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SUMMARY Knowledge graphs (KG) play a crucial role in many mod-
ern applications. However, constructing a KG from natural language text
is challenging due to the complex structure of the text. Recently, many ap-
proaches have been proposed to transform natural language text to triples
to obtain KGs. Such approaches have not yet provided efficient results
for mapping extracted elements of triples, especially the predicate, to their
equivalent elements in a KG. Predicate mapping is essential because it can
reduce the heterogeneity of the data and increase the searchability over a
KG. In this article, we propose T2KG, an automatic KG creation frame-
work for natural language text, to more effectively map natural language
text to predicates. In our framework, a hybrid combination of a rule-based
approach and a similarity-based approach is presented for mapping a pred-
icate to its corresponding predicate in a KG. Based on experimental results,
the hybrid approach can identify more similar predicate pairs than a base-
line method in the predicate mapping task. An experiment on KG creation
is also conducted to investigate the performance of the T2KG. The exper-
imental results show that the T2KG also outperforms the baseline in KG
creation. Although KG creation is conducted in open domains, in which
prior knowledge is not provided, the T2KG still achieves an F1 score of
approximately 50% when generating triples in the KG creation task. In
addition, an empirical study on knowledge population using various text
sources is conducted, and the results indicate the T2KG could be used to
obtain knowledge that is not currently available from DBpedia.
key words: knowledge graph, knowledge discovery, knowledge extraction,
linked data

1. Introduction

A knowledge graph (KG) stores knowledge in the form of a
graph, in which a node represents an entity and an edge de-
notes the relationship between entities. Well-known exam-
ples of KGs are DBpedia [1], Freebase [2] and YAGO [3].
These KGs play an important role in applications such as
answering queries, browsing knowledge and data visual-
ization. New knowledge is constantly becoming available;
however, it is usually in the form of natural language text,
which is not straightforward to transfer to a KG. Further-
more, the rate of publication of natural language text is in-
creasing dramatically [4].

Recently, many approaches have been proposed to ex-
tract knowledge as a triple (subject, predicate, object) from
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text [4]–[10]. Although these approaches perform well for
extracting triples from text, they still have limitations re-
garding the mapping of the elements of a triple, especially
the predicate, to its corresponding element in a KG. Map-
ping elements of a triple to its identity in a KG is necessary
because it can reduce the heterogeneity of the data and in-
crease the searchability over a KG. Many studies have fo-
cused on mapping entities, which are usually the subject or
object of triples, to their counterpart in a KG [9], [11], [12].
Mapping the predicate is usually not considered, although
a study [10] introduced a procedure for mapping the pred-
icate of a triple extracted from natural language text to an
identical predicate in a KG. This method involved a simple
rule-based approach. As a result, it could efficiently deal
with rule generation due to the sparsity of text.

In this article, we introduce the T2KG: an automatic
framework for KG creation from natural language text. In
the T2KG, we propose a hybrid approach that combines
a rule-based approach and a similarity-based approach for
mapping the predicate of a triple extracted from text to its
corresponding predicate in an existing KG. In the similarity-
based approach, we introduce a novel vector-based similar-
ity metric for computing the similarity between the elements
of triples to overcome the sparsity problem. We conduct ex-
periments to evaluate the performance of each stage of the
T2KG framework in a KG creation task. In addition, we
also conduct an empirical study using the T2KG in a knowl-
edge population task. We note that the difference between
the knowledge population task and the knowledge creation
task is that in the knowledge population task a given KG is
populated with triples, while the KG creation task considers
the construction of the KG.

The rest of this paper is organized as follows. Section 2
gives a brief survey of the related work on KG creation. In
Sect. 3, the details of our T2KG framework are presented.
The experiments and their results are reported in Sect. 4. Fi-
nally, this work is concluded in Sect. 5.

2. Related Work

The creation of a KG consists of three stages: 1) knowledge
extraction, 2) entity mapping and 3) data integration. Previ-
ous approaches for constructing KGs can be roughly divided
into three groups depending on which stage they focus on.

