
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019
745

PAPER Special Section on Data Engineering and Information Management

The BINDS-Tree: A Space-Partitioning Based Indexing Scheme for
Box Queries in Non-Ordered Discrete Data Spaces

A. K. M. Tauhidul ISLAM†a), Student Member, Sakti PRAMANIK†b), and Qiang ZHU††c), Nonmembers

SUMMARY In recent years we have witnessed an increasing demand
to process queries on large datasets in Non-ordered Discrete Data Spaces
(NDDS). In particular, one type of query in an NDDS, called box queries,
is used in many emerging applications including error corrections in bioin-
formatics and network intrusion detection in cybersecurity. Effective in-
dexing methods are necessary for efficiently processing queries on large
datasets in disk. However, most existing NDDS indexing methods were
not designed for box queries. Several recent indexing methods developed
for box queries on a large NDDS dataset in disk are based on the popu-
lar data-partitioning approach. Unfortunately, a space-partitioning based
indexing scheme, which is more effective for box queries in an NDDS,
has not been studied before. In this paper, we propose a novel indexing
method based on space-partitioning, called the BINDS-tree, for support-
ing efficient box queries on a large NDDS dataset in disk. A number of
effective strategies such as node split based on minimum span and cross
optimal balance, redundancy reduction utilizing a singleton dimension in-
heritance property, and a space-efficient structure for the split history are in-
corporated in the constructing algorithm for the BINDS-tree. Experimental
results demonstrate that the proposed BINDS-tree significantly improves
the box query I/O performance, comparing to that of the state-of-the-art
data-partitioning based NDDS indexing method.
key words: non-ordered discrete data, multidimensional indexing, space-
partitioning, box query, and algorithm

1. Introduction

Recent years have witnessed a rapidly increasing demand
of query processing on large datasets in a multidimensional
Non-ordered Discrete Data Space (NDDS) in many applica-
tion domains such as bioinformatics, natural language pro-
cessing, social media, and cybersecurity. For instance, many
bioinformatics applications utilize fixed length k-mer based
methods for genome sequence analysis [1], [2]. A k-mer
is a subsequence of length k from a read (i.e., a genome
sequence segment) produced by a sequencer (e.g., Illustra
HiSeq) for a genome sequence. A k-mer can be consid-
ered as a vector in a k-dimensional NDDS, where the i-th
(1 ≤ i ≤ k) dimension has a letter (base) from the alphabet
Ω = {a, g, t, c}. For example, 6-mer “agctca” can be consid-
ered as a 6-dimensional vector. There is no natural ordering
among the elements/letters (i.e., a, g, t, c) in Ω. Numerous

Manuscript received June 20, 2018.
Manuscript revised November 5, 2018.
Manuscript publicized January 16, 2019.
†The authors are with the Department of Computer Science

and Engineering, Michigan State University, USA.
††The author is with the Department of Computer and Informa-

tion Science, University of Michigan - Dearborn, USA.
a) E-mail: islama@msu.edu
b) E-mail: sakti.pramanik@gmail.com (Corresponding author)
c) E-mail: qzhu@umich.edu

DOI: 10.1587/transinf.2018DAP0005

sequence analysis problems such as the k-mer search and lo-
cal alignment [3]–[5] and the genome sequencing error cor-
rection [6]–[8] can be solved by processing queries on large
k-mer datasets. An effective indexing method is required in
order to efficiently process such queries on the datasets. An
indexed k-mer is usually associated with its meta informa-
tion in the index, e.g., the ids of the reads that contain the
indexed k-mer.

A box query, which will be formally defined in Sect. 3,
issued on an NDDS dataset allows a set of letters in each
dimension. For example, Q = {a}×{g, c}×{g}×{c, t}×{t}×{a}
(or simply denoted by Q = a{g, c}g{c, t}ta) is a box query
on a dataset of 6-mers. It fetches those k-mers from the
dataset that have letter/base a in the first dimension, g or c
in the second dimension, g in the third dimension, c or t in
the fourth dimension, t in the fifth dimension, and a in the
sixth dimension. An important property of a box query is
its ability to filter irrelevant vectors effectively (e.g., vectors
having no a in the sixth dimension are irrelevant). More
disjoint partitions in the NDDS index would provide better
filtering for box queries.

One application example using such box queries is the
genome sequencing error correction [6]. To verify and cor-
rect an erroneous base at a suspicious position in a read pro-
duced by a sequencer, we can form a box query by taking
a k-mer covering the suspicious position and allowing all
possible bases (e.g., x ∈ {a, g, t, c}) for the dimension corre-
sponding to the suspicious position in the k-mer. Running
this box query on the dataset consisting of k-mers obtained
from all sequencing reads, we can identify the correct base
at the suspicious position since it will have the highest count
of occurrences among all possible bases. This is due to the
fact that most sequencing reads covering the position should
contain the correct base. Another simple application exam-
ple using box queries is the network intrusion detection in
cybersecurity. Assume it is known that an intruder uses an
IP address A1 or A2 and employs a program P1, P2 or P3.
We can run a box query that allows any IP from {A1, A2} for
the IP dimension and any program from {P1, P2, P3} for the
program dimension to retrieve the suspicious records from a
Web log.

Most of the existing NDDS indexing methods were de-
signed for range (similarity) queries based on a distance
measure (e.g., the Hamming distance) between vectors.
However, box queries are significantly different from range
queries. For example, each individual dimension of a box
query can be used to test unqualified vectors. To address this

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

746
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

problem, new NDDS indexing/querying techniques [5], [9]
targeting for box queries have been proposed. The parti-
tion strategies used in the existing methods for box queries
are based on the data-partitioning approach. For instance,
the BoND-tree [9] attempts to divide the entries in an over-
flow node into effective non-overlapping groups along the
split dimension as long as other splitting requirements such
as the minimum space utilization (i.e., a certain percent of
space in each node is guaranteed to be utilized) are satis-
fied. On the other hand, a space-partitioning based NDDS
indexing method provides better filtering because each in-
dividual dimension of the entries in a node can be used to
ensure an effective non-overlapping partition of the under-
lying space. The main challenge for developing a space-
partitioning based indexing method for box queries in an
NDDS is how to exploit the characteristics of box queries
and the NDDS to identify effective strategies to build the
index tree so that it can achieve high query performance in
terms of disk I/Os and reasonable space efficiency in terms
of space utilization.

In this paper, we propose such a space-partitioning
based indexing method for box queries on a dataset in an
NDDS, denoted the BINDS-tree (Box query Indexing in
NDDS using Space partitioning). Note that the space par-
titioning approach was also adopted in the NSP-tree [10] for
indexing a dataset in an NDDS. However, the NSP-tree is
optimized for similarity/range queries, while the BINDS-
tree is optimized for box queries in an NDDS. The NSP-
tree uses the maximum span and maximum balance heuris-
tics for node splitting, while we show that the BINDS-tree,
which uses the new set of heuristics including minimum
span, minimum-maximum balance, and cross optimal bal-
ance, is more effective for box queries in an NDDS. We
also introduce several other novel strategies for further op-
timization including adopting a singleton dimension inher-
itance property resulting from space partitioning and min-
imum balance heuristic to reduce redundancy in node en-
tries and applying a space-efficient data structure to store the
node split history, which is required for space-partitioning
based indexing schemes.

The primary contributions of this paper are as follows:

• Proposing new effective heuristics for a space-
partitioning based indexing method to support efficient
box queries on an NDDS dataset in disk and showing
the performance benefit of a space-partitioning index-
ing method over the state-of-art data-partitioning based
indexing scheme.
• Showing that the minimum-maximum balance heuris-

tic yields a novel singleton dimension inheritance prop-
erty. This property is exploited to create significant per-
formance gain over existing indexing techniques such
as the BoND-tree and the NSP-tree.
• Providing theoretical justification for the applicability

of the singleton dimension inheritance property.
• Developing a space efficient structure for storing node

split history (ordering information) necessary for im-

plementing space-partitioning based indexing tech-
niques.
• Conducting extensive experiments to evaluate the ef-

fectiveness of the adopted strategies in terms of query
I/O performance and space utilization for the index
tree.

The rest of this paper is organized as follows. Section 2
discusses the related works. Section 3 gives an overview
of relevant concepts that are needed for rest of the discus-
sion of this work. Section 4 discusses the proposed space-
partitioning based indexing method. Section 5 reports our
experimental results. Section 6 concludes the paper.

2. Related Works

Multidimensional vector indexing for a contiguous data
space (CDS) has been extensively studied over the past
few decades. The R-tree [11], the R*-tree [12], and the
KDB-tree [13] are some of the well-known CDS indexing
schemes. However, these methods cannot be directly ap-
plied to create an index for datasets in non-ordered discrete
data spaces since some essential geometric concepts such as
a rectangle and an area do not exist in such a space. Re-
cently, indexing vectors in a multidimensional NDDS has
been explored mostly due to its importance in many appli-
cations such as genome sequence analysis.

