on the Virtex-7. From the result, we found that
the scale of the hardware generated by the converted Ver-
ilog HDL code by the translation tool is applicable.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 16H02794.

References

[1] S. Sato and K. Kise, “ArchHDL: A New Hardware Description Lan-
guage for High-Speed Architectural Evaluation,” Proc. IEEE 7th
International Symposium on Embedded Multicore SoCs (MCSoC
’13), pp.107–112, Sept. 2013.

[2] S. Sato and K. Kise, “ArchHDL: A Novel Hardware RTL Develop-
ment Environment in C++,” Proc. 11th International Symposium on
Applied Reconfigurable Computing (ARC ’15), pp.53–64, May
2015.

[3] T. Misono, R. Kobayashi, S. Sato, and K. Kise, “Effective Parallel
Simulation of ArchHDL under Manycore Environment,” Proc. 3rd
International Symposium on Computing and Networking -Across
Practical Development and Theoretical Research- (CANDAR ’15),
Dec. 2015.

[4] G. Marsaglia, “Xorshift RNGs,” J. Statistical Software, vol.8, no.14,
pp.1–6, 2003.

[5] Parthenon Web page. http://www.kecl.ntt.co.jp/parthenon/.
[6] C. Kon and N. Shimizu, “The design of an i8080a instruction com-

patible processor with extended memory address,” Proc. 2003 Asia
and South Pacific Design Automation Conference (ASP-DAC ’03),
pp.571–572, 2003.

[7] H. Hayasaka, H. Haramiishi, and N. Shimizu, “The design of PCI
bus interface,” Proc. 2003 Asia and South Pacific Design Automa-
tion Conference (ASP-DAC ’03), pp.579–580, 2003.

[8] K. Uehara, S. Sato, T. Miyoshi, and K. Kise, “A study of an in-
frastructure for research and development of many-core processors,”
Proc. International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (PDCAT), pp.414–419, Dec.
2009.

[9] D. Patterson and J. Hennessy, Computer Organization and De-
sign: The Hardware/software Interface, Morgan Kaufmann Series
in Computer Graphics, Morgan Kaufmann, 2012.

[10] W. Dally and B. Towles, Principles and Practices of Interconnection

http://dx.doi.org/10.1109/mcsoc.2013.38
http://dx.doi.org/10.1109/mcsoc.2013.38
http://dx.doi.org/10.1109/mcsoc.2013.38
http://dx.doi.org/10.1109/mcsoc.2013.38
http://dx.doi.org/10.1109/candar.2015.93
http://dx.doi.org/10.1109/candar.2015.93
http://dx.doi.org/10.1109/candar.2015.93
http://dx.doi.org/10.1109/candar.2015.93
http://dx.doi.org/10.1109/candar.2015.93
http://dx.doi.org/10.18637/jss.v008.i14
http://dx.doi.org/10.18637/jss.v008.i14
http://dx.doi.org/10.1109/aspdac.2003.1195083
http://dx.doi.org/10.1109/aspdac.2003.1195083
http://dx.doi.org/10.1109/aspdac.2003.1195083
http://dx.doi.org/10.1109/aspdac.2003.1195083
http://dx.doi.org/10.1109/aspdac.2003.1195087
http://dx.doi.org/10.1109/aspdac.2003.1195087
http://dx.doi.org/10.1109/aspdac.2003.1195087
http://dx.doi.org/10.1109/pdcat.2009.77
http://dx.doi.org/10.1109/pdcat.2009.77
http://dx.doi.org/10.1109/pdcat.2009.77
http://dx.doi.org/10.1109/pdcat.2009.77
http://dx.doi.org/10.1109/pdcat.2009.77


SATO et al.: ARCHHDL: A NOVEL HARDWARE RTL MODELING AND HIGH-SPEED SIMULATION ENVIRONMENT
353

Networks, The Morgan Kaufmann Series in Computer Architecture
and Design, Elsevier Science, 2004.

[11] M.A. Kinsy, M. Pellauer, and S. Devadas, “Heracles: A Tool for
Fast RTL-based Design Space Exploration of Multicore Proces-
sors,” Proc. ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’13), pp.125–134, 2013.

[12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in
a scala embedded language,” Proc. 49th Annual Design Automation
Conference (DAC ’12), New York, NY, USA, pp.1216–1225, ACM,
2012.

[13] “IEEE standard for Standard SystemC Language Reference Man-
ual,” IEEE std. 1666-2011, 2011.

[14] J. Decaluwe, “MyHDL: a python-based hardware description lan-
guage,” Linux J., vol.2004, no.127, pp.5–, Nov. 2004.

[15] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A Unified Frame-
work for Vertically Integrated Computer Architecture Research,”
Proc. 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO ’14), pp.280–292, Dec. 2014.

