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In-Vehicle Voice Interface with Improved Utterance Classification
Accuracy Using Off-the-Shelf Cloud Speech Recognizer∗

Takeshi HOMMA†a), Member, Yasunari OBUCHI††, Senior Member, Kazuaki SHIMA†††, Rintaro IKESHITA†,
Hiroaki KOKUBO†, and Takuya MATSUMOTO††††, Nonmembers

SUMMARY For voice-enabled car navigation systems that use a multi-
purpose cloud speech recognition service (cloud ASR), utterance classifi-
cation that is robust against speech recognition errors is needed to realize
a user-friendly voice interface. The purpose of this study is to improve the
accuracy of utterance classification for voice-enabled car navigation sys-
tems when inputs to a classifier are error-prone speech recognition results
obtained from a cloud ASR. The role of utterance classification is to pre-
dict which car navigation function a user wants to execute from a sponta-
neous utterance. A cloud ASR causes speech recognition errors due to the
noises that occur when traveling in a car, and the errors degrade the accu-
racy of utterance classification. There are many methods for reducing the
number of speech recognition errors by modifying the inside of a speech
recognizer. However, application developers cannot apply these methods
to cloud ASRs because they cannot customize the ASRs. In this paper,
we propose a system for improving the accuracy of utterance classification
by modifying both speech-signal inputs to a cloud ASR and recognized-
sentence outputs from an ASR. First, our system performs speech enhance-
ment on a user’s utterance and then sends both enhanced and non-enhanced
speech signals to a cloud ASR. Speech recognition results from both speech
signals are merged to reduce the number of recognition errors. Second, to
reduce that of utterance classification errors, we propose a data augmen-
tation method, which we call “optimal doping,” where not only accurate
transcriptions but also error-prone recognized sentences are added to train-
ing data. An evaluation with real user utterances spoken to car navigation
products showed that our system reduces the number of utterance classi-
fication errors by 54% from a baseline condition. Finally, we propose a
semi-automatic upgrading approach for classifiers to benefit from the im-
proved performance of cloud ASRs.
key words: speech recognition errors, natural language understanding,
car navigation, noisy environment, cloud speech recognition

1. Introduction

Voice input interfaces are widely used in in-vehicle systems,
i.e., for car navigation, car audio, hands-free phone systems,
and so on, because its hands-free and eyes-free aspects al-
low users to drive more safely. Most commercialized in-
vehicle systems can be operated through voice with embed-
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ded speech recognizers. Due to the limited computational
resources of embedded computers, these systems can re-
ceive only fixed sentences, i.e., voice commands.

Meanwhile, multi-purpose cloud-based automatic
speech recognition services (cloud ASRs) have been widely
used in recent years, e.g., [1]. A cloud ASR has plenty
of computational resources in its backend, so it can uti-
lize acoustic and language models trained from a very large
corpus and state-of-the-art speech recognition algorithms.
Therefore, it can recognize a wide variety of sentences and
words with higher accuracy than an embedded speech rec-
ognizer. By using a cloud ASR, if application developers
can prepare a language understanding module for their tar-
get applications, they can develop a speech interface that
users can use to operate devices with spontaneous utterances
without remembering predefined voice commands.

We aim to create a car navigation system that can be
controlled with spontaneous utterances by utilizing a cloud
ASR. Cars are subject to large noises from the road and by
engine noises. A microphone attached at a position far from
a driver’s mouth, i.e., the ceiling or a sun visor, records not
only the driver’s speech but also such noises. Most cloud
ASRs are not designed to work well in such noisy environ-
ments. Such noises degrade the accuracy of speech recog-
nition. In addition, because the language models of cloud
ASRs are tuned for general purposes, the models might not
be suited to recognizing specific words for car navigation
systems. These gaps between cloud ASRs and car naviga-
tion systems cause speech recognition errors. These errors
induce misinterpretation in language understanding. This
misinterpretation results in users not being able to execute
the car navigation function that they want.

For improving the accuracy of speech recognition in
noisy environments, multi-conditional acoustic model train-
ing is known as one promising technique [2], [3]. To im-
prove accuracy for task-specific words, language model
adaptation can be applied [4]. However, such model cus-
tomizations cannot be applied to cloud ASRs because these
off-the-shelf cloud ASRs are a “black box” for application
developers, so they cannot customize the models. There-
fore, we need techniques for reducing the number of speech
recognition errors and language understanding errors with-
out needing to modify the internals of cloud ASRs.

The purpose of this study is to improve the accuracy of
utterance classification so that a car navigation system can
better predict which car navigation function a user wants to
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execute from the outputs of a cloud ASR that contain speech
recognition errors. Utterance classification is a language un-
derstanding technology, and it is necessary for controlling a
car navigation system with spontaneous utterances. Thus,
we propose a system for utterance classification that is ro-
bust against speech recognition errors without the need to
modify the internals of cloud ASRs. We incorporate the
following approaches. First, our system applies speech en-
hancement to user speech signals to reduce the number of
misrecognized words. Instead of applying this enhancement
solely to user speech signals, our system sends both en-
hanced and non-enhanced speech signals to a cloud ASR
and merges speech-recognition results derived from both
speech signals. Thus, we aim to reduce the number of mis-
recognized words in different noise environments.

Second, to improve the accuracy of utterance classifi-
cation when the outputs of a cloud ASR still contain mis-
recognized words, our system incorporates “optimal dop-
ing,” which mixes transcribed sentences (with no misrecog-
nized words) and sentences recognized by the cloud ASR
(with misrecognized words) to create training data for an
utterance classifier. Optimal doping provides the classifier
with “immunity” against misrecognized words so that it can
achieve highly accurate utterance classification regardless of
whether the cloud ASR outputs misrecognized words or not.

Third, our proposed system is evaluated by using ac-
tual user utterances with commercial car navigation prod-
ucts. We confirm that our system improves the accuracy of
utterance classification with actual utterances.

Finally, we show a method for adapting the proposed
system to changes in output characteristics of cloud ASRs.
The cloud ASRs usually improve their recognition accura-
cies frequently. This means that the characteristics of speech
recognition results may change unpredictably. Therefore, it
is important that our method can maintain good utterance
classification accuracies even when the output characteris-
tics are changed. Our experiment shows that it is possible
to maintain good classification accuracies by adding new
speech recognition results of user’s actual utterances with
the corresponding utterance classes. We also show that tran-
scribing user’s actual utterances, which must be done by hu-
mans, is not necessary to maintain the classification accura-
cies. Therefore, we indicate a future possibility to utilize the
proposed system with an automatic adaptation technique to
cloud ASR’s outputs.

2. Related Research

Many researchers have reported cloud ASR systems that
have been put into practical use. Schalkwyk et al. proposed
a system with a large-scale language model and acoustic
model [1]. Kamado et al. reported a cloud ASR specialized
for noise robustness [5]. Other researchers reported practi-
cal services that utilize cloud ASRs [6], [7]. However, they
did not discuss methods for utilizing cloud ASRs in various
applications.