The first group of methods focuses on knowledge ex-
traction from natural language text [5]–[7]. NELL [5] is a
never-ending system that reads the worldwide web by ex-
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tracting triples using a bootstrapping approach to learn new
constraints. ReVerb [6] and OLLIE [7] are open informa-
tion systems that extract a triple from a sentence by using
syntactic and lexical patterns. Although these approaches
can extract triples from natural language text, they do not
consider entity mapping. As a result, there may be some
ambiguity in the extracted entities.

The second group of approaches also investigate
knowledge extraction and entity mapping [4], [8], [9]. In
some studies [4], [8], a triple is extracted from natural lan-
guage text by using natural language processing (NLP)
techniques. Then, a triple is stored as a resource de-
scription framework (RDF) triple using its own ontology.
LODifier [9] uses deep semantic analysis and named entity
recognition with a coreference resolution system to acquire
a triple, and generates an RDF triple using the WordNet
representation without considering other ontologies. Even
though these approaches reduce the ambiguity of an ex-
tracted entity, they do not integrate all of the elements of
a triple into existing KGs.

The third group of methods considers all three stages
described above when creating a KG [10]. Exner et al. use
a semantic role labeling method with state-of-the-art NLP
techniques to extract a triple from Wikipedia and then ap-
ply a rule-based approach to integrate the RDF triple into
the ontology of the KG [10]. Although this approach can
integrate a predicate into the ontology of a KG, due to the
sparsity of natural language text, bootstrapping training data
to generate rules might not cover all possible patterns, and
consequently, some rules may be missing.

To overcome this problem, we introduce T2KG, an au-
tomatic KG creation framework for natural language text. In
T2KG, a hybrid approach that combines the rule-based ap-
proach and the similarity-based approach is introduced, us-
ing a vector-based similarity metric to identify correspond-
ing predicates. Some preliminary results for the T2KG have
been previously reported [13]. In this article, further details
of the framework, experimental settings and the experimen-
tal results are described and discussed. In addition, we in-
troduce new experimental results for the T2KG framework
in a knowledge population task.

3. Knowledge Graph Creation

In this section, the architecture of the T2KG framework is
described. The T2KG takes natural language text as input
and produces a KG as output. As shown in Fig. 1, the T2KG
consists of five components: 1) entity mapping, 2) coref-
erence resolution, 3) triple extraction, 4) triple integration,
and 5) predicate mapping. The entity mapping component
links an entity in natural language text to its correspond-
ing entity in the KG. The coreference resolution component
detects coreferring chains of entities, in which entities and
pronouns in natural language text referring to the same en-
tity are grouped together. The triple extraction component
extracts a relation triple from natural language text by us-
ing the open information extraction technique. The triple

Fig. 1 Architecture of the T2KG framework.

Fig. 2 Example of data flow in the T2KG framework.

integration component generates a text triple by integrating
the results from the entity mapping component, the corefer-
ence resolution component and the triple extraction compo-
nent. The predicate mapping component maps a predicate
of a text triple to a predefined predicate in other KGs. The
details of each component are presented below.

3.1 Entity Mapping

The aim of the entity mapping component is to map an en-
tity in natural language text to a uniform resource identifier
(URI). In the entity mapping component, entities are recog-
nized from natural language text to create a set of extracted
entities. If an extracted entity can be mapped to an iden-
tical entity in a KG, the URI of such an entity in that KG
can be used as a representative for the extracted entity. Oth-
erwise, a new URI is assigned to the entity. For example,
consider “dbepdia:United States” as a URI in the KG. If the
entity “United States” in natural language text is mapped
to “dbepdia:United States”, the same URI is used. On the
other hand, if the entity does not exist in the KG, a new URI,
e.g., “ex:Barron Trump”, is assigned to the entity “Barron
Trump”.

To further illustrate the flow of the T2KG framework,
an example is given in Fig. 2. In Fig. 2, the example sentence
is “Barack Obama was born in Honolulu, Hawaii. It is lo-
cated in the United States.”, the expected results of the entity
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mapping component are a set of mapping entities for each
entity, e.g., Barack Obama = {dbpedia : Barack Obama}.

