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SUMMARY For a pre-trained deep convolutional neural network (CNN)
for an embedded system, a high-speed and a low power consumption are
required. In the former of the CNN, it consists of convolutional layers,
while in the latter, it consists of fully connection layers. In the convolu-
tional layer, the multiply accumulation operation is a bottleneck, while the
fully connection layer, the memory access is a bottleneck. The binarized
CNN has been proposed to realize many multiply accumulation circuit on
the FPGA, thus, the convolutional layer can be done with a high-seed op-
eration. However, even if we apply the binarization to the fully connec-
tion layer, the amount of memory was still a bottleneck. In this paper,
we propose a neuron pruning technique which eliminates almost part of
the weight memory, and we apply it to the fully connection layer on the
binarized CNN. In that case, since the weight memory is realized by an
on-chip memory on the FPGA, it achieves a high-speed memory access.
To further reduce the memory size, we apply the retraining the CNN after
neuron pruning. In this paper, we propose a sequential-input parallel-output
fully connection layer circuit for the binarized fully connection layer, while
proposing a streaming circuit for the binarized 2D convolutional layer. The
experimental results showed that, by the neuron pruning, as for the fully
connected layer on the VGG-11 CNN, the number of neurons was reduced
by 39.8% with keeping the 99% baseline accuracy. We implemented the
neuron pruning CNN on the Xilinx Inc. Zynq Zedboard. Compared with
the ARM Cortex-A57, it was 1773.0 times faster, it dissipated 3.1 times
lower power, and its performance per power efficiency was 5781.3 times
better. Also, compared with the Maxwell GPU, it was 11.1 times faster, it
dissipated 7.7 times lower power, and its performance per power efficiency
was 84.1 times better. Thus, the binarized CNN on the FPGA is suitable
for the embedded system.
key words: machine learning, deep learning, pruning, FPGA

1. Introduction

1.1 Embedded Computer Vision Systems

The embedded computer vision systems emulates the hu-
man vision, and they are used in the wide applications as
follows: a human face recognition [27], a human and object
detection [14], a human pose estimation [30], a string recog-
nition in a scene [15], a road traffic sign recognition [6], a
sport scene recognition [19], and a human action recogni-
tions [9], [18], respectively. These application requires high
accuracy, low power, and high performance.
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1.2 Convolutional Deep Neural Network (CNN)

Recently, for these systems, a convolutional deep neural
network (CNN), which consists of the 2D convolutional
layers and the fully connected neural network, is widely
used. Since the CNN emulates the human vision, it has
a high accuracy for an image recognition. Previous re-
searches showed that the CNN outperforms conventional
techniques. With the increase of the number of layers, the
CNN can increase classification accuracy. Thus, a large-
scale CNN is desired. To keep up with the real-time re-
quirement of the embedded vision system, since the exist-
ing system using a CPU is too slow, the acceleration of the
CNN is necessary [21]. Most software-based CNNs use the
GPUs [2], [3], [7], [28], [29]. Unfortunately, since the GPU
consumes much power, they are unsuitable for the embed-
ded system [10]. Thus, FPGA-based CNNs are required for
a low-power and a real-time embedded vision system. As
for the classification accuracy, the CNN using a fixed-point
representation has almost the same accuracy as one using a
floating-point representation [12]. The FPGA can use a min-
imum precision which reduces the hardware resources and
increases the clock frequency, while the GPU cannot do it.
A previous work [10] reported that, as for the performance
per power, the FPGA-based CNN is about 10 times more
efficient than the GPU-based one.

1.3 Problems of the Conventional CNNs

Typically, the CNN consists of the convolutional layers and
the fully connected layers. Figure 1 (a) shows that opera-
tions demanded in different layers, while that for (b) shows
that the number of weights in different layers [32]. As shown
these figures, in the convolutional layers, the multiply accu-
mulation operation is a bottleneck, while in the fully con-
nected layers, the memory accesses is a bottleneck. The bi-
narized CNN [8] has been proposed to realize many multiply
accumulation circuit on the FPGA, thus, the convolutional
layer can be done with a high-speed operation. However,
even if we apply the binarization to the fully connection
layer, the amount of memory was still a bottleneck. In the
paper, we propose the neuron pruning to reduce the mem-
ory size. Figure 2 (a) shows an example of edge pruning
of the fully connected layer. In the conventional techniques,
the randomly pruning techniques of edges have been pro-
posed [1], [16]. However, in the hardware realization point
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Fig. 1 The complexity distribution of state-of-the-art CNN models: (a)
Distribution of operations by theoretical estimation; (b) Distribution of
weight number [32].

of view, since the memory access of the sequential address is
suitable, the random edge pruning may cause a performance
degradation.

1.4 Proposed Method

The previous work showed that the neuron pruning for the
floating point precision (non-binary) CNN can reduce the
number of neurons. In the paper, we propose a neuron prun-
ing instead of the edge pruning to the binarized CNN. Fig-
ure 2 (b) shows an example of neuron pruning of the fully
connected layer. Since by pruning all the incoming and the
outgoing edges of a neuron is equivalent to the neuron prun-
ing, in general, the edge pruning can eliminate more edges
than neuron pruning. However, even if the neuron pruning
is applied, since it maintains the sequential memory access,
it is suitable for the hardware realization. Since the pro-
posed neuron pruning can eliminate almost edges, we can
store all the remaining edges into the on-chip memory on
the FPGA. In the paper, we propose the serial-input parallel-
output circuit for the fully connected layer. To realize a
high-performance circuit, it efficiently uses on-chip mem-
ories and DSP slices on the FPGA. In the experiment, we
show that the FPGA based realization outperforms than the
CPU and the GPU realizations.