There is little research on how to utilize cloud ASRs

for specific applications. Twiefel et al. reported a method
for improving the speech recognition accuracy of a cloud
ASR in a specific task by using the phoneme information
obtained from speech recognition results and task knowl-
edge [8]. They did not evaluate how their method performed
with language understanding. Homma et al. reported an
utterance classification method for car navigation systems
with improved accuracy for inputs of error-prone speech-
recognized sentences [9]. They utilized speech enhance-
ment and multiple utterance classifiers by choosing the most
likely utterance class from the outputs of the classifiers.
However, they did not evaluate the effectiveness of the pro-
posed method with real user utterances used on commercial
products. In addition, they did not show how their proposed
methods should adapt to the changes in output characteris-
tics of a cloud ASR.

Many methods were proposed to improve speech
recognition accuracies by combining outputs of multiple
ASRs. The techniques to choose a confident speech recog-
nition result include various algorithms from voting to deep
learning-based ones [10]–[16]. Another researcher pro-
posed a method to combine multiple language understand-
ing results using multiple ASRs [17]. Most of these meth-
ods are assumed to utilize multiple ASRs, each of which
uses different algorithms, different acoustic models, or dif-
ferent language models. When multiple ASRs are utilized,
it is easy to generate various speech recognition results.
However, our combination method must work in a situation
where only one single off-the-shelf ASR is used, and this sit-
uation is not well-studied yet. Thus, the novel point in ASR
combination is to show a combination method which works
even when only one ASR is available. To generate various
speech recognition results from one ASR, we use speech en-
hancement to generate various speech signals to be input to
the ASR. We also confirm that our method improves speech
recognition accuracies.

In this paper, first, we propose a system that utilizes
a cloud ASR with a language understanding function for a
specific application. Second, we report the effectiveness of
our system by using speech data obtained from real users
of the application. Finally, we show a method to maintain
good language understanding accuracies when output char-
acteristics of a cloud ASR are changed.

Our research dealt with important problems that devel-
opers face when a single cloud ASR is used in real appli-
cations for a long time. Specifically, we dealt with these
problems: how to adapt an off-the-shelf cloud ASR to spe-
cific applications, and how to adapt application systems to
changes of the cloud ASR. To the best our knowledge, we
do not know of any research on these subjects.

3. Proposed System

3.1 System Configuration

A cloud ASR is usually prepared by the vendor of a speech
recognition service, so that application developers cannot



HOMMA et al.: IN-VEHICLE VOICE INTERFACE WITH IMPROVED UTTERANCE CLASSIFICATION USING CLOUD SPEECH RECOGNIZER
3125

Fig. 1 The system configuration for car navigation systems utilizing a
cloud ASR.

customize the internals of the ASR. All the developers can
customize are the components between the user and the
cloud ASR. Following this limitation, we designed a sys-
tem for a voice interface used for car navigation that realizes
utterance classification that is robust against speech recogni-
tion errors without the need to modify a cloud ASR. Figure 1
shows the configuration of the system.

Car navigation systems perform voice activity de-
tection by the statistical noise estimation [18] of sound
recorded at a microphone. Speech signals judged as those
of a voice are encoded and sent to an intermediate server.

The intermediate server is assumed to be prepared by
application developers. This server performs speech en-
hancement on decoded incoming speech signals and then
sends the speech signals to a cloud ASR. Non-enhanced
speech signals are also sent. The speech recognition re-
sults for both signals, i.e., sentences, are sent back to the
server. Then, the server merges the results. Finally, it per-
forms utterance classification that predicts which car navi-
gation function the user wants to execute.

The reason we put speech enhancement and utterance
classification on the intermediate server and voice activ-
ity detection (VAD) in the car navigation system is as fol-
lows. For speech enhancement and utterance classification,
we have to consider the possibility that both will need to
be modified during operation. For example, if the output
characteristics of a cloud ASR are changed, we should ad-
just the speech enhancement and utterance classification to
work well depending on the new output characteristics of
the cloud ASR. In addition, our system sends enhanced and
non-enhanced speech signals to a cloud ASR. Putting the
speech enhancement in a car navigation system would in-
crease network traffic on mobile phone networks, causing a
delay in response time. Therefore, we put the enhancement
and classification on the intermediate server.

In terms of VAD, we emphasized having the system

Fig. 2 A comparison of voice activity detection processes in a server and
a car navigation system. The voice activity detection judges whether the
user is speaking or has finished speaking based on incoming speech signals.
The symbol i shows that the process judged that the user is speaking (in-
speech). The symbol e shows that the process judged that the user has
already finished speaking (end-of-speech).

respond quickly to a user’s voice. To respond quickly, it
is necessary to quickly control the beginning and ending
of a voice recording along with a user’s actual utterance.
Figure 2 shows a comparison of VAD processes in either a
server or a car navigation system. The VAD module receives
a segment of speech signals with a constant time length
periodically. For one segment of the speech signals, the
VAD module judges whether the user is currently speaking,
i.e., in-speech, or if the user has already finished speaking,
i.e., end-of-speech. When the VAD module judges end-of-
speech, the car navigation system usually notifies the user
that the recording has ended by showing an icon on the
screen or saying “please wait a second.” If we put the VAD
module on the server, we must consider the delay of this no-
tification. The speech signals are sent to the server via a mo-
bile phone network. In car navigation systems, users speak
voice commands in high-speed driving conditions, which
results in the car passing through areas with bad reception
during voice operation. This causes a communication delay
as shown in Fig. 2. This communication delay eventually
causes a delay of the end-of-speech notification to the user.
If the delay of the end-of-speech notification happens, the
user may think that the system failed to receive her/his voice,
and the user might say the voice command again. In this
way, the delay of the end-of-speech notification degrades
the usability of car navigation systems. Therefore, we de-
cided that the car navigation system handles voice activity
detection†.

3.2 Speech Enhancement and Merging ASR Outputs

Speech enhancement is one popular way to improve the
accuracy of speech recognition, e.g., [20]. However, it is
difficult to maintain suitable speech enhancement param-
eters for speech recognition because the parameters vary
depending on the noise conditions. In addition, some re-
searchers reported that there are limitations to speech en-
hancement in terms of improving the accuracy of speech

†The voice activity detection we used in this study was also
confirmed to work robustly in in-vehicle noisy environments, in-
cluding the sounds of turn signal flashers [19].
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recognition; there are cases in which speech enhancement
could not improve accuracy or it sometimes degraded accu-
racy [21], [22]. Taking these limitations into consideration,
we take a hybrid approach in which we obtain speech recog-
nition results for both enhanced and non-enhanced, i.e., raw,
speech signals and then merge both results. Thus, we aim to
consistently reduce the number of speech recognition errors
for all noise conditions.