Metric space based indexing methods [14]–[16] can be
applied to index datasets in an NDDS. However, these meth-
ods typically adopt a static in-memory structure, and are pri-
marily focused on optimizing distance computations. The
M-tree [17], as one of a few dynamic metric space based in-
dexing methods, was designed for large datasets. Although,
this method can be applied to an NDDS, the relative distance
measure between two vectors does not capture some special
characteristics of the NDDS such as appearances and distri-
butions of elements in each dimension. Thus, performance
of the M-tree is significantly worse when processing queries
in an NDDS than that of the indexing methods optimized for
an NDDS [10], [27], [32].

String indexing techniques such as the suffix tree [18]–
[21] and its variants have been proposed to discrete data in
the form of strings (typically of variable lengths). However,
most of these methods employ in-memory indexing struc-
tures that cannot be utilized for large datasets. Several disk
based suffix tree indexing methods [19]–[21] have also been
proposed for large sequence datasets. Due to high space
overhead and random storage of individual letters as nodes,
query processing in disk based suffix trees are not suitable
for very large datasets. On the other hand, suffix array based
methods [22]–[24] have been proposed to improve the space
complexity of the suffix trees. In the past, disk-based B-tree
indexing structures such as the prefix B-tree [25] and the
String B-tree [26] have been proposed; assuming indexed
strings could be sorted in some order, which is not the case
for vectors in an NDDS.

Several disk based NDDS indexing schemes have been

ISLAM et al.: THE BINDS-TREE: A SPACE-PARTITIONING BASED INDEXING SCHEME FOR BOX QUERIES IN NON-ORDERED DISCRETE DATA SPACES
747

proposed in recent years [9], [10], [27]. Each of the in-
dexing schemes adopts a different set of heuristics to build
an index structure that is most suitable for its respective
query type and assumed scenarios. The ND-tree [27] is a
data-partitioning based indexing method developed to sup-
port efficient similarity queries (e.g., range queries and k-
nearest neighbor queries) in an NDDS. The NSP-tree [10]
is a space-partitioning based indexing method developed to
also support efficient similarity queries in an NDDS. The
NSP-tree has been shown to be more effective than the ND-
tree for query processing in skewed datasets because of its
overlap-free space-partitioning technique. However, while
similarity queries search for matching vectors within a given
distance value, box queries minimize the number of paths to
follow by filtering unmatched element(s) in each dimension.
Hence, the index building strategies used to optimize simi-
larity query processing may not be as useful for box query
processing.

The BoND-tree [9] is the most recent data-partitioning
based indexing method developed to support efficient box
queries in an NDDS. The minimum balance and the min-
imum span heuristics are proven to be effective for an in-
dex optimized for box queries. The maintenance operations
such as deletion and bulk-loading for such an index tree or
its variants have been studied [28]–[31].

However, no work has been done to explore the space-
partitioning based strategies to optimize an NDDS index
for box queries, which is the goal of this work. It has
been shown that the space-partitioning based NDDS index-
ing is quite effective for box query processing too. With
increasingly skewed datasets, query performance of the
BINDS-tree improves significantly over that of the state-of-
art BoND-tree.

3. Preliminaries

In this section, first, the general terms for an NDDS
are briefly described. Second, an overview of the data-
partitioning and space-partitioning based NDDS indexing
techniques is presented. Third, back translated protein
queries are discussed in the context of box queries.

In general, a d-dimensional NDDS Ωd is defined as:
Ωd = A1 × A2 × . . . × Ad, where Ai (1 ≤ i ≤ d) is the
alphabet in the i-th dimension, consisting of a finite number
of letters/elements without any natural ordering. A discrete
box/rectangle R in Ωd is defined as R = B1 × B2 × . . . ×
Bd, where Bi ⊆ Ai. The area of rectangle R is defined as
|R| = ∏d

i=1 |Bi|, where |Bi| is called the edge length or span
of R along the i-th dimension. For a set of vectors, their
discrete minimum bounding rectangle/box (DMBR) is the
smallest rectangle/box that contains all the vectors. Such
a DMBR is also called the current subspace for the given
set of vectors. A (discrete) box query q on a dataset S in
an NDDS is defined as a query with a specified box R that
returns all the vectors from S that lie within R.

The structures of data-partitioning based NDDS in-
dexes [9], [27], [32] are similar to that of the R*-tree [12],

Fig. 1 An example NSP-tree

except that the discrete geometric concepts (e.g., discrete
rectangle/box) in an NDDS are used. More specifically,
such an NDDS index satisfies the following two require-
ments: (1) every non-leaf node has between m and M chil-
dren unless it is the root (which may have a minimum of two
children in this case); (2) every leaf node contains between
m and M entries unless it is the root (which may have a min-
imum of one entry/vector in this case). Such an NDDS in-
dex splits an overflow node based on some data-partitioning
heuristics such as minimizing overlap enlargement and min-
imizing area. Each newly created node must contain a min-
imum number of entries from the splitting node, namely,
occupying certain percentage of space, which is called the
minimum space utilization requirement. Note that space-
partitioning strategies used in the NSP-tree [10] and this
proposed BINDS-tree do not guarantee to meet the mini-
mum space utilization requirement. However, they guar-
antee to have a disjoint subspace partition of an overflow
node, which is better for filtering. On the other hand, data-
partitioning strategies used in the BoND-tree cannot guar-
antee the disjointedness of partitions as they have to meet
the minimum space utilization requirement.

A leaf node contains an array of entries of the form
(op, key), where key is a vector in the NDDS and op is a
pointer to the object represented by the key in the dataset. A
non-leaf node N in data-partitioning based indexes contain
an array of entries of the form (cp, DMBR), where cp is a
pointer to a child node Ni of N and DMBR is the DMBR
covering the vectors contained in Ni. Note that the NSP-tree
adopts two DMBRs for each entry (child) to reduce the dead
spaces. In addition to such entries, space-partitioning based
indexes contain some auxiliary information in the non-leaf
nodes to track the splitting history of subspaces in the chil-
dren nodes. For example, the NSP-tree [10] uses a Split His-
tory Tree (SHT) inside each non-leaf node to store such in-
formation. Figure 1 shows the structure of an NSP-tree and
an SHT in the NSP-tree. Each SHT is a binary tree where the
internal SHT nodes store split information and the external
nodes are the (NSP-tree) child nodes of the (NSP-tree) non-
leaf node containing the SHT. Each internal node stores the
split dimension number (e.g., dimension 5) and the elements
arrangement of the dimension in that split (e.g., {a, g}/{t}—

748
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

‘a’, ‘g’ in the left subspace and ‘t’ in the right subspace).
On the other hand, as we will see, the BINDS-tree employs
a special technique to maintain the split history with much
improved space efficiency, compared to the SHT.

More details about the NDDS, the NSP-tree and the
BoND-tree can be found in [9], [10], [27], [32].

Back-translation of a protein sequence usually refers
to retrieving the DNA sequences that encodes the given
protein [35]. Each amino acid maps to a combination of
three DNA letters/elements. For example, amino acid Y
back translates to [{t},{a},{t,c}]-three dimensional DNA let-
ters/elements. Assume that the queries are given as pro-
tein sequences and the databases consist of DNA sequences.
We have to convert protein query sequences into DNA se-
quences to search on the DNA databases. However, a pro-
tein query sequence produces large amount of DNA query
sequences due to amino acid to DNA mapping and query
sequence length. Therefore, an efficient approach is to cre-
ate k-mers from protein sequences and then convert each
protein k-mer into DNA box. For example, a protein query
sequence, YLPMT, creates four 2-mers such as YL, LP, PM
and MT. Each 2-mer, for instance, {YL} back translates into
a DNA box, [{t},{a},{t,c}, {t, c},{t},{a, c, t, g}].

4. The BINDS-Tree

In this section, we present a new space-partitioning based
indexing method, called the BINDS-tree, for box queries,
which was inspired by the NSP-tree for similarity queries
introduced in [10].