3.2 Coreference Resolution

The aim of the coreference resolution component is to de-
tect coreferring chains of entities in natural language text
and to group them together. This is an essential compo-
nent because natural language text usually contains abbrevi-
ations, pronouns, and different expressions that refer to the
same entities. With the coreference resolution component,
an entity and its different expressions can be grouped so that
actions for identical entities using different expressions can
be identified. To discover chains of coreferring entities, a
coreference resolver for the coreference resolution task is
used [14], [15]. An example is shown in Fig. 2. The ex-
pected results of the coreference resolution component are
coreferring chains of entities. Based on the input in the ex-
ample, the coreferring chain is C2 = {Honolulu Hawaii, it}.

3.3 Triple Extraction

The aim of the triple extraction component is to extract rela-
tion triples from natural language text. This is a key step to
acquire knowledge from natural language text. According to
linguistic theory [16], the meaning of an arbitrary sentence
can be interpreted by considering a set of relations and its
associated arguments. Consequently, a relation triple is de-
fined as a triple describing a relation and its associated argu-
ments in an arbitrary sentence. In our scenario, the relation
is a predicate of a triple and its associated arguments are the
subject of a triple and the object of a triple.

To extract a relation triple from natural language text,
any open information extraction technique can be used.
Open information extraction techniques are used to extract
information from an arbitrary sentence using pattern tem-
plates, and then to convert such information into a relation
triple. For example, as depicted in Fig. 2, the example of
the relation triple from the triple extraction component is
<Barack Obama, born in, Honolulu Hawaii>, where “born
in” is a relation, which is the predicate of the triple, and
“Barack Obama” and “Honolulu Hawaii” are its arguments,
which are the subject and the object of the triple, respec-
tively.

3.4 Triple Integration

The aim of the triple integration component is to generate
text triples using outputs from the entity mapping compo-
nent, the coreference resolution component and the triple
extraction component.

In the triple extraction component, we can extract re-
lation triples from natural language text. However, entity
mapping and coreference resolution among the entities of
such triples are not performed. As a result, ambiguity in
the triple occurs and links among entities in the KG are
not established. Consequently, the relation triple must be

transformed to conform to the standards of the KG. This is
achieved by integrating the results from three components
and transforming them with the following processes.

First, identical entities are grouped using coreferring
chains from the coreference resolution component. Second,
a representative for the group of coreferring entities is se-
lected by the voting algorithm. Because entities in the same
group might have multiple representations, the most com-
monly occurring representation, after excluding pronouns,
for the group is chosen as the group representative. Third,
all entities belonging to the group in the relation triples are
replaced by the representative of their groups. Fourth, the
relation of a relation triple is straightforwardly transformed
into a predicate by assigning a new URI. Finally, if an object
of a relation triple is not an entity, it is left as literal. After
performing these processes, text triples are extracted from
natural language text.

Figure 2 shows an example of this component. The
triple integration component generates the text triple, e.g.,
<dbpedia : Barack Obama, ex : born in, dbpedia : Hawai>.
However, the predicate of the triple, ex : born in, is not
mapped to any predicate in the KG in this component.

3.5 Predicate Mapping

The aim of the predicate mapping component is to map a
predicate of a text triple onto an identical predicate in the
KG. Previous studies mainly focus on predicate linking be-
tween KG triples [17]–[19]. This mapping cannot be applied
in a straightforward manner for our task, since we aim to
map the predicate of a text triple extracted from a sentence
to its identical predicate in a KG triple. Although there are
many studies on distance supervised learning for identifying
relationships between entities in sentences [7], [20], they do
not directly consider the mapping between a text predicate
and a KG predicate. The most relevant study for our task is
that by Exner and Nugues [10].

In the above study [10], a rule-based approach was pro-
posed for mapping the predicate of a triple onto an identical
predicate in a KG. However, the results depended on the
generated rules. Because of the sparsity of natural language
text in open domains, generated rules cannot cover all pos-
sible patterns. As a result, their approach is not sufficiently
general for discovering new rules that have not previously
appeared. Therefore, reasonable recall cannot be realized.
To deal with heterogeneous vocabularies and to alleviate the
sparsity of natural language text, a hybrid combination of a
rule-based approach and a similarity-based approach using
the vector-based similarity metric is proposed in the present
study.