1.5 Contributions of the Paper

The previous contributions [13] were as follows:

1. We proposed the threshold based neuron pruning tech-
niques for the FPGA realization of the fully connected
layer on the deep neural network. The proposed one

Fig. 2 Comparison of pruning techniques.

is suitable to the on-chip realization of the FPGA. The
experimental result showed that as for the 99% accu-
racy, it eliminated the number of neurons by 89.3% for
the VGG-11 CNN.

2. We proposed the sequential-input parallel-output cir-
cuit for the fully connected layer. It efficiently uses
on-chip memories and DSP slices on the FPGA. Since
the proposed circuit can store all the weights of the
fully connected layer, it can realize a wide band of the
memory access. Our technique is a complementary to
the conventional techniques that accelerate the convo-
lutional layers for the FPGA. We expanded the appli-
cability of the CNN using the FPGA.

3. We applied the neuron pruning for the fully connected
layers on the VGG-11 CNN, then implemented them
on the Digilent Inc. NetFPGA-1G-CML board. Our
FPGA implementation outperformed the GPU and the
CPU implementations.

The previous work only applied the neuron pruning to
the floating point precision CNN, while in the paper, we ap-
plied the neuron pruning to the binarized CNN. As far as we
know, this is the first report. Additionally, in the paper, new
contributions are as follows:

1. We reduced the number of neurons using the neuron
pruning technique to the binarized fully connection
layer, whose memory size was the bottleneck.

2. To further reduction, we applied the neuron pruning
with retraining to the binarized deep neural network.
With this technique, we successfully reduced the num-
ber of neurons for the fully connection layer.

3. The previous work only implemented the fully con-
nection layers, while in the paper, we implemented all
layers of the binarized CNN on the Xilinx Inc. Zed-
board. Compared with the ARM Cortex-A57, it was
1773.0 times faster, it dissipated 3.1 times lower power,
and its performance per power efficiency was 5781.3
times better. Also, compared with the Maxwell GPU,
it was 11.1 times faster, it dissipated 7.7 times lower
power, and its performance per power efficiency was
84.1 times better. Thus, we showed that the binarized
CNN on the FPGA is suitable for the embedded sys-
tem.

This paper is the updated version of the previous pub-
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lication [13].

1.6 Organization of the Paper

The rest of the paper is organized as follows: Sect. 2
introduces the binarized convolutional deep neural net-
work (CNN); Sect. 3 introduces the neuron pruning in the
fully connected (FC) layer on the CNN; Sect. 4 shows the
proposed architecture; Sect. 5 shows the experimental re-
sults; and Sect. 6 concludes the paper.

2. Binarized Convolutional Deep Neural Network
(CNN)

Figure 3 shows a typical convolutional deep neural net-
work (CNN), which consists of sequential layers includ-
ing a convolutional layer, a pooling layer, and a fully con-
nected (FC) layer. In the paper, we assume that the pre-
trained CNN is given, and the goal is to realize only infer-
ence with high-performance and small hardware. In this sec-
tion, we briefly introduce a binarized CNN. Then, we will
show a specific VGG-11 for the CIFAR-10 image classifica-
tion task [5], which is our target.

2.1 Convolutional Layer

Both the convolutional and FC layers are variations of an
artificial neural network (ANN). Figure 4 shows a model of
an ANN, which is calculated as follows:

Z = fact(
n∑

i=0

WiXi), (1)

where Z is the output, Xi is the input, Wi is the weight,
and n is the number of input. Note that, when i = 0, we
assume that X0 = 1. In that case, W0 becomes a constant

Fig. 3 Typical convolutional deep neural network (CNN).

Fig. 4 Model of an artificial neural network.

value, and it is called a bias, which adjusts the output of
a neuron to keep a recognition accuracy. fact denotes the
activation function, such as the rectified linear unit (ReLU),
the hyperbolic tangent function, and the sigmoid function.

As shown in Fig. 5, a 2D convolutional layer in the
CNN is similarly to the FC layer. It applies the ANN op-
eration to the K × K size kernel on the feature map, where
K denotes the kernel size. It greatly reduces the number
of parameters involved, allows local features, and avoid the
over-fitting. Let l be the layer index. The output Zl,r,c of the
ith convolutional layer, which takes an input Ni images (fea-
ture maps) of dimension K×K at location (r, c), is calculated
as follows:

Zl,r,c = fact(
Ni∑

s=0

K∑
j=0

K∑
l=0

Wi, j,l,sXi−1,s,r+ j,c+k), (2)

where K × K are the dimensions of the kernel for the
convolution operation.

2.2 Binarized CNN

Courbariaux et al. developed two types of the binarized
CNN [8]. The first version is only weight binarized, while
the later version is both weights and inputs are binarized.
Similar works [20], [25], [35] consider full binarized CNN,
however, their binarized one drops the recognition accuracy
compared with floating-point precision CNNs. For instance,
for the best-case ImageNet top-1 accuracies of 43% for full
binarization and 53% for partial binarization.