4.1 Key Idea

The basic idea of our new indexing method is as follows.
Similar to the NSP-tree, our proposed BINDS-tree has a
hierarchical tree structure consisting of non-leaf and leaf
nodes. However, there are three major differences between
the two trees. First, unlike the NSP-tree, the BINDS-tree
does not store an SHT in each non-leaf node. Instead, for
each child node N, its entry e in the parent (non-leaf) node
P of N has four components (b, sp, cp,DMBR), where b is
a bitmap recording the split dimensions from which N was
produced (originating from the current space of node P), sp
is a so-called parent-sibling pointer to record the id of the
sibling node of N from which N is spawned due to the last
split, cp is a pointer pointing from P to N, and DMBR is
an auxiliary Discrete Minimum Bounding Rectangle for the
subspace of N. Since the element arrangement for each split
dimension can be easily inferred from the DMBRs, there
is no need to explicitly store them in our structure, result-
ing in a more space-efficient structure for keeping track of
the split history of P. This strategy along with others helps
increase the fan-out of P. Second, the BINDS-tree adopts
different splitting heuristics from those used for the NSP-
tree. It is known that splitting heuristics of the NSP-tree
such as the maximum balance and the maximum span are
quite effective for similarity queries/searches [10]. On the

other hand, it has been shown that the splitting heuristics,
i.e., the minimum overlap, the minimum span, and the min-
imum balance, for the BoND-tree are more effective for box
queries/searches [9]. It is worth emphasizing that a space-
partitioning based indexing scheme is inherently overlap-
free. Hence, the minimum overlap heuristic is redundant for
it. To efficiently process box queries, the BINDS-tree adopts
new heuristics incorporating the principles of minimum bal-
ance and minimum span in the space-partitioning settings
to split overflow nodes. Third, the BINDS-tree exploits the
singleton dimension inheritance property of a space split to
further reduce the space requirement of a node. We notice
that once a dimension of a space (represented by a DMBR to
reduce the dead area) in the BINDS-tree becomes a single-
ton, this dimension remains a singleton for the subspaces
with the growth of the index. Thus, this dimension can
be omitted in the representations of DBMRs for the sub-
spaces to increase the fan-outs of the corresponding sub-
trees. Our experiments showed that the singleton dimension
inheritance property could reduce the index size up to 40%
without losing the filtering capability of non-leaf nodes of
the index. Note that the minimum space utilization require-
ment in a data-partitioning based indexing scheme such as
the BoND-tree may require expanding a singleton dimen-
sion of a DMBR followed by a node re-split. As a result, the
singleton dimension inheritance property is only valid for a
space-partitioning based indexing method like the BINDS-
tree.

4.2 Optimizing the Space-Partitioning Based Indexing

In this subsection, we elaborate the details of our strategies
to optimize the BINDS-tree in an NDDS.

4.2.1 A Space-Efficient Structure Storing the Split History

As mentioned earlier, in an NSP-tree, each non-leaf node P
contains an SHT to store the split history of the child nodes
of P. Each external node of the SHT is one of the child
nodes of P, while each internal node of the SHT stores a split
dimension id and the (split) arrangement of letters/elements
for the split dimension. However, an SHT usually occu-
pies about 25%-35% of a non-leaf node space, which signif-
icantly reduces the fan-out of P. We propose a new space-
efficient data structure to replace the SHT so that the fan-
out of P is increased. Our proposed Split History Structure
(S HS) contains a set of parent-sibling pointers, indicating
the splitting order among node entries, and a set of split-
bitmaps, indicating the split dimensions occurred for each
subspace. An example of a non-leaf node structure of the
BINDS-tree is shown in Fig. 2.

Note that it is possible that several entries in a non-
leaf node share the same split-bitmap. For example, the
splits on the first and the fourth dimensions (represented by
bitmap “10010000”) have occurred for the subspaces repre-
sented by entries e4 and e7 in Fig. 2. We observed in experi-
ments that the number of distinct split-bitmaps was typically

ISLAM et al.: THE BINDS-TREE: A SPACE-PARTITIONING BASED INDEXING SCHEME FOR BOX QUERIES IN NON-ORDERED DISCRETE DATA SPACES
749

Fig. 2 A non-leaf node in the BINDS-tree

a small fraction of the total number of entries of a non-leaf
node. Hence, to save space, we put the bitmaps into a sep-
arate list and have the node entries to point to their corre-
sponding bitmaps. On the other hand, a bitmap does not
contain the information about the order of the node splits.
To overcome this problem, we add a parent-sibling pointer
in each node entry. It keeps track of the last node entry
(subspace) from which the current node entry (subspace) is
generated through a split. Several entries may be generated
from the same parent entry. However, the distinct id of each
entry in a non-leaf node can break such a tie as the entries
are added sequentially. In practice, we observe an approx-
imate 25% improvement for the fan-out of a non-leaf node
with the proposed structure.

Let us illustrate the working principle of the proposed
split history structure through the example given in Fig. 2.
The given non-leaf node P initially has two entries (i.e., e1

and e2) for two child nodes with two subspaces represented
by DMBR1 and DMBR2, respectively. When a child node is
overflow, its corresponding entry (subspace) has to be split
into two. For example, e2 is split into e2 (revised) and e3

(new) when the child node represented by e2 is overflow.
Let e2 → {e2, e3} denote this split process. To keep the rele-
vant split information, e3 has a parent-sibling pointer to link
it to its originating e2, the bitmap of e2 records the split di-
mension (i.e., dimension 2) and the previous split dimension
(i.e., dimension 1), and the revised DMBR2 of e2 and the
new DMBR3 of e3 can be used to infer the element arrange-
ment information (e.g., {a, g} for e2 and {t} for e3) along
the split dimension. For the example non-leaf node P in
Fig. 2, the following sequence of entry splits have occurred:
e2 → {e2, e3}, e3 → {e3, e4}, e1 → {e1, e5}, e2 → {e2, e6},
e4 → {e4, e7}, e3 → {e3, e8}, e5 → {e5, e9}, e6 → {e6, e10},
e1 → {e1, e11}. Note that non-leaf node P was initially cre-
ated when the child node corresponding to entry e1 was split
into two, resulting in two entries e1 and e2 in the newly cre-
ated P with the parent-sibling pointer of e2 pointing to e1.

The relationships among the above splits can be visu-
alized by using a binary split tree shown in Fig. 3. Each
non-leaf node n of the split tree represents an overflow node
of the BINDS-tree at that time whose entries are divided into
two groups (represented by two child nodes of n) based on

Fig. 3 A visualization of relationships among splits in the non-leaf node
in Fig. 2

a split dimension (labeled outside node n). The leaf nodes
of the split tree in Fig. 3 correspond to the child nodes of
the non-leaf node P of the BINDS-tree with their entries
shown in Fig. 2. The NSP-tree directly incorporates such a
split tree in Fig. 3 into its non-leaf nodes with explicit rep-
resentations of split dimensions and element arrangements,
while our proposed BINDS-tree adopts an optimized data
structure that captures the split information through effec-
tive parent-sibling pointers, a list of shared bitmaps, and an
implicit representation of element arrangements.

Let us see how it works for the example given in Fig. 2
(physically) and Fig. 3 (virtually). As mentioned, each leaf
node ln of the split tree in Fig. 3 corresponds to a child node
N of non-leaf node P of the BINDS-tree with its entry shown
in Fig. 2. The sequence of the split dimensions labeled on
the path from the root to the parent of ln indicates how the
subspace for ln (i.e., N) was obtained, which is represented
by the bitmap in the entry corresponding to N in Fig. 2. For
example, “10110000” is the bitmap for both nodes 1 and 11,
which indicates that the current space for node P has been
split on dimensions 1, 3 and 4 to get the subspaces for node
1 (revised three times) and node 11 (resulting from the fi-
nal split on dimension 4). Since the same dimension may
be split multiple times, the number of 1-bits in a bitmap
may be less than the number of dimension splits actually
happened to obtain the corresponding node. For example,
the bitmap for node 4 is “10010000” although four splits
have been done (three times for dimension 1 and once for
dimension 4). Since the parent-sibling pointers of the node
entries in Fig. 2 essentially capture the structure of the split
tree in Fig. 3 and the magnitudes of the node ids reflect the
before-and-after relationships of the corresponding nodes in
their creation sequence, we can determine the sequence of
the split dimensions by backtracking parent-sibling pointers
(i.e., moving upwards the split tree in Fig. 3) and compar-
ing the bitmaps of the relevant parent and sibling nodes. To
determine the element arrangement for a split dimension i
occurred at a non-leaf node n in the split tree, one just needs
to take a union of the i-th component sets of the DMBRs of
the leaf nodes in the left (right) subtree of n as the elements
at the left (right) side of the element arrangement for split
dimension i. Note that utilizing the singleton dimension in-
heritance property to be discussed in Sect. 4.2.3, the union

750
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

(a) Parent-sibling
adjacency list

(b) The left set of entires from the
split of the non-leaf node in Fig. 2

(c) The right set of entries from the split of the non-leaf node
in Fig. 2

Fig. 4 Splitting the non-leaf node in Fig. 2 using the proposed structure in the BINDS-tree

process can be further optimized by considering only one of
the leaf nodes of the left subtree of n.