As shown in Fig. 1, the intermediate server performs
speech enhancement on a speech signal coming from a car
navigation system. The server sends not only an enhanced
signal but also a raw signal to a cloud ASR at the same time.
Then, the cloud ASR returns a speech recognition result in
the form of N-best sentences for each speech signal. The
intermediate server then “merges” the ASR results, in which
these N-best sentences are merged.

It is not possible to remove all recognition errors ap-
pearing in 1-best sentences by speech enhancement only.
Even if a 1-best sentence is not completely correct, we can
raise the possibility of correctly estimating which car nav-
igation function a user has specified if at least one of the
N-best sentences has correct words. Keeping this point in
mind, we designed an algorithm for merging ASR results to
reduce the number of word errors appearing in N-best sen-
tences rather than focusing on only 1-best sentences.

Details on the merging are as follows. We assume that
two sets of N-best sentences A and B are obtained. One is
derived from a raw speech signal, and the other is derived
from an enhanced speech signal. Each N-best sentence in
A and B is noted as Ai and Bi (i is the N-best rank), respec-
tively. The algorithm sorts these N-best sentences in the or-
der of A1, B1, A2, B2, · · · . The sorted sentences are then used
as a merged recognition result. If there are sentences that are
the same among the sorted sentences, we leave only a sen-
tence in the top rank within these duplicated sentences. We
define a prioritized speech recognition result (A) as being a
result for which the confidence score of a 1-best sentence
obtained from a cloud ASR is the largest among the speech
recognition results.

As a speech enhancement algorithm for our system, we
implemented bidirectional OM-LSA (BOMLSA) speech es-
timator [23]. OM-LSA [24] is an extension of FFT-based
a priori SNR estimator of Ephraim and Malah [25]. Sig-
nal gain for a given frequency is optimized to minimize the
distortion measure E

[
(log X(k) − log X̂(k))2

]
, where X(k) is

the spectral amplitude of the k-th frequency bin and X̂(k)
is the corresponding estimation. The optimal gain is fur-
ther modified with respect to the speech presence probabil-
ity. BOMLSA is a combination of two OM-LSA estimators,
one of which employs forward (past to future) estimation
and the other employs backward (future to past) estimation.
It is known to be more robust than OM-LSA in various en-
vironments including a running car.

Fig. 3 The method for using recognized sentences and transcriptions as
training data for the utterance classifier. This figure assumes the scaling
factor r is 3, so one transcription (“go to nearby restaurant”) is increased to
3 items in training data ( c©2016 IEEE [9]).

3.3 Utterance Classification

In this study, we use an utterance classification algorithm
with machine learning. A straightforward procedure for de-
veloping an utterance classifier based on machine learning
is as follows [26]. First, developers make training data for
the classifier. The sentences in the data are usually sentences
transcribed from participants’ utterances in a laboratory ex-
periment for data collection. Wizard-of-Oz is a well-known
experimental method for collecting training data [27]. Each
training sentence must have a corresponding class label that
indicates the user’s intent in a target task, i.e., one of the
car navigation functions in this study. The class labels are
usually annotated by humans. Once we prepare the training
data, we can train the utterance classifier by using a machine
learning algorithm such as naive Bayes [26], logistic regres-
sion [9], or convolutional neural network [28].

If we take this straightforward approach, misrecog-
nized words in a sentence input to the classifier could de-
grade the accuracy of utterance classification. To provide
the classifier with immunity against misrecognized words,
we added speech recognition results with misrecognized
words to the training data of the classifier. In other words,
we “doped” misrecognized words into the training data.

However, as this method adds “noise” to the training
data, it is possible that the utterance classifier will fail to
predict a correct utterance class from an input sentence that
is perfectly correct. This means that a car navigation system
could sometimes execute the wrong function even though
a user uttered the correct words and the ASR also returned
the correct words. The user might become upset in such a
situation. To avoid this side effect, we adjusted the number
of recognized sentences and transcribed sentences (having
no misrecognized words) in the training data. We call this
method “optimal doping.” With optimal doping, the clas-
sifier can achieve good accuracy regardless of whether the
input sentence has misrecognized words or not.

Figure 3 shows the method for creating training data
with optimal doping. First, we collect subjects’ spontaneous
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Fig. 4 The feature construction for utterance classification using a con-
fusion network.

utterances when they attempt to execute a car navigation
function by voice. Each utterance is labeled with one utter-
ance class that corresponds to the function that the subject
wants to execute.

The speech data of the collected utterances are mixed
with noise sounds recorded in cars. The mixed speech data
are sent to a cloud ASR. The cloud ASR returns a speech
recognition result in the form of N-best sentences for each
utterance. The recognized sentences are used as the training
data for the utterance classifier.

In addition, the transcribed sentences of the collected
utterances are also added to the training data. We increase
the number of transcribed sentences in the data by a scal-
ing factor. If the scaling factor is 10, 10 sentences that are
the same as one transcribed sentence are added to the train-
ing data. By using the constructed training data, a multi-
class utterance classifier is trained that predicts one utter-
ance class from a given utterance. We use word N-gram fea-
tures derived from each training sentence to train the classi-
fier.

Figure 4 shows the utterance classification method. For
classification, we used N-gram features generated from a
confusion network derived from speech recognition results.
Utterance classification based on a confusion network ro-
bustly works against speech recognition errors [29], [30].
First, we obtain the N-best sentences of a speech recogni-
tion result on the basis of the method shown in Sects. 3.1 and
3.2. Second, we convert the N-best sentences into a confu-
sion network by taking the word alignment [10], where the
1-best sentence is regarded as the base word transition net-
work. Third, we obtain word N-grams that appear along
with the paths in the network. Last, the obtained word N-
grams are then converted to a bag-of-N-gram feature vector.
The vector is input to the utterance classifier. The classifier
predicts the probabilities of utterance classes. The top one
utterance class that has the largest probability is adopted as
the prediction result.

A method for calculating feature values, i.e., values of
feature vectors, is as follows. We use the confidence scores
of recognized words appearing in the confusion network.
However, assuming the a normal specification of the cloud
ASR [31], [32], we assume that a cloud ASR outputs a con-
fidence score only for the 1-best sentence.

From the 1-best sentence score (c(s1) : 0 ≤ c(s1) ≤ 1),
we calculate the sentence score of the k-th sentence (c(sk) :
2 ≤ k ≤ N) as follows.

c(sk) = min

(
1 − c(s1)

N − 1
, c(s1)

)
at 2 ≤ k ≤ N. (1)

N is the total number of N-best sentences. As shown in
Eq. (1), the confidence values of sentences from second rank
to N-th rank take the same value. From these sentence
scores, we calculate the word confidence score of a word
w that appeared at time T with the following equation.

c(T, w) =
N∑

j=1

c(s j)δ(w|t=T ∈ s j). (2)

δ(w|t=T ∈ s j) is a function that becomes 1 if sentence s j

yields word w at time T , otherwise 0.
In addition, the confusion network has “null words,”

which are paths containing no words, e.g., the paths parallel
to “me” and “too” in Fig. 4. We also assign word confidence
scores to these null words as follows.

c(T, null) = 1 −
m∑

j=1

c(T, w j). (3)

c(T, w j)(1 ≤ j ≤ m) are word confidence scores of all m
words appearing at time T .