Courbariaux et al. did not drop the accuracy for
the binarized CNN, since they used a batch normalization
technique, which reduces the information lost during low-
precision by linearly shifting and scaling the dataset distri-
bution to keep zero mean and unit variance. Thus, it covers
binarization error compared to an arbitrary input distribu-
tion. It reported the considerable accuracy on the MNIST,
SVHN, and CIFAR-10 tasks. However, since the normal-
ization is also necessary during an inference, it becomes a
bottleneck and requires additional hardware. Since it is only

Fig. 5 Example of a convolutional layer.
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Table 1 Truth table for a binarized
(−1/ + 1) multiplication y = w × x.

w x w × x
−1 −1 +1
−1 +1 −1
+1 −1 −1
+1 +1 +1

Table 2 Truth table for a binarized (0/1)
multiplication y = w ⊕ x.

w x w ⊕ x
0 0 1
0 1 0
1 0 0
1 1 1

necessary to calculate the sign bit of the activation function,
a normalization operation is done by integered bias [31].
Thus, in the hardware implementation, we use the integered
bias instead of the binarized one.

Table 1 shows a truth table for a binarized (−1/ + 1)
multiplication, while Table 2 shows that for (0/1) assigned
binarized one. In that case, the multiplication is performed
by the XNOR circuit. Thus, in the binarized convolutional
operation is calculated by

zl,r,c = fsgn(
Ni∑

s=0

K∑
j=0

K∑
l=0

wi, j,l,s ⊕ xi−1,s,r+ j,c+k), (3)

where fsgn(Y) denotes a binarized activation function
as follows:

fsgn(Y) =

{
1 (i f Y ≥ 0)
0 (otherwise)

(4)

In a similar way, in the binarized FC layer is calculated
by

z = fsgn(
n∑

l=0

wl ⊕ xl), (5)

Suppose that Y =
∑n

l=0 wl ⊕ xl, Expr. (5) denotes a ma-
jority function, such as fma jor(Y). The majority function
produces “1” when more than half of the inputs are 1, oth-
erwise, it produces “0” when more than half the inputs are
0.

2.3 VGG-11 CNN for the CIFAR-10 Image Classification
Task

The CIFAR-10 dataset [5] consists of 60,000 color images
of 32×32 pixels, and the images are categorized into 10
classes (i.e., airplane, truck, cat, horse, etc.) and labels have
already given. Table 3 shows specifications for the original
VGG-11 benchmark CNN [26], which is widely used in the
computer vision system, and it contains layers. The basic
layers consist of multiple 2D convolution layers with K = 3
and max-pooling layers, while the rear layers consist of fully
connected neural networks. First, it receives a normalized

Table 3 Specifications for the original VGG-11 [26].

Layer Output Input Output
Dim. # Fmaps Fmaps

Conv1 32× 32 3 64
Conv2 32× 32 64 64
Max Pool 16× 16 64 64
Conv3 16× 16 64 128
Conv4 16× 16 128 128
Conv5 16× 16 128 128
Max Pool 8× 8 128 128
Conv6 8× 8 128 256
Conv7 8× 8 256 256
Conv8 8× 8 256 256
Max Pool 4× 4 256 256
FC1 1× 1 4096 4096
FC2 1× 1 4096 4096
FC3 1× 1 4096 10

32 × 32 image, which consists of 8-bit RGB color data.

3. Threshold Neuron Pruning

3.1 Definition

In the paper, we propose the threshold neuron pruning in-
stead of the edge pruning. Figure 6 shows that a model for
the neuron pruning. Suppose that a target neuron is con-
nected to n incoming edges with weight Win,k and m out-
going edges with weight Wout,k, where k denotes the index
variable. If all the incoming edges and the outgoing ones
of a neuron are eliminated, it means the neuron pruning
itself. Experimentally, the edge pruning eliminates more
edges than the neuron pruning. In Sect. 5.3, we show the
experimental result. However, since the edge pruning ran-
domly eliminates edges, it is not suitable for the hardware
realization, which requires sequential memory access. On
the other hand, since the neuron pruning eliminates all the
incoming and outgoing edges, it maintains the sequentially
memory access of weights. Thus, it is suitable for the hard-
ware realization.

First, we define the neuron pruning.

Definition 3.1: A neuron pruning eliminates all the in-
coming and outgoing edges for a neuron.

In the paper, we propose a threshold neuron pruning.

Definition 3.2: A threshold neuron pruning performs the
neuron pruning when the sum of the input weights or that of
outputs is lower than the threshold.

There are various decisions of thresholds for the neu-
ron pruning. In the paper, the threshold neuron pruning is
performed, when one of the following conditions is satis-
fied:

1.
∑n

k=1 |win,k | < µi × n
2.
∑m

k=1 |wout,k | < µo × m,

where win,k denotes the k-th weight for the incoming
edge, wout,k denotes the k-th weight for the outgoing one, µi

denotes the threshold for the incoming edge, and µo denotes
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Fig. 6 Model of a neuron pruning.

that for the outgoing edge (Fig. 6). In this paper, different
thresholds are used for incoming edges and outgoing ones.

3.2 Retraining for the Threshold Neuron Pruning

The neuron pruning is similar to the Synaptic pruning. The
human brain has the process of pruning inherently. Five
times synapses are pruned away from infant age to adult-
hood [16]. A similar rule can be applied to artificial neu-
ral networks. The neuron pruning proved to be a valid way
to reduce the network complexity and overfitting [17]. This
method works on modern neural networks as well. We be-
gin by training the connectivity via the normal binarized net-
work. Next, we prune the small-weight connections by the
proposed neuron pruning. As a result, all connections with
weights below a threshold are removed from the network.
Finally, we retrain the network to learn the final weights
for the remaining sparse connections. By applying pruning-
retraining step by step, the number of neurons tends to be
saturated. In the experiment, we will show this for the bina-
rized fully connection layers.