Assume that, after the last entry e11 is added, the non-
leaf node P in Fig. 2 itself is overflow. How to split this
non-leaf node? The parent-sibling pointers (relationships)
of the non-leaf node P show that all the entries starting from
the 3rd position (i.e., ei where i ≥ 3) are originated from
either the first two (i.e., e1 and e2) or their subsequently
spawned entries. Hence, we use e1 and e2 as two seeds
to divide the node entries into two groups based on their
relationships with these two seeds. First, we generate an
adjacency list based on the parent-sibling relationships of
the entries. Figure 4 (a) shows such an adjacency list. The
group to which each entry belongs can be then identified by
following the adjacency list recursively. Each group of en-
tries are listed in Figs. 4 (b) and 4 (c) as a list of pairs in the
form <entry-id, parent-sibling>. Second, it can be seen that
the entries within newly created groups are not ordered ac-
cording to their entry-ids. It is necessary to keep the order
of the entry-ids so that the order of previous subspace splits
are maintained. Thus, we sort the entries in the ascending
order of the entry-ids. We then update each entry-id with
their updated position in the new node. We also update the
parent-sibling pointers with the updated entry-ids.

4.2.2 Splitting Heuristics

The strategies to split an overflow node for an index tree in
an NDDS plays a critical role on the index effectiveness and
the query performance. Different sets of splitting heuristics
may be needed for different types of queries to achieve an
optimized performance since different types of queries often
exhibit different characteristics. For instance, the similarity
queries search for vectors within a given similarity distance,
while the box queries focus on filtering elements on different
dimensions. The goal of this work is to develop an effective
space-partitioning based indexing method for box queries in
an NDDS.

Since the data-partitioning based BoND-tree was also
designed to support efficient processing of box queries [9],
let us first review its splitting heuristics to gain some inspi-
ration. The following three splitting heuristics are adopted
in the BoND-tree:

S H1: Minimum Overlap. Among all candidate parti-
tions of the entries in the overflow node, this heuristic
chooses the one that produces two new nodes whose
DMBRs have the minimum overlap.

S H2: Minimum Span. In case there is a tie from S H1,
this heuristic chooses a partition that splits the node
along the dimension with the smallest span that has at
least two elements.

S H3: Minimum Balance. In case there is a tie from S H2,
this heuristic chooses a partition that splits a given di-
mension as unbalanced as possible, i.e., putting as few
elements as possible in one side and putting the remain-
ing elements in the other side on the split dimension,
provided that the minimum space utilization require-
ment for each node is satisfied.

Although these heuristics are proven to be effective in
supporting efficient box queries, changes are needed when
they are transplanted into a space-partitioning based index-
ing method, which has never been studied in the literature.

First of all, all the candidate partitions of an overflow
node in a space-partitioning based indexing method are in-
herently overlap-free since they directly partition the under-
lying space rather than the underlying dataset. As a result,
heuristic S H1 is redundant.

Secondly, although the splitting heuristics in the data-
partitioning based BoND-tree are used for both leaf and
non-leaf nodes, splitting heuristics are typically applied to
the leaf nodes only in a space-partitioning based indexing
method. The split for an overflow non-leaf node in the lat-
ter method usually follows the split history of the node that
has yielded its child nodes (subspaces). Re-partitioning the
space of the node on the fly by discarding already decided
partitions is too expensive and unnecessary.

Thirdly, although we can incorporate heuristic S H2
into our method, we have to significantly change heuristic
S H3 since a space-partitioning based indexing scheme can-
not guarantee the minimum space utilization requirement in
a node/space split [10]. However, it is desirable to increase
the space utilization whenever possible.

Based on the above observations, we propose to use the
following heuristics for splitting an overflow (leaf) node in
our BINDS-tree.

ISLAM et al.: THE BINDS-TREE: A SPACE-PARTITIONING BASED INDEXING SCHEME FOR BOX QUERIES IN NON-ORDERED DISCRETE DATA SPACES
751

Fig. 5 An example of splitting an overflow leaf node

LS H1: Minimum Span. This heuristic chooses the di-
mension with the smallest span having at least two ele-
ments to split the node (subspace).

LS H2: Minimum-Maximum Balance. For each dimen-
sion chosen by LS H1, this heuristic chooses a parti-
tion that splits the dimension by putting the element
with the highest frequency in one side and putting the
remaining elements on the dimension in the other side.

LS H3: Cross Optimal Balance. Among the partitions
chosen by LS H2 (if having more than one), this heuris-
tic chooses the partition corresponding to the dimen-
sion that yields the smallest (absolute) difference be-
tween the total frequencies from two sides.

Heuristic LS H1 splits an overflow leaf node along the
dimension with the smallest number of elements, except that
the two new leaf nodes from the split should have distinct el-
ements (at least one) on the dimension since two subspaces
cannot overlap. Splitting on the smallest dimension would
improve the pruning power of the index tree for a box query
since it usually reduces the chance for the query box to over-
lap with the subspaces of the two new leaf nodes from the
split on this dimension. Heuristic LS H2 minimizes the bal-
ance of the distribution of elements on the split dimension
by putting one element in one side and putting the remain-
ing elements in the other side. In this way, the chance for
the query box to overlap with the new leaf node having one
element on the split dimension is small, resulting in an im-
proved pruning power of the index tree. On the other hand,
heuristic LS H2 tries to maximize the balance of the dis-
tribution of the associated vectors between two new nodes
from the split by choosing the element with the highest fre-
quency (count) of its associated vectors for the one-element
side of the split. In this way, the space utilization for the cor-
responding new node is improved, comparing to placing an
element with fewer associated vectors in the node. Although
LS H2 maximizes the balance of the distribution of vectors
between two new nodes along each individual dimension
chosen by LS H1, LS H3 attempts to choose the most bal-
anced partition across all the dimensions chosen by LS H1.

Figure 5 shows an example of the process in which an
overflow leaf node is split into two according to the afore-
mentioned heuristics. The overflow node contains entries
for 7 vectors. The spans for the 1st to 8th dimensions are
1, 4, 3, 4, 4, 3, 4, 4, respectively. According to heuristic
LS H1, the partition of elements should take place on the 3rd

or 6th dimension since these two dimensions have a mini-
mum span with at least two elements. Based on heuristic
LS H2, the split arrangements for these two dimensions are:
{t}/{a, g} and {a}/{c, t}, respectively. Since the differences
between the total frequencies from two sides on these two
dimensions are: |5 − 2| = 3 and |4 − 3| = 1, respectively,
the partition on the 6th dimension is selected according to
heuristic LS H3. As a result, the entries with the vectors
having the relevant elements from the corresponding side of
the split arrangement on the split dimension are put into the
new leaf node associated with the corresponding side.

4.2.3 Singleton Dimension Inheritance Property

With the growth of a BINDS-tree index, a leaf node LN may
overflow. Let us assume that the splitting algorithm divides
LN (i.e., its current space) into two new leaf nodes LN1 and
LN2 (i.e., two subspaces) along the i-th dimension. Since
there is no minimum space utilization requirement of a node
for a space-partitioning based index tree and heuristic LS H2
ensures that there is only one element in one of the two new
nodes along the split dimension, we can assume that, along
the i-th dimension, LN1 is assigned with only one element
z, while LN2 is assigned with the set S of the remaining
elements of the current space, where |S | ≥ 1. Note that,
in a BINDS-tree, each overflow leaf node split will produce
at least one new leaf node having a singleton on the split
dimension.

For the BINDS-tree, any vector α inserted into the left
node LN1 afterwards must have element z on the i-th dimen-
sion, while a vector β inserted into the right node LN2 cannot
have element z on the i-th dimension. In fact, the element y
of β on the i-th dimension may or may not belong to S . If
y � S , the current space of the node is expanded after the
insertion.

When LN1 becomes overflow, it (i.e., its space) cannot
be split on the i-th dimension again since two new subspaces
from a space partition/split cannot have an overlap. Hence,
the split of LN1 has to take place on another dimension. As
a result, the new leaf nodes (subspaces) spawned from the
split will still have the same singleton (i.e., element z). In
fact, the leaf nodes (subspaces) produced by all subsequent
splits of LN1 (or its spawned nodes) will have the same sin-
gleton on the i-th dimension and remain unchanged all the
time. We call this characteristic as the singleton dimension
inheritance property of the space partitioning. Utilizing this
property, we can omit the i-th dimension of the vectors in
LN1 and other (leaf) nodes spawned from the splits of LN1

(or its spawned nodes). Furthermore, if all the leaf nodes in a
non-leaf node N of the BINDS-tree have the same singleton,
the i-th dimension of the DMBRs for the entries of these leaf
nodes in N can be omitted. This observation can be applied
up to the root of the BINDS-tree. Hence, the singleton di-
mension inheritance property helps reduce the storage space
and increase the fan-out of the relevant nodes significantly.

For LN2, if S > 1, the i-th dimension cannot be omit-
ted. However, if S = 1, there are two possible scenarios.