In our hybrid approach, rules for mapping a predicate
in a similar way to [10] are learned, and then a similarity-
based approach using the vector-based similarity metric is
applied for unseen rules to determine identical predicates,
as depicted in Fig. 3. First, text triples are enriched by the
triple enrichment module. This module enriches a text triple
and a KG triple by their data types and classes, and then in-
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Fig. 3 Diagram of the predicate mapping component.

tegrates and normalizes the text triples, the KG triples and
the enriched triples to create bootstrapped triples for use in
the later modules. Second, the rule-based candidate gen-
eration module then uses the bootstrapped triples to create
rules and then generates predicate-candidate pairs for the
text predicate. Third, the similarity-based candidate gen-
eration module uses the bootstrapped triples to embed the
elements of triples as vector representations, and then these
vectors are used to compute the similarity between a text
predicate and a KG predicate to generate predicate candi-
date pairs. Finally, the candidate selection module is used
to select the most suitable mapping candidate. A candidate
is then selected, completing the KG creation process. An
example of this component is shown in Fig. 2. As can be
seen, ex : born in is mapped to dbpedia : birthPlace, and
the triple <dbpedia : Barack Obama, dbpedia : birthPlace,
dbpedia : Hawaii> is assigned to the generated KG. The de-
tails of each module are as follows.

3.5.1 Triple Enrichment

The triple enrichment module enriches text triples and KG
triples and then integrates them to obtain the bootstrapped
triples for the later modules. Text triples and KG triples are
enriched with their classes and data types. The enrichment
process is performed only on the subject (domain) and ob-

ject (range) elements of a triple.
To enrich a triple, the subject and the object of the

triple are bound to their corresponding class. For KG
triples and text triples, whose subject or object is mapped
to a KG entity, the subject and the object of the triple
are bound using the vocabulary rdf:type. For example,
given DBpedia as the KG, and <dbpedia : Barack Obama,
dbpedia : birthPlace, dbpedia : Hawaii> as the triple, the
enriched result is <dbpedia : Person, dbpedia : birthPlace,
dbpedia : Location>. For the text triples, whose subject
or object cannot be mapped to a KG entity, the name en-
tity recognition (NER) system is used to retrieve the class
of the subject and the object of the triple. Then, the
class is mapped to the KG class using string matching as
a workaround. For example, the NER class, Person, is
mapped to the KG class, dbpedia : Person.

As well as the class of the entities, the data type is also
considered. In the T2KG, we use the URI, string, number
and date as data types. The data types of the subject and
object of the triple are converted using a simple parser. If a
subject or an object of a triple can parse the date, the date
type is used. If a subject or an object of a triple contain
only a number, the number type is used. If a subject or an
object of a triple are a URI, the URI type is used. Other-
wise, the string type is used. For example, given the triple
<dbpedia : Barack Obama, ex : born in, dbpedia : Hawaii>,
the result is <URI, ex : born in, URI>. All of the generated
triples, called bootstrapped triples, are used as the output of
this module.

3.5.2 Rule-Based Candidate Generation

The rule-based candidate generation module extracts rules
and uses them to determine predicate-candidate pairs. In
this module, a similar strategy as in [10] is implemented to
create the following rules for mapping the predicate. First,
if the subject and the object of the text triple are similar to
the subject and the object of the KG triple, respectively, it
is assumed that the predicate of the text triple and the pred-
icate of the KG triple are equivalent. Note that, if the pred-
icate of the text triple matches many predicates of the KG,
the predicate of the KG that appears the most often with
the text predicate is selected. Second, the class of the sub-
ject and the class of the object are used as constraints in the
mapping. For example, <Person, ex : born in, Location>
is mapped to dbpedia : birthPlace, when using DBpedia as
the KG. Even though this approach uses bootstrapped triples
to generate reliable rules, the number of rules is very lim-
ited due to the small number of bootstrapped triples and
the sparsity of text, and thus, some rules are missing. To
avoid such problems, a similarity-based approach using the
vector-based similarity metric is applied in the T2KG frame-
work.