4. Binarized CNN Architecture for the FPGA Imple-
mentation

4.1 Shared XNOR-MAC Circuit with Streaming Opera-
tion

Although we used the binarized MAC operation instead of
the floating-point one, it consumes much hardware to realize
the fully parallel XNOR-MAC operation. Since the typical
CNN has the different number of feature maps in the layer,
a heterogeneous streaming architecture requires many LUTs
for a large size of XNOR operations.

In the paper, to realize the high-performance with less
hardware, we proposed a shared XNOR-MAC circuit sup-
porting a streaming operation as shown in Fig. 7. To re-
duce the memory access, we use the shift register to make a
streaming data flow from the memory for the feature map.
Also, it shares the different size of XNOR-MAC circuit into
a single bitwise XNOR circuit followed by adder-trees, bias
adder, and a write controller. The circuit reads the corre-
sponding inputs from the shift register, then it applies to the
bitwise binarized MAC operation. Next, it adds the pre-

Fig. 7 Streaming binarized 2D convolutional circuit.

Fig. 8 Shared streaming binary 2D convolutional circuit.

computed bias, which is obtained by both the pre-trained
bias and the batch normalization value. Since the kernel
crosses the boundary of the feature map, we attach the write
control logic to the output of the circuit.

To further increase the performance, we propose the
shared streaming binary 2D convolutional circuit shown in
Fig. 8. To flexibility access to all feature maps, multiple on-
chip BRAMs are used to realize multi-port with wide band
memory access speed. In contract, to read the weight, we
use the off-chip memories, since the convolutional operation
reads it at intervals for each feature map. Since we use the
binarized CNN, the memory size is drastically reduced com-
pared with non-binarized one. Since our CNN eliminates
internal FC layers, the weight memories also eliminated.

4.2 Circuit for the Binarized Fully Connected Layers After
Threshold Neuron Pruning

Figure 9 shows the serial-input parallel-output (SIPO) fully
connected layer [11]. As shown in Fig. 9, it can reduce the
memory bandwidth for the primary input. To realize the
SIPO fully connected layer, it requires the sequentially mul-
tiply accumulation (MAC) circuit to emulates the artificial
neuron shown in Fig. 4 sequentially. Figure 10 shows a se-
quential MAC circuit for the binarized neural network. It
consists of the register and the XNOR gate to realized the
binarized multiplication. Initially, it reset the value of the
register to the bias value. Then, it updates the value for
the neuron with performing the MAC operation sequentially.
Finally, it sends the sign bit to the external output to realize
the sign activation function. The MAC operation is realized



FUJII et al.: A THRESHOLD NEURON PRUNING FOR A BINARIZED DEEP NEURAL NETWORK ON AN FPGA
381

Fig. 9 Serial-input Parallel-output (SIPO) fully connected layer [11].

Fig. 10 Sequential multiply accumulation (MAC) circuit for the bina-
rized neural network.

Fig. 11 Circuit for a SIPO binarized fully connected layer.

by the DSP slice on the FPGA. Figure 11 shows the circuit
for the SIPO fully connected layer. In the circuit, the bi-
narized weight memory stores the weight value, and it is
read for corresponding input xi. The sequential MAC cir-
cuit updates the value for neurons sequentially. Figure 12
shows the circuit for SIPO fully connected layers with the
threshold neuron pruning. The most of the weights are elim-
inated by the neuron pruning, and only a few part of weights
is packed in the weight memories. Since the FPGA can
realize the appropriate size of the memory with the block
RAMs (BRAM) and the distributed memories, it is suitable
to realize the neuron pruning. All the weights for each layer
are read, and the output neurons are updated at a time. Af-
ter all the inputs are evaluated, it transfers the values for the
output neurons to the shift register. Then, the next layer is
evaluated by shifting the value of the shift register. When
all the layers are evaluated, the values for the output neu-
rons are sent to the external output.

Fig. 12 Circuit for SIPO binarized fully connected layers with the
threshold neuron pruning.

Fig. 13 Overall architecture.

4.3 Overall Architecture

Figure 13 shows the architecture for the proposed binarized
CNN. The memory access circuit is almost the same as the
conventional one, however, the memory part is realized by
the on-chip block RAMs (BRAM). The proposed architec-
ture has the shift registers and buffers to access indices for
the corresponding kernel. In our implementation, we realize
the binarized multiplier by an XNOR gate, while requires
no DSP blocks for the convolutional operation. The on-chip
memories (BRAMs) stores inputs, and outputs for all the
feature maps, and the off-chip memories (DDR3SDRAM)
stores weights. Thus, our architecture efficiently uses of the
BRAMs while it saves additional memory and keeps the per-
formance. Also, our implementation achieves higher com-
putation speed than conventional one, since it performs a
convolutional operation for 256 feature maps at a time.

5. Experimental Results

5.1 Threshold Neuron Pruning with Re-Training

We designed the CNN using a Chainer which is a deep neu-
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Table 4 Number of neurons after the neuron pruning. Note that, we retain the 99% baseline accuracy.

Step 1 2 3 4 5 6 7 8 9 10 11 12 13
FC 1 4,096 2,259 1,578 1,458 1,457 1,457 1,457 1,454 1,454 1,454 1,454 1,454 1,454
FC 2 4,096 3,853 3,826 3,754 3,716 3,716 3,534 3,456 3,456 3,447 3,426 3,421 3,395
FC 3 4,096 3,438 1,149 1,059 498 373 193 102 89 57 54 51 37
FC 4 10 10 10 10 10 10 10 10 10 10 10 10 10
Total 12,298 9,560 6,563 6,281 5,681 5,556 5,194 5,022 5,009 4,968 4,944 4,936 4,896
Ratio 1.00 0.78 0.53 0.51 0.46 0.45 0.42 0.41 0.41 0.40 0.40 0.40 0.39

Table 5 Threshold values for each steps.