752
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

First, in case all the letters/elements are present in the i-th
dimension of the subspace for the parent node of LN2, there
will be no expansion of this singleton dimension for LN2

from any new vector insertion. Hence, we can omit the i-
th dimension of the vectors in LN2 and other (leaf) nodes
spawned from the splits of LN2 (or its spawned nodes). So
are the i-th dimensions of the DBMRs for the entries in a
non-leaf node if the same singleton is shared among the
child nodes along the i-th dimension. Second, if not all the
letters/elements are present in the i-th dimension of the (cur-
rent) subspace for the non-leaf (parent) node N of LN2, this
singleton dimension for LN2 may be expanded after a new
vector(s) is inserted into N. In this case, the i-th dimension
cannot be omitted from the vectors in LN2 or its spawned
nodes. Hence, we need to determine completeness of the
(current) subspace Ωp for the parent node N of LN2 along
the i-th dimension in order to determine if the singleton di-
mension of LN2 and its spawned nodes can be omitted. The
completeness of (current) subspaceΩp on the i-th dimension
can determined from Theorem 1.

Theorem 1: Let Ai be the alphabet for the i-th dimension
of a given NDDS Ω, LN2 be a leaf node with the i-th dimen-
sion being a singleton in a BINDS-tree inΩ, N be the parent
node of LN2, and S E be the set of node entries in N that (1)
are reachable by a chain of parent-sibling pointers from the
entry for LN2 and (2) have a split on the i-th dimension. Let
o be the oldest ancestor in S E based on the parent-sibling
pointers, i.e., no other e ∈ S E such that e is reachable from
o. Let o′ be the child of o (i.e., the parent-sibling pointer of
o′ points to o). The current subspace for node N on the i-th
dimension is complete if the following equation holds:

o.DMBR(i) ∪ o′.DMBR(i) = Ai (1)

where x.DMBR(i) denotes the i-th component set of the
DMBR in node entry x.

Proof: Note that the node entries in S E capture all the
splits along the i-th dimension for the (current) subspace
of N. If e ∈ S E and e is not o or o′, then e is a descen-
dant of o′. Hence, e.DMBR(i) ⊆ o′.DMBR(i). On the
other hand, o and o′ are the result of the first split of an
entry in N on the i-th dimension. Therefore, the set of ele-
ments/letters on the i-th dimension for any ancestor of o is
o.DMBR(i) ∪ o′.DMBR(i). Therefore, the component set
of the current subspace of N is o.DMBR(i) ∪ o′.DMBR(i).
In general, o.DMBR(i) ∪ o′.DMBR(i) ⊆ Ai. If the equality
holds, the current subspace is complete (full). �

If the current subspace for node N on the i-th dimen-
sion is complete/full, the location for each element/letter in
Ai on the i-th dimension in N has already been decided. As
a result, the singleton on the i-th dimension of LN2 will re-
main unchanged for any future insertions since no other el-
ement/letter will be placed in LN2 on this dimension.

The singleton inheritance property is effective for im-
proving overall space requirement of a space-partitioning
based indexing scheme. For example, consider a leaf node
with vectors shown in Table 1, the component set along

Table 1 k-mer vectors in an example leaf node

gctcatag agtcttga agtcaggc tctcacga actcgagt
cctctcaa cctcgaag agtcaaag ggtcgtga tgtcgact

Table 2 DMBR of the entry for the leaf node in Table 1

Dimension 1 2 3 4
Elements {a,c,t,g} {c,g} {t} {c}

Dimension 5 6 7 8
Elements {a,t,g} {a,c,t,g} {a,c,g} {a,c,t,g}

Table 3 Average number of singleton dimensions in the DMBRs of leaf
nodes for varying alphabet sizes

Alphabet Size 4 5 6 7 8
Avg. #Singletons 6.84 6.05 5.60 4.7 3.54

each dimension of the DMBR in the entry for this leaf node
is shown in Table 2. The 3rd and 4th dimensions of the
DMBR are singletons because all the k-mers have same let-
ter in those dimensions. These dimensions are not going to
be split anymore. Hence, we do not need to store them in
the k-mer vectors as they are already present in the DMBR.
From doing so, we can increase the capacity of the node by
25%. Furthermore, any subsequent nodes obtained by split-
ting this leaf node to handle overflowing can also omit these
two dimensions in their contained vectors.

The number of singleton dimensions in the DMBR of
a leaf node of the BINDS-tree primarily depends on the al-
phabet size because of heuristic LS H2. Assuming that an
NDDS has the same alphabet A for each dimension and
the elements of the alphabet appear uniformly for a given
dataset in the NDDS, the average number of singleton di-
mensions of the DMBR of a leaf node LN in a BINDS-tree
can be estimated as

#S ingletons(LN) ≥ log2(#Lea f Nodes)
log2(‖A‖) − 1

‖A‖2 (2)

where ‖A‖ is the alphabet size and #Lea f Nodes is the to-
tal number of leaf nodes in the BINDS-tree. It is evident
from Eq. (2) that a dataset in an NDDS with a larger alpha-
bet will have a smaller number of singleton dimensions in
its BINDS-tree index. For instance, we generated datasets
in multiple NDDSs of various alphabet sizes using the zipf1
distribution in order to observe the impact of the alphabet
size on the singleton dimensions in a BINDS-tree. We set
the number of vectors in the dataset to 106, the dimension-
ality to 18 and the alphabet size varying between 4 to 8.
Table 3 shows that the average number of singleton dimen-
sions monotonically decreases with the increase of the al-
phabet size. It is evident that the datasets in an NDDS with
a smaller alphabet such as a DNA sequence dataset will have
a significant advantage for space utilization with the single-
ton dimension inheritance property of our proposed method.

4.3 Tree Construction

In this section, we describe the key functions required to
build the BINDS-tree.

ISLAM et al.: THE BINDS-TREE: A SPACE-PARTITIONING BASED INDEXING SCHEME FOR BOX QUERIES IN NON-ORDERED DISCRETE DATA SPACES
753

4.3.1 Choosing the Best Subspace

In order to insert a vector v into a BINDS-tree, Function
FindBestS ubspace determines the best subspace at the leaf
level of the tree. Each node in the BINDS-tree is associ-
ated with a space. Each child node of a non-leaf node N
in the tree represents a subspace within the space associ-
ated with N. Starting from the root node, FindBestSub-
space chooses the most suitable subspace at every non-leaf
level until a leaf level subspace is selected. Since the sub-
spaces are generated by overlap-free splits of the relevant
dimensions, only previously split dimensions are examined
in finding a desired subspace. The split-bitmaps in our pro-
posed space-efficient split history data structure keep track
of previously split dimensions of a subspace. However, it is
possible that a desired subspace cannot be found since the
component element of vector v on a dimension is not present
in the dimension for any of the subspaces. It should be noted
that, unlike a space-partitioning based index tree in a CDS,
a space-partitioning based index tree in an NDDS adopts the
(current) subspaces based on the vectors inserted so far. In
case a desired subspace for v cannot be found within a given
non-leaf node N, the rightmost subspace (child) of N is se-
lected for expansion to accommodate v.

Function 1: FindBestSubspace
Input: A vector v[1 : d] and the BINDS-tree rooted at Root
Output: A Leaf node N to insert v
1. N := Root
2. height := Height of the tree rooted at N
3. while (height > 1) then
4. bestChildren := N.entries
5. while (‖bestChildren‖ > 1)then
6. splitDims ∩ = ∀ bestChildren.split bitmap
7. foreach(child in bestChildren)
8. if (isNotCovered(child,splitDims, v)) then
9. bestChildren.remove(child)
10. end foreach
11. if (bestChildren is unchanged) then
12. break /*Failed to find the best child*/
13. end if
14. end while
15. if (‖bestChildren‖ > 1) then

/*Create SHT dynamically from parent-sibling pointers to determine
the best child*/
16. dSHT = GenerateSHT(N.entries)
17. dS HT N = dS HT.Root
18. while (dS HT N � lea f) then
19. sp dim = dS HT N.sp dim
20. if (v[sp dim] ⊆ dS HT N.le f t)) then
21. dS HT N = dS HT N.le f t
22. else if (v[sp dim] ⊆ dS HT N.right)) then
23. dS HT N = dS HT N.right
24. else
25. Expand the rightmost subspace with v[sp dim]
26. dS HT N = the rightmost subspace
27. end if
28. end while
29. bestChildren := dS HT N
30. end if
31. N := bestChildren
32. height -= 1
33. end while

34. return N

Steps 4 to 14 determine the best child subspace in a
non-leaf node if there is any. At each iteration, the com-
mon split dimensions of candidate entries are determined
by intersecting corresponding split-bitmaps (step 6). The
DMBR of each candidate entry and the vector v are com-
pared on the common split dimensions. In case the DMBR
of a child entry does not cover the component elements of v
in all of the common split dimensions, it is pruned from the
candidate set. The loop terminates when there is only one
DMBR/child left. However, this strategy may fail to dis-
tinguish between two candidate children because the split
bitmaps do not store the order of the space-partitions. In
such a scenario, the split history tree of the children sub-
spaces is constructed dynamically, denoted as dS HT , using
the parent-sibling pointers. dS HT is traversed to determine
the best child subspace as shown in steps 15 to 30. If no
existing subspace covers all the split dimensions, steps 24 to
26 are used to expand an existing subspace (DMBR/child)
to insert v. Note that FindBestSpace just highlights the logic
flow. The details of the adoption of the space-efficient split
history structure and the singleton dimension inheritance
property are implied in the relevant steps.