3.5.3 Similarity-Based Candidate Generation

The similarity-based candidate generation module gener-
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ates predicate candidate pairs based on the similarity be-
tween predicates. Generally, a string-based similarity met-
ric is used for the entity mapping or the predicate mapping
task [18], [21], [22]. Due to the heterogeneous vocabular-
ies in the open information extraction task, the string-based
similarity metric can fail to correctly represent the similarity
between predicates. To cope with heterogeneous vocabular-
ies, each vocabulary should be learned and represented at a
deeper level than just their textual string. We therefore pro-
pose a novel vector-based similarity metric for computing
the similarity between elements of triples.

Mikolov et al. proposed vector representations of
words that can capture both syntactic and semantic patterns
in [23]. Inspired by this vector representation of words, we
present elements of triples in the vector space using other el-
ements in the same triple. The idea is that elements of triples
that have a similar context should be embedded more closely
with each other in the vector space than dissimilar elements.
The objective function is then formulated as follows.

L(θ) = arg max
θ

∑
(e,c)∈BT

(
logσ(v̄c · ve)

+
∑

(neg,c)∈BT ′(e,c)

logσ(−v̄c · vneg)
)

(1)

where σ(x) = 1/(1 + exp(−x)), e is an element of a triple,
c is another element of the same triple, BT is a set of boot-
strapped triples from the triple enrichment module, BT ′(e,c)
are randomly generated negative triples of the element of
the triple e in the context c, which are not contained in BT ,
neg is a negative example of the element of a triple in the
context c, v̄c is an average of the vector representations of
words in the context c, ve, vc, vneg ∈ θ and ve, vc and vneg

are vector representations of elements of triples e, c and neg
respectively.

After acquiring a vector representation for each ele-
ment of the triples, the similarity between a predicate of a
text triple and a predicate of a KG triple is computed to gen-
erate a list of predicate candidate pairs, ranked by their sim-
ilarity score. In our approach, the similarity score is defined
as follows.

Sim(PT̂ , PKG) = δ
( # »

PT̂ · #     »
PKG

| # »
PT̂ ||

#      »

PKG |
)

+ (1 − δ)
(context(PKG) · ( #  »

S T̂ − #  »
OT̂ )

|context(PKG)|| #  »
S T̂ −

#   »

OT̂ |
)

(2)

context(PKG) =

∑N
n=1(

#        »
S PKGn

− #        »
OPKGn

)

N
(3)

where S T̂ , PT̂ , OT̂ are the subject, the predicate and the ob-
ject of the triple T̂ , respectively, T̂ is a text triple, PKG is a
predicate in KG, S PKGn

and OPKGn
are the nth pairs of sub-

jects and objects, respectively, corresponding to the predi-
cate PKG in the KG (<S PKGn

, PKG, OPKGn
> ∈ KG), N is

the number of triples in the KG, whose predicates are PKG,

and δ is the weight parameter between the predicate similar-
ity and the context similarity. The basis for these scores is
that the similarity between predicates can be measured di-
rectly by the cosine similarity of the vector, as reflected in
the first term of Eq. (2). However, the predicate may vary
depending on the context. Consequently, in the second term
of Eq. (2), the similarity between contexts is also computed
to validate the suitability of the predicate with its context.
This assumption is based on the fact that the more suitable
the context, the more likely the predicates can be mapped.
Because the first and the second terms in Eq. (2) are differ-
ent, the weight parameter is introduced to adjust the salient
aspect between the predicate similarity and the context sim-
ilarity. Equation (3) is proposed to compute the average vec-
tor representation of the context of PKG.

3.5.4 Candidate Selection

The candidate selection module selects the mapping for the
predicate of the text triple. In this module, priority is given
to the predicate-candidate pair that is generated by the rule-
based candidate generation module. If such a predicate-
candidate pair does not exist, the predicate-candidate pair
generated by the similarity-based candidate generation mod-
ule is then considered. If the similarity of the predicate-
candidate pair is greater than the threshold θ, the predicate
pair is mapped to the candidate. Otherwise, the new URI of
the text triple, e.g., ex : born in, is assigned as the predicate.
The output of the candidate selection module is the gener-
ated KG, in which some entities and predicates are linked to
other KGs.