Step 1→2 2→3 3→4 4→5 5→6 6→7 7→8 8→9 9→10 10→11 11→12 12→13
FC 1 µi 0.3168 0.3375 0.3430 0.3470 0.3500 0.3508 0.3547 0.3500 0.3530 0.3530 0.3530 0.3525

µo 0.3143 0.3278 0.3401 0.3547 0.3650 0.3650 0.3753 0.3750 0.3753 0.3751 0.3762 0.3769
FC 2 µi 0.2206 0.2412 0.2310 0.2430 0.2000 0.3117 0.2920 0.2200 0.2640 0.2686 0.2500 0.2848

µo 0.2298 0.3551 0.3654 0.3988 0.4145 0.4270 0.4424 0.4463 0.4480 0.4465 0.4450 0.4461
FC 3 µi 0.0020 0.3900 0.1550 0.3410 0.1458 0.3950 0.4540 0.3500 0.5410 0.1700 0.2450 0.5600

µo — — — — — — — — — — — —

Table 6 Comparison of binarized VGG-11 CNNs (Note that, the integer convolutional layer (IConv1)
uses 1 bit weight and 8 bit input.).

Baseline Neuron Pruning with Retraining
Layer Output Input Output Weight Output Input Output Weight

Dim. # Fmaps Fmaps [bits] Dim. # Fmaps Fmaps [bits]
IConv1 32× 32 3 64 1.7K 32× 32 3 64 1.7K
BConv2 32× 32 64 64 36.8K 32× 32 64 64 36.8K
Max Pool 16× 16 64 64 16× 16 64 64
BConv3 16× 16 64 128 73.7K 16× 16 64 128 73.7K
BConv4 16× 16 128 128 147.4K 16× 16 128 128 147.4K
Max Pool 8× 8 128 128 8× 8 128 128
BConv5 8× 8 128 256 294.9K 8× 8 128 256 294.9K
BConv6 8× 8 256 256 589.8K 8× 8 256 256 589.8K
Max Pool 4× 4 256 256 4× 4 256 256
BFC1 1× 1 4096 4096 16.7M 32× 32 1454 3395 4.4M
BFC2 1× 1 4096 4096 16.7M 32× 32 3395 37 125.6K
BFC3 1× 1 4096 10 40.9K 32× 32 37 10 370
(fc total) (33.6M) (4.5M)

Total 34.7M 5.7M

ral network framework [3], and the target task is the CIFAR-
10 [5] which is an image recognition task. In the experi-
ment, we set an appropriate threshold µ by manually, and ap-
plied the threshold neuron pruning for each fully connected
layer. Then, we retrained the sparse fully connected layer.
We repeated above processes step by step.

Table 4 shows the number of neurons after n reduction
steps, and Table 5 shows the threshold values for each re-
duction steps. Since we cannot eliminate the last layer, we
did not consider µo for the out-going edge. Note that, in the
neuron pruning, when we applied inappropriate threshold to
neuron pruning, the accuracy drastically decreased. Thus,
we carefully set the threshold value by hands. Generally,
when the number of neurons decreases, then recognition ac-
curacy also decreases. In the comparison, we measured the
number of neurons for the original one to keep 99% base-
line accuracy compared with the accuracy for the original
one. By applying pruning-retraining step by step, the num-
ber of neurons tends to be saturated. In the experiment, step
13 may reach to the saturated value, thus, we stop the prun-
ing process. From Table 4, the number of neurons decreased
by 39.8%. In our experiment, for the VGG-11 CNN, we can

realize the weight memory for the fully connected layer by
the on-chip memory on the FPGA. In that case, since it reads
weights with a width bandwidth memory access, it can oper-
ate the fully connected layer with a high-speed. Also, since
it requires no extra off-chip memory, it reduces the power
consumption and costs.

Compared with the previous work [13], which ap-
plies the neuron pruning only once, the proposed pruning-
retraining process can reduce more neurons, and it can be
realized without extra hardware.

5.2 Implementation Results

We implemented the binarized CNN for the VGG-11 on the
Xilinx Inc. Zedboard, which has the Xilinx Zynq FPGA
(XC7Z020, 53,200 Slices, 106,400 FFs, 280 18Kb BRAMs,
220 DSP48Es). We used the Xilinx Inc. SDSoC 2016.4
to generate the bitstream with timing constraint 143 MHz.
Our implementation used 15,680 LUTs, 64 18Kb BRAMs,
and no DSP48Es. Also, it satisfied the timing constraint for
real-time applications. To obtain the delay time, we used
32× 32 pixel image set from the CIFAR10 benchmark, then
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Fig. 14 Relationship between recognition accuracy and memory size re-
duction rate.

we measured a latency for one image. Since the measured
delay time for our CNN was 2.456 msec, its performance
was 407 (frames per second). We measured the total board
power consumption: It was 2.2 W. Thus, the performance
per power efficiency is 185.0 (FPS/Watt), the performance
per LUT is 260.2×10−4 (FPS/LUT), and the performance
per BRAM is 6.38 (FPS/BRAM), respectively.

5.3 Compared with an Edge Pruning Method

We compare the proposed neuron pruning with the edge
pruning. We define the edge pruning.

Definition 5.3: An edge pruning performs the edge prun-
ing when the weight is lower than the threshold value.