A feature value c(w1w2 · · ·wp) of a p-gram consisting
of words w1, w2, · · · , and wp appearing at times T1, T2, · · · ,
and Tp is defined as follows.

c(w1w2 · · ·wp)|t=T1,T2,··· ,Tp =
p

√√
p∏

i=1

c(Ti, wi). (4)

If word N-grams were generated at two or more of the times,
the maximum feature value is adopted.

In this study, we used word 1-grams and 2-grams to
make a feature vector. 2-grams are generated along paths,
whether the paths include null words or not. For example,
the confusion network in Fig. 4 generates 2-grams such as
“take too” and “take shop.” The feature value of “take too”
becomes:

3
√

c(1, “take”) c(2, null) c(3, “too”). (5)

Logistic regression was adopted as the algorithm for train-
ing the utterance classifier with LIBLINEAR [33]. We used
MeCab [34] with NAIST Japanese dictionary [35] to divide
a sentence into words.

4. Collecting Experimental Dataset

In a laboratory environment, we collected an experimental
dataset that contained data necessary for constructing our
proposed system. The dataset contained data on subjects’
spontaneous speech utterances spoken to execute specific
car navigation functions, transcriptions of the utterances,
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their speech recognition results in a cloud ASR, and their
labels of car navigation functions. These were used to make
the training data for the utterance classifier. In this section,
we also evaluate speech enhancement and utterance classi-
fication by using the experimental dataset.

4.1 Interview-Based Collection of Experimental Dataset

We collected utterances in an interview. Subjects were told
to assume that they were executing one function of a car nav-
igation system with spontaneous utterances [36]. One hun-
dred Japanese people (aged 18–69, 50 males, 50 females)
participated in this experiment.

The interviewer first described a situation in which a
car driver would want to execute a car navigation function
by voice. Then, the interviewer asked each subject what
she/he was likely to say to the car navigation system in or-
der to execute the function. The subject was encouraged to
answer with two or more utterances for one situation.

All subjects’ answers were transcribed. After finish-
ing the interview, the subjects were asked to speak the tran-
scribed answers in order to record speech samples for a
speech recognition experiment. This recording was done by
using a headset microphone.

The recorded utterances were then labeled with a cor-
responding utterance class, which was one of the car navi-
gation functions that the subject wanted to execute with an
utterance. Finally, we obtained 5,408 utterances with 18 ut-
terance classes.

To simulate noisy environments in cars, we mixed the
recorded utterances with road noises that were recorded by
driving on a highway (high noise condition: HN) and while
idling (low noise condition: LN). Each signal-to-noise ra-
tio (SNR) for mixing was determined to be the same as
the actual SNR measured during recording for each condi-
tion. We call the utterances mixed with highway noise HN-
R (high noise, raw) and those with the idling noise LN-R
(low noise, raw). Furthermore, we made HN-E (high noise,
enhanced) and LN-E (low noise, enhanced) speech samples
by applying a speech enhancement algorithm to HN-R and
LN-R, respectively. We used the bidirectional OMLSA al-
gorithm [23] for the enhancement.

These speech samples were input to a cloud ASR to
obtain speech recognition results. The maximum number
of N-best sentences was 5. The word error rate (WER) for
1-best sentences was 27.7% for HN-R and 15.7% for LN-
R. The obtained speech recognition results were used as the
experimental dataset. In addition, we also included the tran-
scribed sentences in the experimental dataset.

Prior to making the experimental dataset, we per-
formed another speech recognition experiment by using a
speech dataset to determine suitable parameters for speech
enhancement. The dataset had utterances in which various
names of landmarks were spoken. We mixed them with
noises and applied speech enhancement in the same man-
ner as making HN-E speech samples. Then, we input them
to the same cloud ASR. The parameters of the speech en-

hancement were adjusted so as to minimize the WER of 1-
best recognized sentences in this experiment.

4.2 Evaluating Speech Enhancement

We evaluated the effect of speech enhancement by using the
experimental dataset.

4.2.1 Evaluation Metrics

Usually, speech recognition accuracy is evaluated with a
WER calculated from a 1-best recognized sentence. How-
ever, our proposed system aims to correctly classify utter-
ances by utilizing N-best sentences rather than only 1-best
sentences. To evaluate the effect of speech enhancement
with N-best sentences, we incorporated the N-best WER.
Given N-best sentences, the N-best WER in the sentence at
n-th rank is calculated as follows.

WER(n) =

∑M
i=1

{
min

j=1,2,··· ,n
(Ii j + Di j + S i j)

}
∑M

i=1 Wi

(6)

Wi is the number of words in the i-th utterance, and
M is the total number of utterances. Ii j, Di j, and S i j are
numbers of words counted as insertion, deletion, and substi-
tution, respectively, in a recognized sentence at the j-th rank
of the recognition result of the i-th utterance.

4.2.2 Evaluation Result

From the speech recognition results of raw speech signals
and enhanced speech signals, we merged speech recognition
results by using the method shown in Sect. 3.2. We call the
merged results from HN-R and HN-E “HN-M” (high noise,
merged) and the merged results from LN-R and LN-E “LN-
M” (low noise, merged).

Here, we evaluate 1-best to 5-best WERs for each
speech recognition result. As described in Sect. 4.1, one
speech recognition result for HN-R, HN-E, LN-R, or LN-E
has 5-best sentences at most. Therefore, one speech recogni-
tion result for either HN-M or LN-M has 10-best sentences
at most. To evaluate WERs in HN-M and LN-M, we only
use 5-best sentences in these speech recognition results.

Figure 5 shows 1-best to 5-best WERs. In the HN con-
dition, HN-M resulted in a lower WER than HN-R and HN-
E for all N-best ranks. In the LN condition, although LN-E
caused the WER to increase, LN-M resulted in a lower WER
than LN-R and LN-E except the 1-best WER, which had the
same WER as LN-R. This means that our merging of ASR
results can reduce the WER not only in noisy environments
but also in silent environments.

4.3 Evaluating Utterance Classification

We evaluated the effect of the proposed system by evalu-
ating the accuracy of utterance classification when speech
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Fig. 5 Word error rates in the experimental dataset.

recognition results are input.

4.3.1 Evaluation Method

Utterance classification was evaluated by subject-based 10-
fold cross validation. We divided the experimental dataset
into 10 subsets, and each subset contained different subjects’
utterances. In the evaluation, nine subsets were used for the
training of the utterance classifier, and the remaining one
subset was used for evaluation input. By iterating this pro-
cess 10 times with different combinations of training subsets
and an evaluation subset, we evaluated the accuracy of utter-
ance classification for the overall experimental dataset.