4.3.2 Insert Function

Function InsertVector inserts a vector into the BINDS-tree.
In step 2, the desired leaf node subspace N is determined
by Function FindBestS ubspace. In case N overflows after
inserting vector v, Function S plitS pace in step 5 is called to
split N into N and N2. Steps 8 to 20 describe the bottom-up
modification of the upper-level nodes up to the root. Steps
10 to 16 split an overflow parent node. Step 17 updates the
DMBR of a node in its parent.

Function 2: InsertVector
Input: A vector v[1 : d] and the BINDS-tree rooted at Root
1. treeHeight := Height of the tree rooted at Root
2. N = FindBestS ubspace(v,Root)
3. N.add(v)
4. if (N overflows) then
5. S plitS pace(N,N2, Lea f)
6. result = over f low
7. end if
8. curHeight = 0
9. while (curHeight < treeHeight)then
10. if (result == over f low) then
11. parent(N).add(N2.DMBR)
12. if (parent(N) overflows) then
13. S plitS pace(N,N2,NonLea f)
14. result = over f low
15. end if
16. end if
17. U pdateDmbr(parent(N),N.DMBR)
18. N = parent(N)
19. curHeight+ = 1
20. end while

4.3.3 Split Function

Inserting a vector may cause the nodes to overflow all the

754
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

way up to the root of the BINDS-tree. Function S plitS pace
splits an overflow node in the BINDS-tree. Like the other
space-partitioning based indexing schemes, the splitting
process of a leaf node in the BINDS-tree is different than
that of a non-leaf node. Steps 1 to 14 divides the subspace
of an overflow leaf node into two overlap-free subsubspaces.
Figure 5 illustrates the splitting process of an overflow leaf
node. Inserting the entry of the newly added leaf node into
the parent non-leaf node may cause the latter to overflow
too. The splitting process of a non-leaf node is different
from that for a data-partitioning based indexing scheme be-
cause an overflow non-leaf node needs to be split based on
how the space was split, i.e., the split history of the space.
Steps 15 to 19 split an overflow non-leaf node. The split is
determined by traversing the parent-sibling pointers of the
entries. The relationships between subspaces and parent-
sibling pointers are illustrated in Fig. 4.

Function 3: SplitSpace
Input: Overflow node N
Output: N and N2

1. if (N is a leaf node) then
2. DMBR = createDMBR(N.entries)
3. minS pan = min((∀i : span(DMBR[i] > 1))
4. partition = NULL
5. for each ith dimension of DMBR
6. if (span(DMBR[i]) = minS pan) then
7. (elements,frequency) = histogram(N.entries.key[i])
8. Sort elements in descending order of frequency
9. newPartition = (elements[0], elements[1, :])
10 if (newPartition is more balanced) then
11. Partition := newPartition
12. end if
13. end if
14. end for
15. else /*N is a non-leaf node*/
16. Put the entries into two nodes N and N2 based on the parent-sibling
pointers
17. Update parent-sibling pointers in N and N2

18. end if
19. return N, N2

Note that heuristic LS H1 is realized by steps 2-6,
heuristic LS H2 is realized by steps 7-9, and heuristic LS H3
is realized by steps 10-12.

5. Experiments

We conducted extensive experiments to evaluate effective-
ness of the proposed BINDS-tree indexing scheme. All the
indexing methods in the experiments were implemented us-
ing the C++ programming language. The experiments were
conducted on an MSU HPCC Linux environment consisting
of four 2.6 GHz Intel Cores, 8 GB RAM and 450 GB shared
storage. The performance was evaluated based on box query
processing I/Os and time as well as indexing space utiliza-
tion and construction time. The node size was set to 4KB.

5.1 Datasets

The index trees were created using a publicly available
genome dataset and various synthetic datasets. Specifically,

Fig. 6 (a) Index creation time. (b) # Singleton dimensions with the
growth of dataset size

the bacteria.105.1.genomic.fna genome data was collected
from NCBI. The synthetic datasets were generated using the
zipf distributions [34]. We have experimented with datasets
of uniform (zipf0) and skewed (zipf1-zipf3) distributions.
Unless otherwise specified, the alphabet size was set to 4
for the datasets. For the sake of simplicity, each dimen-
sion of the NDDS for the synthetic datasets had the same
alphabet size. Index trees were created for different lengths
of k-mers such as 15, 18 and 21. For the search, synthetic
box queries were generated using a random query generator.
Supplementary information about the datasets are provided
in http://cse.msu.edu/∼islama/bindstree.php.

5.2 Index Construction Time

Figure 6 (a) shows a comparison of the index creation time
for different indexing methods. The NSP-tree requires the
highest amount of time because of its two-DMBR strategy
for non-leaf node entries. Although multiple DMBRs strat-
egy have been proven effective for similarity queries in the
NSP-tree [10], it also increases the index construction time
significantly. Both of the BoND-tree and the BINDS-tree
keep only one DMBR for each non-leaf node entry. On the
other hand, run-time determination of the split history re-
quires more time to create the BINDS-tree compared to that
of the BoND-tree.

5.3 Effect of Singleton Dimension Inheritance

Figure 6 (b) shows the average number of singleton dimen-
sions in a leaf node with increasing the database size and di-
mensionality. The number of singleton dimensions levels off
with the growth of an index tree. Because of the minimum-
maximum balance heuristic (LSH2), each split results in a
new singleton dimension in at least one side of the partition.
However, as the index tree grows, the number of leaf nodes
also increase rapidly. Therefore, the newly added vectors
are distributed among all the leaf nodes. It takes many new
vectors to split all the leaf nodes of a large tree. Thus, the
increment of the average number of singleton dimensions
levels off with the growth of the BINDS-tree.

Figure 6 (b) also shows that the number of singleton
dimensions increases with the growth of the dimensionality,
although the former increases at a slower pace. Larger vec-
tors decrease the fan-out of a node, resulting in more node

ISLAM et al.: THE BINDS-TREE: A SPACE-PARTITIONING BASED INDEXING SCHEME FOR BOX QUERIES IN NON-ORDERED DISCRETE DATA SPACES
755

Fig. 7 Comparison of query I/O performance among the NDDS indexes
with different strategies

overflow splits. On the other hand, a larger number of leaf
nodes levels off the number of singleton dimensions.

As mentioned in Sect. 4.2.3, the singleton dimension
inheritance property helps identify many of these singleton
dimensions that can be omitted from the leaf and non-leaf
node entries of the BINDS-tree without losing any informa-
tion, resulting in a significantly increased fan-out of the tree
nodes. This property leads to a significantly improved query
performance as we will see in the next subsection.

5.4 Effect of Strategies in the BINDS-Tree

We also conducted an experiment to evaluate the impact of
the proposed strategies on the BINDS-tree. The compared
index trees were created using the pseudo-random bacte-
ria genome dataset and the highly skewed zipf3 distribu-
tion dataset. We have compared the query I/O performance
among the BINDS-tree, the BINDS-tree without the single-
ton dimension inheritance (denoted as the BINDS′-tree), the
NSP-tree [10], and the BoND-tree [9]. The results are shown
in Fig. 7.

Figure 7 (a) shows the query I/O comparison on the
pseudo-random bacteria genome dataset. The number of
query I/Os in the NSP-tree is significantly higher than that
of the other index trees. The numbers of query I/Os for the
BoND-tree and the BINDS′-tree are marginally different for
this dataset for two reasons. First, both methods applied
splitting heuristics S H1 and S H2 (kind). The node splits
for the BINDS′-tree are inherently overlap-free, while the
node splits of the BoND-tree are most of the time overlap-
free due to the nearly-random distribution of the dataset and
heuristic S H1. Second, the minimum utilization require-
ment in the data-partitioning based BoND-tree was set to
30%, while the new heuristics LS H2 and LS H3 and, the al-
phabet size (4) of the dataset helped the space-partitioning
based BINDS′-tree to have a similar utilization (25%). On
the other hand, the singleton dimension inheritance property
helped enlarge the fan-out of the nodes in the BINDS-tree.
As a result, the query I/O performance of the BINDS-tree is
noticeably better than the other methods.