In the paper, we manually set the threshold value. We
apply pruning-retraining step by step to the edge pruning.
Figure 14 shows a relationship between recognition accu-
racy and memory size reduction rate, and Table 8 shows
a comparison of the number of edges. From the experi-
ment, the edge pruning can reduce more edge than the neu-
ron pruning, however, it is almost the same value to keeping
99% of baseline accuracy.

We show the circuit for the edge pruning fully connec-
tion layer. We partition the edge pruning fully connection
layer into single output neural networks (NNs) as shown in
Fig. 15. Figure 16 shows a sequential MAC circuit for each
NN. In the circuit, the binarized weight is loaded into the
register, and the MAC operation is performed sequentially.
Figure 17 shows a parallel realization of a sequential MAC
circuit. It computes each single output NNs in parallel.

Let n be the number of inputs, m be the number of out-
puts, and

∑
w be the total number of edges for the edge prun-

ing applied fully connection layer. From Fig. 16, it com-
putes all single output NNs by n steps. As shown in Fig. 12,
it also computes by n steps. Thus, both the circuit for the
edge pruning and that for the neuron pruning take the same
steps. Also, we quantitatively analysis the amount of mem-
ory. From Fig. 17, the flag memory requires nm bits, while
the binarized weight memory requires

∑
w bits. Thus, the

edge pruning circuit requires totally nm +
∑

w bits. On the

Fig. 15 Example of partition of edge pruning fully connection layer.

Fig. 16 Sequential MAC circuit for edge pruning.

Fig. 17 Parallel realization of a sequential MAC circuit for edge pruning.

other hand, from Fig. 12, it requires nm bits. Thus, as for the
memory size, the circuit for the neuron pruning is smaller
than that for the edge pruning. Table 9 compared of the cir-
cuit for pruning methods. From Table 9, the neuron pruning
circuit is smaller than the edge pruning one. Above discus-
sion, as for the circuit point of view, the neuron pruning is
better than the edge pruning.

5.4 Compared with Conventional Binarized CNN Imple-
mentations

Table 7 compares binarized CNN implementations on the
same FPGA. Although the FINN [31] implemented the
VGG16 CNN on the Xilinx zcu102 board (Zynq Ultrascale+
MPSoC), to do fair comparison, we used the open source de-
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Table 7 Comparison with other binarized CNN realizations on the
FPGA.

Implementation Zhao et al. FINN Ours
(Year) (2017) (2017)
FPGA Board Zedboard PYNQ board Zedboard
(FPGA) (XC7Z020) (XC7Z020) (XC7Z020)
Clock (MHz) 143 166 143
# LUTs 46900 42823 15680
# 18Kb BRAMs 94 270 64
# DSP Blocks 3 32 0
Test Error 12.27% 19.9% 18.2%
Time [msec] 5.94 2.24 2.45
(FPS) (168) (445) (408)
Power [W] 4.7 2.5 2.2
FPS/Watt 35.7 178.0 185.0
FPS/LUT 35.8×10−4 103.9×10−4 260.2×10−4

FPS/BRAM 1.8 1.6 6.38

Table 8 Comparison of the number of edges.

Layer Baseline Neuron Pruning Edge Pruning
FC 1 4096 1454 1312
FC 2 4096 3395 3256
FC 3 4096 37 36
FC 4 10 10 10

Table 9 Comparison of the circuit for a pruning method.

Method Neuron Pruning Edge Pruning
Clock (MHz) 143 143
# LUTs 15680 16320
# 18Kb BRAMs 64 96
# DSP Blocks 0 0
Test Error 18.2% 18.2%
Time [msec] 2.45 2.45
(FPS) (408) (408)
Power [W] 2.2 2.3

sign in Github to realize on the Xilinx PYNQ board which
has the same FPGA used in other designs. From Table 7,
compared with Zhao’s implementation [34], the classifica-
tion accuracy was almost the same, as for the performance
per power efficiency (FPS/Watt), it is 5.18 times better,
Compared with the FINN, the memory efficiency was 3.98
time better, and the performance per power efficiency is al-
most the same. Thus, our design achieves power efficiency
CNN, since all the circuits are operated on chip primitives.

5.5 Comparison with the CPU and the GPU

We compared our binarized CNN with other embedded plat-
forms. We used the NVidia Jetson TX1 board which has
both the embedded CPU (ARM Cortex-A57) and the em-
bedded GPU (Maxwell GPU). Following the benchmark-
ing [23], the CPU and GPU run the VGG11 using Caffe [2]
version 0.14. Also, we measured the total power consump-
tion. Note that, in the experiment, to measure the latency,
we set the number of batch size to one.

Table 10 compares our FPGA implementation with
other platforms. Compared with the ARM Cortex-A57, it
was 1773.0 times faster, it dissipated 3.1 times lower power,
and its performance per power efficiency was 5781.3 times

Table 10 Comparison with embedded platforms with respect to the
VGG16 forwarding (Batch size is 1).

Platform Embedded CPU Embedded GPU FPGA
Device ARM Maxwell Zedboard

Cortex-A57 GPU FPGA
Clock Freq. 1.9 GHz 998 MHz 143 MHz
Memory 16GB 4GB 5.0 Mb

eMMC Flash LPDDR4 18KbBRAM
Time [msec] 4210.0 27.23 2.45
(FPS) (0.23) (36.7) (408.1)
Power [W] 7 17 2.2
Efficiency 0.032 2.2 185.0
[FPS/W]

better. Also, compared with the Maxwell GPU, it was 11.1
times faster, it dissipated 7.7 times lower power, and its per-
formance per power efficiency was 84.1 times better. Thus,
the binarized CNN on the FPGA is suitable for the embed-
ded system.