The dataset contained utterances for 18 utterance
classes, i.e., 18 kinds of car navigation functions. Table 1
shows the utterance number ratio of each utterance class in
the experimental dataset. The utterance class of “search des-
tination nearby” is to search a destination around the posi-
tion of the user’s vehicle. Sample utterances with this class
are “search gas station nearby” and “I want to go to a restau-
rant near my car.” The class of “search” is to perform a des-
tination search without any particular limitations. Sample
utterances with this class are “gas station” and “I want to go
to a restaurant.”

The method for making training data is as follows. As
a baseline condition, we trained the utterance classifier by
using only transcribed sentences. When we used speech
recognition results as the training data, we trained the clas-
sifier by using different combinations of data. The first
condition is “raw,” in which speech recognition results ob-
tained from HN-R and LN-R are used. The second condi-
tion is “enhanced,” in which speech recognition results ob-
tained from HN-E and LN-E are used. The last condition
is “combined,” in which speech recognition results obtained
from HN-R, LN-R, HN-E, and LN-E are used. All N-best
sentences (5-best maximum) obtained from the cloud ASR
were used as the training data. In addition, we further set
training conditions in which the training data were a mix of
speech recognition results and transcribed sentences, where
the scaling factor r was 1, 10, 100, and 1,000.

The evaluation data were as follows. When the data
were speech recognition results, we set two conditions. The
first is that a confusion network converted from N-best rec-

Table 1 The utterance class distribution in the experimental dataset
( c©2016 IEEE [9]).

Class Ratio [%]
search 34.4
search nearby 8.4
search around destination 3.1
search along route 2.0
search in nation 2.8
change search area to neighborhood of current position 3.1
change search area to neighborhood of destination 2.3
change search area to nation 2.6
show more search result 4.3
go home 2.8
go back to previous screen 5.0
quit voice operation 4.4
yes 8.7
no 8.1
reset 2.9
start guidance 2.3
say search results 2.0
search again 0.9

ognized sentences is input to the utterance classifier. When
the data were HN-R, HN-E, LN-R, and LN-E, the maximum
N-best number was 5. HN-M data were made by merging
HN-R and HN-E, and LN-M data were made by merging
LN-R and LN-E. Therefore, the maximum N-best number
of HN-M and LN-M was 10. The second condition is that
a confusion network converted from only a 1-best sentence
(with a confidence score of 1) is input. Furthermore, we
made another condition in which the transcribed sentences,
i.e., sentences with no word errors, were input to the utter-
ance classifier. In this condition, we assumed that a con-
fusion network converted from a 1-best sentence (with a
confidence score of 1), which is the same as a transcribed
sentence, is input to the utterance classifier. The maximum
dimension of an input feature vector was 13k.

4.3.2 Evaluation Result

We evaluate utterance classifiers by using the classification
error rate (CER). The CER is calculated as Mmis/Mtotal,
where Mtotal is the total number of utterances in the eval-
uation data, and Mmis is the number of misclassified utter-
ances. From the utterance class distribution of the exper-
imental dataset (Table 1), the chance rate of the CER is
65.6% if the classifier always estimates “search” which is
the most frequent class in the data.

Table 2 shows CERs of the utterance classifier. There
were three conditions for training data: (a) transcribed sen-
tences only, (b) recognized sentences only, and (c) both tran-
scribed sentences and recognized sentences. For cases (b)
and (c), CERs in Table 2 were obtained when the evaluation
input was N-best. However, for case (a), CERs in Table 2
were obtained when the evaluation input was 1-best because
these CERs were lower than the CERs for the N-best input
conditions.

If the evaluation inputs were speech recognition results,
lower CERs were obtained when the training data were a
mix of speech recognition results and transcribed sentences.
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Table 2 Classification error rates (CERs) in evaluation using the experimental dataset [%]. r is the
scaling factor. Bolded numbers show the lowest CER for each evaluation condition (Trans.: transcrip-
tions, Recog.: recognized sentences, Enh.: enhanced, Cmb.: combined).

Training Data
(a) Trans. (b) Recog. (c) Recog. + Trans.

Evaluation Raw Enh. Cmb. Raw Enh. Cmb.
Data r=1 r=10 r=102 r=103 r=1 r=10 r=102 r=103 r=1 r=10 r=102 r=103

Trans. 4.0 6.3 5.8 6.2 5.5 4.9 4.4 4.2 5.1 4.7 4.2 4.0 5.5 5.2 4.6 4.2
HN-R 21.0 15.2 14.9 14.3 15.0 14.7 14.9 17.0 14.8 14.7 14.8 17.0 14.3 14.0 14.0 15.9
HN-E 19.0 12.5 12.5 11.8 12.4 12.3 12.6 14.8 12.4 12.3 12.4 14.6 11.8 11.5 11.8 13.5
HN-M 18.5 12.0 12.1 11.3 11.7 11.7 12.1 14.5 12.0 11.7 12.0 14.5 11.3 11.2 11.1 13.3
LN-R 13.4 8.2 8.2 8.0 8.0 7.8 7.9 9.7 8.1 8.0 7.9 9.6 7.9 7.6 7.3 8.5
LN-E 14.4 8.8 8.6 8.2 8.8 8.5 8.5 10.5 8.4 8.3 8.4 10.2 8.3 8.0 7.7 9.2
LN-M 13.3 7.9 8.0 7.7 7.9 7.7 7.7 9.8 7.8 7.7 7.9 9.6 7.7 7.4 7.1 8.8

The lowest CERs were obtained when the training data con-
dition was the combined condition with a scaling factor (r)
of 100 and the evaluation input was the merged condition
(LN-M or HN-M). The reason a lower CER was obtained by
increasing the scaling factor is that a bigger scaling factor
can successfully leverage correct words existing in N-best
sentences to predict correct utterance classes.

We examined the CER when the evaluation inputs were
transcribed sentences. The CERs were increased more by
using recognized sentences as training data than when only
transcriptions were used as training data. When the scal-
ing factor was increased, however, the rise in CER was
mitigated. When the scaling factor was 100, the amount
of increase from the condition when the training data were
only transcribed sentences was just 0.2–0.6%. These results
show optimal doping could avoid the side effect of the CER
increasing for the transcription input.

5. Evaluation with Real User Logs

We conducted an evaluation of the proposed system by us-
ing user logs in which actual car navigation users uttered
phrases to commercial car navigation products used daily.

5.1 User Logs

The user logs we used were speech utterances of actual users
obtained from a commercial-use speech recognition service
for car navigation, named “Clarion Intelligent VOICE” [19],
[37], [38]. This service utilizes a cloud ASR to provide
a speech interface that users can use to operate car navi-
gation functions with spontaneous utterances. We evalu-
ated our system by using 8,717 Japanese utterances obtained
from this service. The utterances were processed to make
enhanced speech samples by using the method shown in
Sect. 4. All raw and enhanced speech samples were sent
to the same cloud ASR in the same manner as the exper-
iment in Sect. 4. The speech recognition results were ob-
tained over a one month period 1.5 years after the recogni-
tion results of the experimental dataset were obtained. All
the user logs we used were anonymized before we started
the research.