Figure 7 (b) shows the query I/O comparison on the
highly skewed zipf3 dataset. The number of query I/Os for
the BoND-tree is significantly higher among the compared
index methods. In order to meet the minimum utilization re-
quirement, the splitting process of the BoND-tree often puts

entries with the most frequent element in both sides of a
partition. As a result, the box queries with elements of high
frequencies may have to access more nodes of the index tree
for a highly skewed database. However, the subspaces for
the nodes at the same level in the space-partitioning based
indexing methods such as the NSP-tree, the BINDS-tree,
and the BINDS′-tree are overlap-free. Hence, the numbers
of query I/Os of the space-partitioning based index meth-
ods are significantly smaller than that of the BoND-tree.
Among the space-partitioning based methods, the NSP-tree
required more query I/Os because the splitting heuristics are
not optimized for processing box queries. The BINDS-tree
outperformed the BINDS′-tree because it applied the sin-
gleton dimension inheritance property on top of the pro-
posed splitting heuristics. Thus, the BINDS-tree shows su-
perior performance among the compared methods for both
the datasets, which demonstrates the effectiveness of the
proposed space-partitioning based index scheme.

5.5 Space Utilization

The BINDS-tree achieves an overall space utilization simi-
lar to the data-partitioning based BoND-tree. Despite lack
of any guaranteed space utilization requirement, the heuris-
tics LS H2 and LS H3 are used to improve the space utiliza-
tion. The indexes were created using the bacteria genome
dataset. The NSP-tree is most efficient in space utiliza-
tion among the compared methods because of its maximum
balance splitting heuristic. On the other hand, the mini-
mum balance heuristic improves filtering of the BoND-tree
and the BINDS-tree at the cost of a lower space utiliza-
tion. However, it can be seen that the space utilization of
the BINDS-tree is comparable to that of the BoND-tree in
the experiment.

5.6 Query Performance

In this subsection, we report experiments to evaluate query
performance of the compared indexing methods for datasets
with various sizes and skewness. The number of dimensions
was set to 18.

5.6.1 Query I/O Performance

Figure 8 shows a comparison of query I/O performance
on increasingly skewed zipf(0-3) datasets. Overall, the
BINDS-tree requires the least number of I/Os for processing
box queries among the compared methods. The unbalanced
splits, overlap-free partitions, and the singleton dimension
inheritance property contribute to the improved query I/O
performance of the proposed BINDS-tree. It is interest-
ing to observe that the performance of the NSP-tree is im-
proved significantly with the increase of skewness, which
underscores the fact that overlap-free partitions are critical
for box query processing. On the other hand, with the in-
creased skewness, the BoND-tree has an increasing num-
ber of overlapped partitions in order to satisfy the minimum

756
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

Table 4 Comparison of space utilization among the NSP-tree, the BINDS-tree and the BoND-tree on
varying dimensionality

#k-mers
(M)

Average Node Utilization (%)
15-mers 18-mers 21-mers

NSP BoND BINDS NSP BoND BINDS NSP BoND BINDS
5 72.1 66.3 63.7 72.1 66.4 64.1 68.7 66.3 64.3
10 71.1 66.1 64.4 72 66 64.5 69.5 66.1 64.4
15 69.2 66.1 64.1 68.7 66.2 64.5 71.8 66.3 64.3
20 70.6 66 63.8 68.7 66.2 64.4 70.5 66.3 64.1

Fig. 8 Comparison of query I/O performance among the NDDS indexes for skewed datasets

Fig. 9 Comparison of query processing time among the NDDS indexes for skewed datasets

space utilization requirement. As a result, the performance
of the BoND-tree monotonically degrades with increasingly
skewed datasets.

5.6.2 Query Processing Time

Figure 9 shows a comparison of query processing time on
increasingly skewed zipf(0-3) datasets. It is evident from
the figure that the BINDS-tree outperforms both the BoND-
tree and the NSP-tree for all the datasets. The BoND-tree
requires less query processing time than the NSP-tree for
all the datasets except the zipf3 dataset. The performance
pattern observed here is similar to what we have seen for
the query I/O performance in Sect. 5.6.1.

5.7 Query I/O Performance for Varying Alphabet Size

We also conducted an experiment to compare the query I/O
performance between the BINDS-tree and the BoND-tree
for various alphabet sizes. The number of distinct k-mer
vectors in the dataset with the zipf1 distribution was set to
15 millions. The number of dimensions was set to 18. Fig-
ure 10 (a) shows the comparison result. It can be seen from
the figure that the BINDS-tree consistently outperforms the
BoND-tree for all alphabet sizes in the experiment.

Fig. 10 Query I/O comparison between the BINDS-tree and the BoND-
tree for varying alphabet size and dimensionality

5.8 Query I/O Performance for Varying Dimensionality

We conducted another experiment to compare the query I/O
performance between the BINDS-tree and the BoND-tree
for varying dimensionality. The number of distinct vectors
was set to 15 millions. The alphabet size was set to 4. Fig-
ure 10 (b) shows the result. From the figure, we can see that
the BINDS-tree consistently outperforms the BoND-tree for
various numbers of dimensions in the experiment.

5.9 Application in k-mer Search

The k-mer search is an important step in many genome se-

ISLAM et al.: THE BINDS-TREE: A SPACE-PARTITIONING BASED INDEXING SCHEME FOR BOX QUERIES IN NON-ORDERED DISCRETE DATA SPACES
757

Fig. 11 Query performance for back-translated k-mer search application

quence analysis applications. Searching using box queries
on an index tree is an efficient k-mer search technique. For
instance, the back-translated k-mer search [5], the sequenc-
ing error correction [6], [7], and the amino acid k-mer search
with neighbor thresholds [3] can be efficiently processed via
box queries. Figure 11 presents a comparison of the back-
translated k-mer query performance using the compared in-
dexing methods in terms of the number of query I/Os and
the processing time. The index trees were created with the
bacteria genome datasets of up to 100M distinct kmers. The
number of dimensions was set to 18. A Nitrogen fixation
gene (Nifh) gene [36] of length 275 was used as the query
sequence. Figure 11 (a) demonstrates that the BINDS-tree
requires the least number of query I/Os among the compared
indexing methods. It is worth mentioning that the number
of query I/Os of the NSP-tree is quite high compared to the
BoND-tree and the BINDS-tree because the maximum span
and the maximum balance splitting heuristics of the NSP-
tree are not optimized for filtering box queries. Figure 11 (b)
shows the query time comparison. The comparison shows
that the BINDS-tree is faster in query processing than both
the NSP-tree and the BoND-tree. Overall, the BINDS-tree
demonstrates a similar performance behavior in this appli-
cation that we have observed earlier.

6. Conclusions

In this paper, we have proposed a new space-partitioning
based indexing method, called the BINDS-tree, that is spe-
cially tailored to efficiently support box queries on large
NDDS datasets in disk. The method incorporates vari-
ous effective strategies including the introduction of unique
heuristics utilizing the characteristics of box queries and
NDDSs to split overflow nodes, application of a single-
ton dimension inheritance property to reduce redundancy in
node entry and vector representations, and use of a special
space-efficient structure to store the node split history. The
relevant algorithms incorporating these strategies are pre-
sented. We have conducted extensive experiments on both
synthetic datasets and genome sequence datasets with differ-
ent settings of dimensionality, alphabets and box sizes. The
experimental results show that the proposed index method
outperforms the state-of-the-art BoND-tree to handle box
queries in NDDSs in terms of query I/O performance while
achieving comparable space utilization. Our study shows

that the space-partitioning based indexing approach is quite
promising in supporting efficient box queries in an NDDS.
Our future work will include study of hybrid indexing com-
bining data-partitioning and space-partitioning based ap-
proaches.

References

[1] M.L. Metzker, “Sequencing technologies — the next generation,”
Nat. Rev. Genet., vo.11, pp.31–46, 2010.

[2] T.J. Treangen and S.L. Salzberg, “Repetitive DNA and next-
generation sequencing: computational challenges and solutions,”
Nature Reviews Genetics, vol.13, no.1, pp.36–46, 2012.

[3] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W.
Miller, and D.J. Lipman, “Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs,” Nucleic Acids Re-
search, vol.25, no.17, pp.3389–3402, 1997.

[4] W.J. Kent, “BLAT—The BLAST-like alignment tool,” Genome Re-
search, vol.12, no.4, pp.656–664, 2002.

[5] A.K.M.T. Islam, S. Pramanik, X. Ji, J.R. Cole, and Q. Zhu, “Back
Translated Peptide k-mer Search and Local Alignment in Large
DNA Sequence Databases Using BoND-SD-tree Indexing,” Proc.
BIBE’15, pp.1–6, 2015.

[6] Y. Gu, Q. Zhu, X. Liu, Y. Dong, C.T. Brown, and S. Pramanik, “Us-
ing Disk Based Index and Box Queries for Genome Sequencing Er-
ror Correction,” Proc. BICoB’16, pp.69–76, 2016.

[7] Y. Gu, X. Liu, Q. Zhu, Y. Dong, C.T. Brown, and S. Pramanik, “A
new method for DNA sequencing error verification and correction
via an on-disk index tree,” Proc. ACM BCB’15, pp.503–504, 2015.

[8] D.R. Kelley, M.C. Schatz, and S.L. Salzberg, “Quake: quality-
aware detection and correction of sequencing errors,” Genome Biol.,
vol.11, no.11, R116, 2010.