[16] MyHDL Web page. http://www.myhdl.org/doku.php/performance.
[17] Verilator Web page. https://www.veripool.org/.
[18] M. Nanjundappa, H.D. Patel, B.A. Jose, and S.K. Shukla, “SCGP-

Sim: A fast SystemC simulator on GPUs,” Proc. 15th Asia and South
Pacific Design Automation Conference (ASP-DAC ’10), pp.149–
154, Jan. 2010.

[19] S. Vinco, V. Bertacco, D. Chatterjee, and F. Fummi, “SAGA: Sys-
temC acceleration on GPU architectures,” Proc. 2012 Design Au-
tomation Conference (DAC ’12), pp.115–120, June 2012.

[20] H. Qian and Y. Deng, “Accelerating RTL simulation with GPUs,”
Proc. 2011 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’11), pp.687–693, Nov. 2011.

[21] C. Roth, S. Reder, H. Bucher, O. Sander, and J. Becker, “Adaptive
algorithm and tool flow for accelerating systemc on many-core ar-
chitectures,” Proc. 17th Euromicro Conference on Digital System
Design, pp.137–145, Aug. 2014.

[22] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, S. Jain, V.
Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-
Larsen, S. Steibl, S. Borkar, V.K. De, and R.V.D. Wijngaart, “A
48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-
Passing and DVFS for Performance and Power Scaling,” IEEE J.
Solid-State Circuits, vol.46, no.1, pp.173–183, Jan. 2011.

[23] E.A. Carara, R.P. de Oliveira, N.L.V. Calazans, and F.G. Moraes,
“HeMPS - a framework for NoC-based MPSoC generation,” Proc.
2009 IEEE International Symposium on Circuits and Systems,
pp.1345–1348, May 2009.

Shimpei Sato received the B.E., M.E.,
and D.E. degrees in engineering from Tokyo In-
stitute of Technology, Tokyo, Japan, in 2007,
2009, and 2014, respectively. He is currently an
Assistant Professor with the Department of In-
formation and Communications Engineering of
Tokyo Institute of Technology. From 2014 to
2016, he worked in High performance comput-
ing area as a post doctoral researcher, where he
investigated an application performance analy-
sis/tuning method. His current research interests

include approximate computing realization by architecture design and cir-
cuit design and their applications. He is a member of IEEE, ACM, and
IPSJ.

Ryohei Kobayashi received the M.E de-
gree and the Ph.D. degree from Tokyo Insti-
tute of Technology, Japan in 2013 and 2016.
He is currently an assistant professor of Cen-
ter for Computational Sciences, University of
Tsukuba, Japan. His research interests include
FPGA systems for high performance comput-
ing. He is a member of IPSJ.

Kenji Kise received the B.E. degree from
Nagoya University in 1995, the M.E. degree and
the Ph.D. degree from the University of Tokyo
in 1997 and 2000 respectively. He is currently
an associate professor of School of Computing,
Tokyo Institute of Technology. His research in-
terests include computer architecture and paral-
lel processing. He is a member of ACM, IEEE,
and IPSJ.

http://dx.doi.org/10.1145/2435264.2435287
http://dx.doi.org/10.1145/2435264.2435287
http://dx.doi.org/10.1145/2435264.2435287
http://dx.doi.org/10.1145/2435264.2435287
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1109/micro.2014.50
http://dx.doi.org/10.1109/micro.2014.50
http://dx.doi.org/10.1109/micro.2014.50
http://dx.doi.org/10.1109/micro.2014.50
http://dx.doi.org/10.1109/aspdac.2010.5419903
http://dx.doi.org/10.1109/aspdac.2010.5419903
http://dx.doi.org/10.1109/aspdac.2010.5419903
http://dx.doi.org/10.1109/aspdac.2010.5419903
http://dx.doi.org/10.1145/2228360.2228382
http://dx.doi.org/10.1145/2228360.2228382
http://dx.doi.org/10.1145/2228360.2228382
http://dx.doi.org/10.1109/iccad.2011.6105404
http://dx.doi.org/10.1109/iccad.2011.6105404
http://dx.doi.org/10.1109/iccad.2011.6105404
http://dx.doi.org/10.1109/dsd.2014.62
http://dx.doi.org/10.1109/dsd.2014.62
http://dx.doi.org/10.1109/dsd.2014.62
http://dx.doi.org/10.1109/dsd.2014.62
http://dx.doi.org/10.1109/jssc.2010.2079450
http://dx.doi.org/10.1109/jssc.2010.2079450
http://dx.doi.org/10.1109/jssc.2010.2079450
http://dx.doi.org/10.1109/jssc.2010.2079450
http://dx.doi.org/10.1109/jssc.2010.2079450
http://dx.doi.org/10.1109/jssc.2010.2079450
http://dx.doi.org/10.1109/iscas.2009.5118013
http://dx.doi.org/10.1109/iscas.2009.5118013
http://dx.doi.org/10.1109/iscas.2009.5118013
http://dx.doi.org/10.1109/iscas.2009.5118013