Human annotators transcribed all utterances. The an-
notators also labeled correct utterance classes, i.e., a car

Fig. 6 Word error rates in the user logs.

navigation function that the user wants to execute with an
utterance, for all utterances.

5.2 Evaluating Speech Enhancement

As we showed in Sect. 4.2, the effect of the speech enhance-
ment varied depending on the background noise. Therefore,
we first estimated the SNR of each utterance in the user logs
and then examined the WER reduction when the SNR was
lower than 10 dB (HN: high noise condition, 3,556 utter-
ances) and when it was higher than 10 dB (LN: low noise
condition: 5,161 utterances). We used the WADA algo-
rithm [39] to estimate SNR.

Figure 6 shows the WERs for the user logs, which show
WERs when no enhancement was done (R: raw), when it
was done (E: enhanced), and when the recognition results
of the raw signal and the enhanced signal were merged (M:
merged).

For both HN and LN conditions, the lowest WERs
were obtained for the merged conditions (HN-M or LN-M).
This shows that our proposed system could successfully re-
duce WERs for real user utterances in commercial car nav-
igation systems. We calculated the WER reduction rate of
the 5-best WERs from the raw to merged conditions, which
resulted in a word error reduction of 26.0% (6.6% to 4.9%)
for LN and 27.4% (18.7% to 13.6%) for HN.

The speech data in the user logs contain reverberation
in a car room, whereas the speech data in the experimental
dataset does not. Therefore, we suspected that WERs in
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Table 3 The utterance class distribution in the user logs used for utter-
ance classification evaluation.

Class Ratio [%]
search 71.3
search nearby 7.1
search around destination 0.1
search along route 0.3
show more search result 4.4
go home 5.7
start guidance 11.1

the user logs might be higher than ones in the experimental
dataset. However, the reverse was true: 1-best WERs in
LN-R condition are 15.7% for the experimental dataset, and
11.3% for the user logs. We investigated reasons for this.

One possible reason is the time gap of obtaining speech
recognition results: the results of the user logs were obtained
1.5 years after the results of the experimental dataset were
obtained. During this 1.5 years, the cloud ASR might have
improved in terms of accuracies. To validate this reason, we
calculated WERs in utterances that were commonly spoken
in both the experimental dataset and the user logs. The 1-
best WERs in LN-R condition of these utterances resulted in
10.3% for the experimental dataset, and 12.8% for the user
logs. These WERs have no significant difference (p = 0.09;
Z-test [40]). Therefore, this reason seems incorrect.

Another possible reason is the difference in uttered sen-
tences between the experimental dataset and the user logs.
Here, we consider dividing words in an utterance into a POI
query and other words. The POI query is the place name
appearing in the utterance that a user wants to search. When
an uttered sentence is “go to an Italian restaurant nearby,”
the POI query is “an Italian restaurant.” Here, we refer to
the words of the POI query as IP (Inside of POI), and we
refer to the rest, e.g., “go to” and “nearby,” as OP (Out-
side of POI). The experimental dataset was collected by an
interview-based corpus creation method, which tends to col-
lect more various kinds of OP words than ones that appeared
in actual user utterances to car navigation products [36]. In
the utterances with two major utterance classes, “search”
and “search nearby,” the ratios of OP words are 39% for
the experimental dataset, and 11% for the user logs. This
value demonstrates that there is a clear difference of the ut-
tered sentences between the experimental dataset and the
user logs. We presume that the difference in uttered sen-
tences makes the difference of WERs. In other words, the
language model in the cloud ASR we used seems to fit the
actual utterances in car navigation products more closely.

5.3 Evaluating Utterance Classification

Next, we evaluated the utterance classification. Actual user
logs contain various utterances spoken to execute the vari-
ous car navigation functions of actual products. However,
our user logs contained highly skewed data; the distribu-
tion in numbers of utterances for each car navigation func-
tion was highly uneven. Therefore, we chose a number of
functions in which the numbers of utterances were sufficient

Fig. 7 The data splitting method in the utterance classification evaluation
when both experimental dataset and user logs were used as training data.

enough to evaluate our proposed system. Specifically, from
all 8,717 utterances, we extracted 6,164 utterances that be-
longed to the 7 utterance classes shown in Table 3. The
1-best WER for these 6,164 utterances in the merged condi-
tion was 14.8%.

We made the training data for the utterance classifier
not only from the experimental dataset obtained in Sect. 4
but also from the user logs for the following reason.

The recognition results for the dataset and logs were
obtained from the same cloud ASR but at a different time.
A cloud ASR might be updated during this time gap. As ap-
plication developers cannot know when such an update hap-
pens, the ideal way to make training data for a classifier is to
send a speech dataset to the cloud ASR frequently and to up-
date the training data of the classifier with new recognition
results. However, it is likely not possible to send thousands
of speech samples to a cloud ASR frequently and to replace
the training data because this requires a lot of transaction
fees for a cloud ASR and labor time. It might be better if the
previous recognition results were to work fairly well as the
training data of the classifier. Thus, we evaluated the classi-
fier when the training data consisted of the previous speech
recognition results, i.e., the experimental dataset, and the
current recognition results, i.e., the user logs, and both.

When the training data included the user logs, the eval-
uation was done by user-based 10-fold cross validation, in
which each subset of the user logs had different user utter-
ances. When the training data consisted of both the experi-
mental dataset and user logs, as shown in Fig. 7, the exper-
imental dataset was used as common training data among
all subsets’ evaluations. The number of utterances of the
experimental dataset in Sect. 4 was 5,408. From them, we
extracted 3,101 utterances for training corresponding to the
utterance classes in Table 3. The maximum dimension of an
input feature vector was 19k. The chance rate of the CER
is 28.7% if the classifier always estimates “search” which is
the most frequent class in the data.

Table 4 shows CER results. Following the results of
Sect. 4, the CERs when the training data contained speech
recognition results were obtained by using the evaluation
inputs in the merged condition with N-best inputs. Mean-
while, the CERs when the training data were only tran-
scribed sentences were obtained by using the evaluation in-
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Table 4 Classification error rates [%] in evaluation of the user logs. r is
the scaling factor. Asterisks mean significant differences with ∗p < 0.01
and ∗∗p < 0.001 from the reference condition indicated by † symbol (sign
test). Bolded is the lowest CER among each section. ‡ symbol shows the
condition where the summed CER of a recognition input and a transcription
input was the lowest (Trans.: transcriptions, Recog.: recognized sentences).