4. Experiment

4.1 Experimental Setup

Three experiments are designed to evaluate: 1) the per-
formance of the hybrid approach in the T2KG framework,
2) the overall performance of the T2KG framework for the
KG creation task and 3) the performance of the T2KG when
populating an existing KG with new knowledge.

In the T2KG, each component is implemented and its
parameters are configured as follows. In the entity mapping
component, DBpedia Spotlight [12] is used to map entities.
If an entity cannot be mapped to any of the DBpedia en-
tities, a new namespace “ex:” is adopted as the prefix of
the entity to create a new URI. This namespace can also be
applied to an unmapped predicate. In the coreference reso-
lution component, the Stanford NLP tool [14], [15] is used
as the coreference resolver. In the triple extraction compo-
nent, OLLIE [7], a state-of-the-art tool for open information
extraction, is applied to extract relation triples from natural
language text. In the triple enrichment module, the Stanford
NLP tool is also used as the NER system. In the similarity-
based candidate generation module, word2vec† is used for

†https://code.google.com/archive/p/word2vec/
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the training vector representations of the elements of triples.
The default parameter settings for the word2vec are used.
To collect the corpus for creating vector representations of
the elements of triples, text triples and KG triples are con-
structed. To gather the text triples, 120,000 Wikipedia arti-
cles are randomly selected and then the pre-processing step
is applied. In the pre-processing step HTML markups, wiki
marks and hyperlink annotations are removed. Duplicates
of sentences are discarded. After that the pre-processed
sentences are passed to the T2KG framework to create text
triples. For KG triples, the whole DBpedia [1] is used.

In the similarity-based candidate generation module,
there are two hyperparameters: the weight δ and the thresh-
old θ. To optimize these two parameters, we automatically
create identical predicate pairs for the training data using
the matching strategy for predicates of text triples and the
predicates of the KG. The matching strategy for construct-
ing the training data is conducted as follows. If the subject
of the text triple and the subject of the DBpedia triple are
the same and the object of the text triple and the object of
the DBpedia triple are the same, we assume that the predi-
cate of the text triple and the predicate of the DBpedia triple
are the same. Figure 4 shows an example of the matching
between the predicate of a text triple and the predicate of
a KG triple for generating the training data. As shown in
this figure, the subject and the object of the text triple and
the DBpedia triple are equivalent. Consequently, the pred-
icates, “ex:born in” and “dbpedia:birthPlace”, are assumed
to be equivalent. In the training data construction, the targets
of the mapping predicate are 2,800 DBpedia ontology prop-
erties. Although this method can be used to find many of the
matching pairs, it is possible that the validity of these pairs
may be uncertain due to multiple matches. Multiple matches
occur when two or more predicates share the same subject-
object pair. For example, “ex:bear in” might be mapped to
both “dbpedia:birthPlace” and “dbpedia:deathPlace” if the
same person (subject) was born and died in the same place
(object). Consequently, multiple matching can lead to am-
biguity in the dataset. To alleviate this problem, we simply
remove text triples when a predicate has multiple matches.
According to the above matching strategy, the number of
mapped predicate pairs remaining is approximately 43,800.
After that, we use the grid search algorithm to find suitable δ
and θ parameters from the training dataset. The interval for
the parameter search is [0.00, 1.00], and the step size is 0.01.
The hyperparameters that performed best in the training data

Fig. 4 Example of the matching strategy between a text predicate and a
KG predicate.

are used in the experiment.

4.2 Experiment 1

The aim of this experiment is to evaluate the performance
of our hybrid approach for the predicate mapping task. To
investigate the accuracy of our approach, the rule-based ap-
proach from [10] is used as the baseline for comparison.

In the experiment, we manually create the benchmark
dataset by randomly selecting 300 text triples and then ask-
ing an expert to create links between them and the DBpedia
predicates. The dataset is available for download from †.

In this experiment, given a predicate text, the algo-
rithms return the DBpedia predicate having the highest sim-
ilarity according to their respective methods. The micro/
macro precision, recall and F1 score are then used to mea-
sure whether the DBpedia predicate and the predicate text
are correctly matched or not. The macro evaluation averages
the performance for each predicate type across the dataset,
while the micro evaluation aggregates the performance of
all predicate types in the dataset.