6. Conclusion

In the paper, we proposed the threshold neuron pruning
which eliminates almost part of the weight memory, which
was a bottleneck of the conventional realization. By ap-
plying the threshold neuron pruning, we could realize the
weight memory by on-chip memory on the FPGA. Thus, it
operated with a high-speed memory access. In the paper,
we showed the SIPO fully connected layer circuit, which
is efficiently access to on-chip memories on the FPGA. In
the comparison, we measured the number of neurons for the
original CNN, as for the 99% baseline accuracy, the num-
ber of neurons decreased by 39.8%. We implemented the
neuron pruning CNN on the Xilinx Zedboard. Compared
with the ARM Cortex-A57, it was 1773.0 times faster, it
dissipated 3.1 times lower power, and its performance per
power efficiency was 5781.3 times better. Also, compared
with the Maxwell GPU, it was 11.1 times faster, it dissipated
7.7 times lower power, and its performance per power effi-
ciency was 84.1 times better. Thus, the binarized CNN on
the FPGA is suitable for the embedded system.

Acknowledgments

This research is supported in part by the Grants in Aid for
Scientistic Research of JSPS, and an Accelerated Innova-
tion Research Initiative Turning Top Science and Ideas into
High-Impact Values program (ACCEL) of JST.

References

[1] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of
deep convolutional neural networks,” Computer Research Repos-
itory (CoRR), Dec., 2015. https://arxiv.org/ftp/arxiv/papers/1512/
1512.08571.pdf

[2] Caffe: Deep learning framework, http://caffe.berkeleyvision.org/
[3] Chainer: A powerful, flexible, and intuitive framework of neural

networks, http://chainer.org/
[4] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A

http://dx.doi.org/10.1145/1815961.1815993


FUJII et al.: A THRESHOLD NEURON PRUNING FOR A BINARIZED DEEP NEURAL NETWORK ON AN FPGA
385

dynamically configurable coprocessor for convolutional neural net-
works,” Annual Int’l Symp. on Computer Architecture (ISCA),
pp.247–257, 2010.

[5] The CIFAR-10 data set, http://www.cs.toronto.edu/~kriz/cifar.html
[6] D.C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep

neural networks for image classification,” In Proc. CVPR, 2012.
[7] CUDA-Convent2: Fast convolutional neural network in C++/CUDA,

https://code.google.com/p/cuda-convnet2/
[8] M. Courbariaux, I. Hubara, D. Soudry, R.E. Yaniv, and

Y. Bengio, “Binarized neural networks: Training deep neu-
ral networks with weights and activations constrained to +1
or -1,” Computer Research Repository (CoRR), March 2016,
http://arxiv.org/pdf/1602.02830v3.pdf

[9] J. Donahue, L.A. Hendricks, S. Guadarrama, M. Rohrbach, S.
Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent con-
volutional networks for visual recognition and description,” In Proc.
CVPR, 2015.

[10] A. Dundar, J. Jin, V. Gokhale, B. Martini, and E. Culurciello, “Mem-
ory access optimized routing scheme for deep networks on a mobile
coprocessor,” HPEC2014, pp.1–6, 2014.

[11] C. Farabet, C. Poulet, J.Y. Han, and Y. LeCun, “CNP: An FPGA-
based processor for convolutional networks,” FPL2009, pp.32–37,
2009.

[12] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E.
Culurciello, “Hardware accelerated convolutional neural networks
for synthetic vision systems,” ISCAS2010, pp.257–260, 2010.

[13] T. Fujii, S. Sato, H. Nakahara, and M. Motomura, “An FPGA Real-
ization of a Deep Convolutional Neural Network using a Threshold
Neuron Pruning,” Int’l Symp. on Applied Reconfigurable Comput-
ing (ARC2017), pp.268–290, 2017.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,”
In Proc. CVPR, 2014.

[15] I.J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and Vi. Shet,
“Multi-digit number recognition from street view imagery us-
ing deep convolutional neural networks,” arXiv prprint arXiv:
1312.6082, 2013.

[16] S. Han, H. Mao, and W.J. Dally, “Deep Compression: Compressing
deep neural networks with pruning, trained quantization and huff-
man coding,” ICLR2016, pp.1–14, 2016.

[17] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R.R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv:1207.0580, 2012.

[18] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol.35, no.1, pp.221–231, 2013.

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L.
Fei-Fei, “Large-scale video classification with convolutional neural
networks,” In Proc. CVPR, pp.1725–1732, 2014.

[20] M. Kim and P. Smaragdis, “Bitwise neural networks,” CoRR,
abs/1601.06071, 2016.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol.86,
no.11, pp.2278–2324, 1998.

[22] V. Nair and G.E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” ICML, pp.807–814, 2010.

[23] https://github.com/charlyng/Embedded-Deep-Learning/tree/master/
Benchmark-Performance

[24] M. Peemen, A.A.A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,”
ICCD2013, pp.13–19, 2013.

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural
Networks,” https://arxiv.org/pdf/1603.05279.pdf

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” ICLR2015, pp.1–14, 2015.

[27] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing

the gap to human-level performance in face verification,” In Proc.
CVPR, pp.1701–1708, 2014.

[28] Theano, http://deeplearning.net/software/theano/
[29] Torch: A scientific computing framework for LUTJIT, http://torch.ch/
[30] A. Toshev and C. Szegedy, “Deeppose: Human pose estimatiion via

deep neural networks,” In Proc. CVPR, 2014.
[31] Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M.

Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable Bi-
narized Neural Network Inference,” ISFPGA, 2017. Source code for
the Xilinx PYNQ board: https://github.com/Xilinx/BNN-PYNQ

[32] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N.
Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with embed-
ded FPGA platform for convolutional neural network,” FPGA2016,
pp.26–35, 2016.

[33] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based accelerator design for deep convolutional neural
networks,” FPGA2015, pp.161–170, 2015.

[34] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R.
Gupta, and Z. Zhang, “Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs,” ISFPGA, pp.15–
24, 2017.

[35] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:
Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients,” http://arxiv.org/pdf/1606.06160v2.pdf

Tomoya Fujii received the B.S. degrees
from Tokyo Institute of Technology (Tokyo
Tech), in 2016. Now, he is a master stduent at
Tokyo Institute of Technology, Japan. His cur-
rent research interests include reconfigurable ar-
chitecture and deep learning.

Shimpei Sato received the B.S., M.S., and
Ph. D. degrees in engineering from Tokyo In-
stitute of Technology (Tokyo Tech), in 2007,
2009, and 2014. He is currently an Assis-
tant Professor with the Department of Informa-
tion and Communications Engineering of Tokyo
Tech. From 2014 to 2016, he worked in High
performance computing area as a post doctoral
researcher, where he investigated an applica-
tion performance analysis/tuning method. His
current research interests include approximate

computing realization by architecture design and circuit design and their
applications.

http://dx.doi.org/10.1145/1815961.1815993
http://dx.doi.org/10.1145/1815961.1815993
http://dx.doi.org/10.1145/1815961.1815993
http://dx.doi.org/10.1145/1815961.1815993
http://dx.doi.org/10.1109/cvpr.2012.6248110
http://dx.doi.org/10.1109/cvpr.2012.6248110
http://dx.doi.org/10.1109/cvpr.2015.7298878
http://dx.doi.org/10.1109/cvpr.2015.7298878
http://dx.doi.org/10.1109/cvpr.2015.7298878
http://dx.doi.org/10.1109/cvpr.2015.7298878
http://dx.doi.org/10.1109/hpec.2014.7040963
http://dx.doi.org/10.1109/hpec.2014.7040963
http://dx.doi.org/10.1109/hpec.2014.7040963
http://dx.doi.org/10.1109/fpl.2009.5272559
http://dx.doi.org/10.1109/fpl.2009.5272559
http://dx.doi.org/10.1109/fpl.2009.5272559
http://dx.doi.org/10.1109/iscas.2010.5537908
http://dx.doi.org/10.1109/iscas.2010.5537908
http://dx.doi.org/10.1109/iscas.2010.5537908
http://dx.doi.org/10.1007/978-3-319-56258-2_23
http://dx.doi.org/10.1007/978-3-319-56258-2_23
http://dx.doi.org/10.1007/978-3-319-56258-2_23
http://dx.doi.org/10.1007/978-3-319-56258-2_23
http://dx.doi.org/10.1109/cvpr.2014.81
http://dx.doi.org/10.1109/cvpr.2014.81
http://dx.doi.org/10.1109/cvpr.2014.81
http://dx.doi.org/10.1109/tpami.2012.59
http://dx.doi.org/10.1109/tpami.2012.59
http://dx.doi.org/10.1109/tpami.2012.59
http://dx.doi.org/10.1109/cvpr.2014.223
http://dx.doi.org/10.1109/cvpr.2014.223
http://dx.doi.org/10.1109/cvpr.2014.223
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/iccd.2013.6657019
http://dx.doi.org/10.1109/iccd.2013.6657019
http://dx.doi.org/10.1109/iccd.2013.6657019
http://dx.doi.org/10.1109/cvpr.2014.220
http://dx.doi.org/10.1109/cvpr.2014.220
http://dx.doi.org/10.1109/cvpr.2014.220
http://dx.doi.org/10.1109/cvpr.2014.214
http://dx.doi.org/10.1109/cvpr.2014.214
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/3020078.3021741


386
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.2 FEBRUARY 2018

Hiroki Nakahara received the B.E.,
M.E., and Ph.D. degrees in computer science
from Kyushu Institute of Technology, Fukuoka,
Japan, in 2003, 2005, and 2007, respectively. He
has held research/faculty positions at Kyushu In-
stitute of Technology, Iizuka, Japan, Kagoshima
University, Kagoshima, Japan, and Ehime Uni-
versity, Ehime, Japan. Now, he is an asso-
ciate professor at Tokyo Institute of Technol-
ogy, Japan. He was the Workshop Chairman
for the International Workshop on Post-Binary

ULSI Systems (ULSIWS) in 2014, 2015, 2016 and 2017, respectively. He
served the Program Chairman for the International Symposium on 8th
Highly-Efficient Accelerators and Reconfigurable Technologies (HEART)
in 2017. He received the 8th IEEE/ACM MEMOCODE Design Contest 1st
Place Award in 2010, the SASIMI Outstanding Paper Award in 2010, IPSJ
Yamashita SIG Research Award in 2011, the 11st FIT Funai Best Paper
Award in 2012, the 7th IEEE MCSoC-13 Best Paper Award in 2013, and the
ISMVL2013 Kenneth C. Smith Early Career Award in 2014, respectively.
His research interests include logic synthesis, reconfigurable architecture,
digital signal processing, embedded systems, and machine learning. He is
a member of the IEEE, the ACM, and the IEICE.