Training Data Evaluation
Trans. Recog. Recog. Trans.
Dataset Log Dataset Log r
� 7.6 0.6

� 6.9 0.7
� � † 6.5 0.1

� 6.8 2.9
� ∗∗ 5.2 1.5

� � ∗∗ 5.2 2.1
� � 1 6.7 2.7
� � 10 6.2 2.4
� � 100 ∗∗ 5.8 1.2
� � 1,000 ∗ 6.1 0.4
� � 1 ∗∗ 4.7 0.9
� � 10 ‡ ∗∗ 4.6 0.4
� � 100 ‡ ∗∗ 4.8 0.2
� � 1,000 ∗∗ 5.2 0.3

� � 1 ∗ 6.0 1.9
� � 10 ∗∗ 5.5 1.2
� � 100 ∗∗ 5.8 0.5
� � 1,000 6.6 0.3
� � 1 ∗∗ 5.0 1.3
� � 10 ∗∗ 5.0 1.0
� � 100 ∗∗ 5.2 0.5
� � 1,000 6.3 0.5

� � � 1 ∗ 5.9 1.8
� � � 10 ∗∗ 5.5 1.2
� � � 100 ∗∗ 5.7 0.2
� � � 1,000 6.6 0.1
� � � 1 ∗∗ 4.7 0.8
� � � 10 ‡ ∗∗ 4.7 0.3
� � � 100 ∗∗ 4.9 0.2
� � � 1,000 ∗∗ 5.6 0.1
� � � � 1 ∗∗ 5.1 1.9
� � � � 10 ∗∗ 4.9 1.4
� � � � 100 ∗∗ 4.9 0.3
� � � � 1,000 ∗∗ 5.5 0.1

puts in the merged condition with 1-best inputs.
First, we focus on the CERs when the training data

were only transcribed sentences. By using both the exper-
imental dataset and user logs as the training data, we ob-
tained the lowest CER (6.5%). The reason we obtained a
lower CER for these training data is that the variation in
words in the training data was increased by using both types
of data, so the training data had a broader word coverage for
the users’ actual user utterances [36].

Second, we focus on CERs when the training data con-
tained speech recognition results. We obtained the lowest
CER (4.6%) when the training data were the combination of
transcriptions of the experimental dataset and speech recog-
nition results of the user logs. Also, the scaling factor for
the lowest CER was 10. This lowest CER was significantly
lower than the CER in the reference condition (6.5%, as
shown by the † symbol in Table 4), where the classifier was
trained with only transcriptions (p < 0.001, sign test). In
addition, when the training data contained the recognition

results of user logs without the recognition results of the
experimental dataset, 12 out of 13 conditions showed a sig-
nificant CER decrease from the reference condition.

When the training data contained not the recognition
results of the user logs but those of the experimental dataset,
we observed relatively weak CER reduction effects. Specif-
ically, 8 out of 13 conditions in this setting showed a signif-
icant CER decrease from the reference condition.

Third, we examine the accuracy of utterance classi-
fication on the transcription input. As we mentioned in
Sect. 3.3, we should decrease the CER for recognition in-
puts while avoiding an increase in CER when the input
has no misrecognized words, i.e., transcriptions. To eval-
uate the total performance of utterance classification, we
simply summed two CERs when the evaluation input was
speech recognition results and when the input was transcrip-
tions. The lowest summed CER (5.0%) was obtained for
the three conditions shown with the ‡ symbol in Table 4.
Among these conditions, we assumed one “adopted” condi-
tion where the training data were transcriptions of the exper-
imental dataset and recognition results of the user logs with
a scaling factor of 100. This adopted condition showed a
CER of 4.8% for recognition result inputs and 0.2% for tran-
scription inputs. This adopted condition could successfully
reduce CERs for recognition inputs significantly from the
reference condition (p < 0.001, sign test). At the same time,
the CER increase for transcription inputs was just 0.1% from
the reference condition.

Finally, we compare these CERs with a condition in
which the utterance classifier was made by a straightfor-
ward development method. In this condition, specifically,
the training data were only transcribed sentences in the ex-
perimental dataset. In the evaluation, we input 1-best speech
recognition sentences with no speech enhancement. The
CER in this condition was 10.4%. The classification er-
ror reduction rate for the adopted condition (4.8%) reached
54%.

6. Discussion

As we showed, our proposed system improved the perfor-
mance of utterance classification on real user logs for car
navigation with a cloud ASR. In this section, we review the
evaluation results and discuss how to apply our proposed
system to actual product services.

6.1 Effectiveness of Laboratory Data and Actual User
Data for Utterance Classifier Training

The utterance classification results shown in Table 4 re-
vealed that the lowest CER was observed when the recog-
nition results for the user logs were included in the training
data. In comparison, the recognition results of the experi-
mental dataset had less of an effect on CER reduction.

Although both recognition results were obtained from
the same cloud ASR, user-log speech recognition results
were obtained 1.5 years after the recognition results of
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the experimental dataset were obtained. Therefore, we as-
sume that the characteristics of the speech recognition errors
changed during this time gap. To prove this assumption, we
investigated the similarity in the characteristics of speech
recognition errors among four clusters as follows.

(a) Recognition results of experimental dataset obtained
from 50 subjects’ utterances in HN-M condition
(Dataset-H)

(b) Recognition results of experimental dataset obtained
from 50 subjects’ utterances in LN-M condition
(Dataset-L)

(c) Recognition results of user logs in merged condition in
first half period (Log-1)

(d) Recognition results of user logs in merged condition in
second half period (Log-2)

The subjects who uttered speech samples were different be-
tween (a) and (b). The users in (c) and (d) were also different
from each other. We investigated the similarity in the char-
acteristics of speech recognition errors among these clusters
as follows. We first enumerated the same utterances (ui) that
were commonly uttered for all of the clusters. For each sen-
tence ui, we calculated the similarity of speech recognition
errors between cluster X and cluster Y (sim(X,Y, ui)) with
the following equation.

sim(X,Y, ui) =

∑m
j=1

(
fx(w j) fy(w j)

)
√∑m

j=1 fx(w j)2
√∑m

j=1 fy(w j)2
(7)

w1, w2, · · · , wm are misrecognized words appearing in clus-
ter X, cluster Y , or both. fx(w j) and fy(w j) indicate numbers
of the occurrences of word w j in the recognition results of
utterance ui in cluster X and cluster Y , respectively. The
word counting was done for all words appearing in the 10-
best recognized sentences. The value of Eq. (7) goes to 0 if
no same misrecognized words exist in cluster X and cluster
Y . It goes to 1 if both X and Y have the same misrecognized
words and same distributions of occurrence probability for
each misrecognized word.

Our hypothesis is that the similarity becomes small if
two clusters of speech recognition results were obtained in
different periods, and the similarity becomes large if two
clusters of the recognition results were obtained in a same
period. Thus, our expectation is that the similarities of (a)
vs. (c), (a) vs. (d), (b) vs. (c), and (b) vs. (d) become small,
and the similarities of (a) vs. (b) and (c) vs. (d) become large.

Table 5 shows the similarities between the clusters.
As this table indicates, the similarities within experimental
datasets or within the user logs were high (0.84–0.85), while
the similarities between the experimental datasets and the
user logs were relatively low (0.55–0.60). From this result,
we confirmed that the characteristics of speech recognition
errors are different between the experimental dataset and the
user logs. This result indicates that our proposed system

Table 5 Similarities in the speech recognition errors among the exper-
imental dataset and the user logs. These are shown as averages and 95%
confident intervals.