Table 1 shows the results of the rule-based approach
compared with our hybrid approach. The experimental re-
sults indicate that the hybrid approach can improve the re-
call by 10.60%, 9.67% and F score by 4.72%, 4.41% in
the macro/micro evaluation respectively. The recall re-
sults show that the discoverability of the hybrid approach
is higher than the baseline, confirming that the hybrid ap-
proach including the similarity-based approach performs
better at correctly matching predicates.

To further investigate the performance of the hybrid ap-
proach, we illustrate the failure of the rule-based approach.
Although a text predicate is observed during the rule con-
struction process, the subject-object pairs of the predicate
do not cover all of the observed combinations. The rules for
mapping some predicates of a text triple are missing. For
example, given the text triple <dbpedia:Granai airstrike, oc-
curs in, dbpeida: Granai>, the required rule of this triple is
“dbpedia:Event, occur in, dbpedia:Thing”. Although there
are some learned rules for the text predicate “occur in”, e.g.
the rule “dbpedia:Event, occur in, dbpedia:Place”, they are
not an exact match with the required rule of this triple. The
rule-based approach could not deal with text triples that do
not match any rules. In contrast, the similarity-based ap-
proach in the hybrid approach allows the direct computation
of the similarity between the representations of predicates.
Based upon the above example, the text predicate “occur

Table 1 The results of our approach in the predicate mapping task on the
benchmark dataset comparing with the baseline (Experiment 1).

Approach
Macro Micro

Precision Recall F1 Precision Recall F1

Rule-based [10] 0.7217 0.5600 0.6306 0.7693 0.6400 0.6987

Our approach 0.6902 0.6660 0.6778 0.7491 0.7367 0.7428

†https://ri-www.nii.ac.jp/VSim/dataset.zip
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in” can be mapped to dbpedia:place†. The hybrid approach
therefore can alleviate the problems caused by the limita-
tions of pattern-matching in the rule-based approach.

4.3 Experiment 2

The aim of this experiment is to evaluate the performance
of the T2KG framework in the text-based KG creation task.
Unlike Experiment 1, this experiment aims to evaluate the
correctness of the results at the triple level. Because no gold
standard exists for evaluating the results of generating triples
from text, we conduct the evaluation by manually establish-
ing a small set of triples from the text to be used as the gold
standard. To create this gold standard, we randomly select
100 sentences from Wikipedia articles and then manually
extract and map triples to the DBpedia triples. Note that to
fairly evaluate the performance of the T2KG framework, the
120,000 Wikipedia articles for training the similarity-based
candidate generation module are excluded from the random
selection process.

To evaluate the results, 100 sentences are input to the
T2KG framework. The precision, recall and F1 scores are
then used as the evaluation metrics to evaluate the accuracy
of the triples. Also, we measure the number of mapped
triples to show the mapping ability of the framework. In this
experiment, the T2KG framework without the similarity-
based candidate generation module is used as the baseline.
This baseline is similar to that used by Exner and Nugues,
[10].

The results are listed in Table 2, and show the amount
of discovered knowledge that can be integrated into the ex-
isting KG. It can be seen that the T2KG framework performs
better than the baseline. Furthermore, the precision, recall
and F1 score for the T2KG framework are also higher than
those for the baseline.

The errors arising in each component of the system
are also investigated. There are four main error sources
in the framework: entity mapping, coreference resolution,
triple extraction and predicate mapping. We therefore cal-
culate the proportion of errors arising from each of these
four components. The results show that 35.21% of the er-
rors are caused by triple extraction, 23.00% by predicate
mapping, 21.60% by coreference resolution and 20.19% by
entity mapping. The reason the largest source of errors is
triple extraction is because the task in this study is an open
domain task, in which no schema or prior knowledge is pro-
vided. The errors in triple extraction mostly occur when
extracting triples from a complex sentence, where a relation

Table 2 Performance of T2KG framework for constructing KG compar-
ing with the baseline (Experiment 2).