[9] C. Chen, A. Watve, S. Pramanik, and Q. Zhu, “The BoND-tree:
an efficient indexing method for box queries in nonordered dis-
crete data spaces,” IEEE Trans. Knowl. Data Eng., vol.25, no.11,
pp.2629–2643, 2013.

[10] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “A space-partitioning-
based indexing method for multidimensional non-ordered discrete
data spaces,” ACM Trans. Info. Syst., vol.23, no.1, pp.79–110, 2006.

[11] A. Guttman, “R-tree: a Dynamic Index Structure for Spatial Search-
ing,” Proc. SIGMOD’84, pp.47–57, 1984.

[12] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. “The
R*-tree: an efficient and robust access method for points and rectan-
gles,” Proc. SIGMOD’90, pp.322–331, 1990.

[13] J.T. Robinson, “The KDB-tree: a search structure for large
multidimensional dynamic indexes,” Proceedings of the 1981
ACM SIGMOD international conference on Management of data,
pp.10–18. ACM, 1981.

[14] T. Bozkaya and M. Ozsoyoglu, “Indexing large metric spaces for
similarity search queries,” ACM Transactions on Database Systems
(TODS), vol.24, no.3, pp.361–404, 1999.

[15] G.R. Hjaltason and H. Samet, “Index-driven similarity search in
metric spaces (survey article),” ACM Transactions on Database Sys-
tems (TODS), vol.28, no.4, pp.517–580, 2003.

[16] P.N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” SODA, vol.93, no.194, pp.311–21,
1993.

[17] P. Ciaccia, M. Patella, and P. Zezula. “M-tree: An E cient Access
Method for Similarity Search in Metric Spaces,” Proceedings of the
23rd VLDB conference, Athens, Greece, pp.426–435, 1997.

[18] M. Farach, “Optimal suffix tree construction with large alphabets,”
Proceedings 38th Annual Symposium on Foundations of Computer
Science, pp.137–143, IEEE, 1997.

[19] B. Phoophakdee and M.J. Zaki, “Genome-scale disk-based suffix
tree indexing,” Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pp.833–844. ACM, 2007.

http://dx.doi.org/10.1038/nrg2626
http://dx.doi.org/10.1038/nrg3117
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1101/gr.229202
http://dx.doi.org/10.1109/bibe.2015.7367638
http://dx.doi.org/10.1145/2808719.2811429
http://dx.doi.org/10.1186/gb-2010-11-11-r116
http://dx.doi.org/10.1109/tkde.2012.132
http://dx.doi.org/10.1145/1125857.1125860
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/93605.98741
http://dx.doi.org/10.1145/582319.582321
http://dx.doi.org/10.1145/328939.328959
http://dx.doi.org/10.1145/958942.958948
http://dx.doi.org/10.1109/sfcs.1997.646102
http://dx.doi.org/10.1145/1247480.1247572

758
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

[20] E. Hunt, M.P. Atkinson, and R.W. Irving, “Database indexing for
large DNA and protein sequence collections,” The VLDB Journal -
The International Journal on Very Large Data Bases, vol.11, no.3,
pp.256–271, 2002.

[21] M. Barsky, U. Stege, A. Thomo, and C. Upton, “A new method for
indexing genomes using on-disk suffix trees,” Proceedings of the
17th ACM conference on Information and knowledge management,
pp.649–658. ACM, 2008.

[22] H. Li and N. Homer, “A survey of sequence alignment algorithms
for next-generation sequencing,” Briefings in Bioinformatics vol.11,
no.5, pp.473–483, 2010.

[23] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and
M. Vingron, “q-gram based database searching using a suffix array
(QUASAR),” Proceedings of the third annual international confer-
ence on Computational molecular biology, pp.77–83, ACM, 1999.

[24] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix
trees with enhanced suffix arrays,” Journal of Discrete Algorithms,
vol.2, no.1, pp.53–86, 2004.

[25] R. Bayer and K. Unterauer, “Prefix B-Trees,” ACM Trans. Database
Systems, vol.2, no.1, pp.11–26, 1977.

[26] P. Ferragina and R. Grossi, “The String B-Tree: A New Data Struc-
ture for String Search in External Memory and its Applications,” J.
ACM, vol.46, no.2, pp.236–280, 1998.

[27] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “The ND-tree: A dy-
namic indexing technique for multidimensional non-ordered dis-
crete data spaces,” Proc. VLDB’03, pp.620–631, 2003.

[28] G. Qian, H.-J. Seok, Q. Zhu, and S. Pramanik, “Space-Partitioning-
Based Bulk-Loading for the NSP-Tree in Non-ordered Discrete Data
Spaces,” Lecture notes in computer science, vol.5181, pp.404–418.
Springer, 2008.

[29] Z. Zhou, X. Liu, Y. Wang, and Q. Zhu, “Fast Construction of an In-
dex Tree for Large Non-ordered Discrete Datasets Using Multi-way
Top-Down Split and MapReduce,” 2016 International Conference
on Advanced Cloud and Big Data (CBD), pp.49–55, IEEE, 2016.

[30] R. Cherniak, Q. Zhu, Y. Gu, and S. Pramanik, “Exploring Deletion
Strategies for the BoND-Tree in Multidimensional Non-ordered Dis-
crete Data Spaces,” Proceedings of the 21st International Database
Engineering & Applications Symposium, pp.153–160, ACM, 2017.

[31] D.-Y. Choi, A.K.M.T. Islam, S. Pramanik, and Q. Zhu, “A Bulk-
Loading Algorithm for the BoND-Tree Index Scheme for Non-
ordered Discrete Data Spaces,” 25th International Conference on
Software Engineering and Data Engineering (SEDE 2016), pp.123–
128, 2016.

[32] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “Dynamic indexing
for multidimensional non-ordered discrete data spaces using a data-
partitioning approach,” ACM Trans. Database Syst., vol.31, no.2,
pp.439–484, 2006.

[33] Institute for Cyber-Enabled Research, Michigan State University.
https://hpcc.msu.edu/

[34] G.K. Zipf, Human Behavior and the Principle of Least Effort,
pp.147–149, Addison-Wesley, 1949.

[35] M. Girdea, L. Noé, and G. Kucherov, “Back-translation for discov-
ering distant protein homologies in the presence of frameshift muta-
tions,” Algorithms for Molecular Biology, vol.5, no.1, 6, 2010.

[36] J.R. Cole, Q. Wang, E. Cardenas, J, Fish, B. Chai, R.J. Farris, A.S.
Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity,
and J.M. Tiedje, “The Ribosomal Database Project: improved align-
ments and new tools for rRNA analysis,” Nucleic Acids Research,
vol.37, no.2, pp.D141–D145, 2008.

A. K. M. Tauhidul Islam received an MS
degree in Computer Science and Engineering
from the Kyung Hee University, Yongin (Re-
public of Korea) and is currently working to-
ward the PhD degree in the Computer Science
and Engineering Department at Michigan State
University, USA. His research interests include
high-dimensional database indexing, genome
sequence analysis, and data mining.

Sakti Pramanik received a PhD degree in
Computer Science from the Yale University. He
also received an MS degree in Electrical Engi-
neering from the University of Alberta, Edmon-
ton (Canada) and a BE degree in Electrical En-
gineering from the Calcutta University where he
was awarded the University’s gold medal for se-
curing the highest grade among all branches of
engineering. He is currently a Professor in the
Department of Computer Science and Engineer-
ing at the Michigan State University. His re-

search interests include high-dimensional indexing, genome sequence anal-
ysis, and multimedia databases.

Qiang Zhu received a PhD degree in Com-
puter Science from the University of Waterloo
(Canada) in 1995. He is currently the William
E. Stirton Professor and the Chair of the De-
partment of Computer and Information Science
at the University of Michigan - Dearborn. He
is also an ACM Distinguished Scientist, and an
IEEE Senior Member. He received numerous
distinguished research awards. His research in-
terests include query processing and optimiza-
tion for database systems, big data process-

ing, high-dimensional indexing, streaming data processing, self-managing
databases, and Web information systems.

http://dx.doi.org/10.1007/s007780200064
http://dx.doi.org/10.1145/1458082.1458170
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1145/299432.299460
http://dx.doi.org/10.1016/s1570-8667(03)00065-0
http://dx.doi.org/10.1145/320521.320530
http://dx.doi.org/10.1145/301970.301973
http://dx.doi.org/10.1016/b978-012722442-8/50061-6
http://dx.doi.org/10.1007/978-3-540-85654-2_37
http://dx.doi.org/10.1109/cbd.2016.019
http://dx.doi.org/10.1145/3105831.3105840
http://dx.doi.org/10.1145/1138394.1138395
http://dx.doi.org/10.1186/1748-7188-5-6
http://dx.doi.org/10.1093/nar/gkn879