Approach Precision Recall F1 # Mapped Triples

Baseline 0.4444 0.5231 0.4806 135

T2KG 0.4620 0.5615 0.5069 140

†http://dbpedia.org/ontology/place

and its arguments are not clearly identified.
Errors in the elements of the generated triples are

also inspected. We find that the largest number of errors
is 38.18% caused by predicates, 36.97% by objects and
24.85% by subjects. The reason predicates resulted in so
many errors is that the triple extraction step cannot perfectly
extract predicates from natural language text due to the com-
plexity of the text in open domains. Nonetheless, although
the KG creation in our study is conducted in open domains,
the T2KG system still reproduces approximately 50% of the
quality and quantity of generated triples required for creat-
ing the KG.

4.4 Experiment 3

The aim of this experiment is to empirically investigate the
performance of the T2KG framework for populating an ex-
isting KG with new knowledge extracted from text. In this
experiment, two datasets, the gold standard and an online ar-
ticle, are used. The gold standard dataset contains 100 sen-
tences, which are randomly selected from Wikipedia. This
dataset is the same as that used in Experiment 2. The online
dataset contains articles obtained from the Internet. To cre-
ate this dataset, we randomly trawl articles on websites in
various domains including news, movies, books and travel.
Both datasets are then passed to the T2KG method to create
the KG. Since this experiment investigates population of an
existing KG with knowledge from text, the existing KG is
used as the scope for this process. DBpedia is used as the
existing KG. Consequently, only triples whose subject and
predicate can be mapped to DBpedia, (mapped triples) are
considered. After acquiring the mapped triples, the correct-
ness of these triples is manually checked to evaluate their
quality, and the number of new knowledge items (not orig-
inally in DBpedia) is measured. To evaluate the results, we
report the summary statistics for the dataset, the number
of triples extracted from the text, the number of extracted
triples that could be mapped to DBpedia, the number of cor-
rectly mapped triples, and the number of new knowledge
items. In this experiment DBpedia 3.9 (2016/04) is used.

The experimental results are presented in Table 3,
which shows that the T2KG framework can successfully
populate DBpedia with extracted triples. Although some
of this information is already contained in DBpedia, new
information is also obtained with our framework. Further-
more, based on our observations, the results for the online
dataset contain more unmapped triples than the gold stan-
dard dataset. This occurs because many entities in the online
dataset cannot be mapped to DBpedia. For example, some
entities are from movies which were released after the ver-
sion of DBpedia used in this experiment. As a result, many
triples and new data are discarded.

5. Conclusion

This paper presents the T2KG, an automatic KG creation
framework for natural language text. In the T2KG, a hybrid
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Table 3 The result of the knowledge population of DBpedia.

Dataset # Articles # Sentences # Triples # Mapped Triples # Correct Triples # New Knowledge

Gold Standard - 100 222 140 62 34

Online Articles 60 1624 3605 499 116 76

approach for mapping predicates is introduced using a novel
vector-based similarity metric. The experimental results in-
dicate that the hybrid approach improves recall significantly
for mapping a predicate to a KG. Furthermore, the exper-
imental results demonstrate that the T2KG framework can
successfully generate a KG from natural language text. Al-
though KG creation in this study is conducted in open do-
mains, the T2KG system still reproduces 50% of the avail-
able information in terms of both the quality and quantity of
triples generated for the KG. In addition, a study on knowl-
edge population, and the results indicate that T2KG can suc-
cessfully populate DBpedia with new knowledge from text.

Based on error analyses, the main pitfall of the frame-
work is the triple extraction component when applied to
an open information extraction system. This component
not only degrades the performance across the whole frame-
work but also introduces errors in the predicate mapping
task. In the predicate mapping task, both the rule-based
approach and the hybrid approach perform poorly when
applied to open information to extract predicates contain-
ing many composite words. For example, the text triple
<dbpedia: Gustav Klimt, be an important influence on
dbpedia: Egon Schiele>. In this example, our method can-
not find the rule and the representation of the predicate for
computing the similarity due to many composite words in
the text predicate. Therefore, both approaches fail to map
such complex text triples. Fortunately, open information ex-
traction is still an active area of research. In the future, we
aim to improve the implementation of the T2KG framework
using a later version of the open information extraction sys-
tem.
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