(b) Dataset-L (c) Log-1 (d) Log-2
(a) Dataset-H 0.84 ± 0.16 0.57 ± 0.17 0.60 ± 0.11
(b) Dataset-L - 0.55 ± 0.18 0.55 ± 0.15
(c) Log-1 - - 0.85 ± 0.08

performs with good utterance classification accuracy if the
recognized sentences in the training data and in the evalua-
tion input have similar characteristics of speech recognition
errors. Otherwise, if the training data and the evaluation in-
put have different word error characteristics, our proposed
system achieves limited improvement in terms of utterance
classification accuracy.

6.2 How to Use Proposed System in Commercial Systems

As we discussed in Sect. 6.1, we figured out that it is im-
portant for the recognized sentences in the training data of
the utterance classifier to have characteristics similar to the
speech recognition errors of real users. Cloud ASRs are
continually updating their models and algorithms to contin-
uously improve the speech recognition performance. There-
fore, the recognized sentences in the training data should
also be updated with up-to-date speech recognition results
of the cloud ASR. In addition, speech enhancement with
fixed parameters, which were best-tuned at one point in
time, might degrade speech recognition accuracy in the near
future due to updates of the cloud ASR. Therefore, the en-
hancement should be also updated following these updates.

With this in mind, we discuss a proper configuration for
deploying our proposed system for real use. We believe that
our system should be combined with a monitoring scheme
that detects changes in the output characteristics of a cloud
ASR.

The parameters of the speech enhancement should be
adjusted to maximize the speech recognition accuracy for
users’ utterances. To adjust parameters, it is necessary to
prepare an “evaluation set” that contains a fairly small num-
ber of previous users’ utterances transcribed manually. By
sending the evaluation set to the cloud ASR periodically, the
monitoring scheme can evaluate the current speech recogni-
tion accuracy. If it detects that accuracy has been degraded,
it can adjust the parameters of the speech enhancement so
as to maximize the accuracy in the evaluation set.

Once current speech recognition results are obtained
from the evaluation set, they can be also utilized to moni-
tor the accuracy of utterance classification by inputting the
recognition results to the classifier. If our system detects that
the accuracy of the classification has degraded, it can replace
the training data of the classifier from old speech recognition
results to current speech recognition results. The experiment
results in Sect. 5 revealed that the lowest CER was achieved
when the training data contained transcriptions of the exper-
imental dataset and the recognition results of the user logs.
This means that no transcription for the user logs is needed
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to train the classifier to achieve the lowest CER. Therefore,
we can improve the accuracy of utterance classification by
just including current speech recognition results for user ut-
terances in the training data.

The fact that we do not need manually transcribed user
logs for training the classifier brings the possibility of au-
tomatically improving utterance classification by using real
user logs we obtain every day. The only missing parts are
the correct utterance classes of user utterances. Basically,
correct utterance classes should be labeled manually. Mean-
while, research on dialog systems showed the possibility of
automatically improving language understanding by utiliz-
ing clues extracted from dialog histories between a user and
an agent [41], [42]. One piece of future work is to realize
such automatic improvements for utterance classification in
in-vehicle systems.

In this automatic updating scenario, we assume that an
updated classification model is deployed to a server which
provides the utterance classification service to users. To de-
ploy the model, we must take 3 steps: stopping the utter-
ance classification service, replacing the model, and restart-
ing the service. This stopping step causes a problem of
service downtime, in which users cannot utilize the utter-
ance classification service. However, we can avoid causing
this service downtime by designing the utterance classifica-
tion service with redundancy. Specifically, we will adopt a
multi-cluster configuration, where the same utterance clas-
sification service runs on multiple clusters. In addition, we
will use a load balancer which first receives a request for ut-
terance classification and then forwards the request to one of
the clusters. In this configuration, we can update the model
in a single cluster whereas the other clusters continue to pro-
vide the service. Once we finish updating the model in one
cluster, we move to update the model in another cluster. In
this way, we can update the utterance classification model
with no downtime.

6.3 How to Increase Number of Utterance Classes for Real
Products

Recent car navigation products support a tremendous num-
ber of functionalities including not only car navigation but
also hands-free communication, and audio functions. Thus,
the utterance classifier has to classify more than 100 classes.
Meanwhile, the number of classes in this study is 18 at most.
We must extend this number to over 100.

However, it is not straightforward to classify so many
classes. The biggest difficulty in classifying many classes is
that the machine learning-based classifiers must be trained
from a large amount of training data for each class. Collect-
ing the training data is time-consuming and costly. Indeed,
recent research on utterance classifiers, even though they use
state-of-the-art deep learning-based techniques to construct
utterance classifiers, were conducted in conditions where
the number of utterance classes was less than 50 [28], [43],
[44].

One method to solve this difficulty is to use an ut-

terance classification method which combines a machine
learning-based classifier and a rule-based classifier, as pro-
posed in [45]. For the rule-based classifier, the developers
first make rules which show salient phrases appearing in
utterances having a particular class. Then, the rule-based
classifier determines an utterance class by judging whether
the utterance matches the phrases. The rule-based classifier
can classify all the classes if the developer prepares at least
one phrase for each class. However, rule-based classifiers
usually have lower accuracies than machine learning-based
classifiers. Therefore, to develop an utterance classifier not
only having good accuracies but also being developed with
less cost, it is a good choice that utterance classes which
all users frequently speak will be classified by a machine
learning-based classifier, and the classes that the users infre-
quently speak will be classified by a rule-based classifier.

Another choice is a 2-step approach as follows. In
the first step, an initial dialog system is launched using a
rule-based utterance classifier. In the second step, the sys-
tem alters the classifier from a rule-based one to a machine
learning-based one when abundant number of training data
are collected from real users. In order to realize this 2-step
approach, we proposed a language understanding method
that chooses a suitable output either from rule-based or ma-
chine learning-based language understanding modules de-
pending on the amount of training data [46]. We confirmed
that this method achieves good language understanding ac-
curacies whether training data are large or small. One of
our future studies is to utilize this method for the utterance
classifier which classifies many classes required in car nav-
igation products.

6.4 Reducing Response Time for Improved Usability

Finally, we focus on reduction of the response time: the time
length from the end of a user utterance to the start of a cor-
responding system response. In this paper, we proposed a
system where all the speech recognition processes are done
by a cloud server. An important advantage of this system
is to achieve highly-accurate ASR. However, as explained
in Sect. 3.1, this configuration sometimes causes longer re-
sponse time than the system with an embedded speech rec-
ognizer.

Miller [47] showed a criterion that the response time
in conversation systems should be within 2 seconds. If we
use an embedded speech recognizer for a car navigation sys-
tem, we can satisfy this criterion for voice commands for
most car navigation functionalities. However, when we use
a cloud ASR for a car navigation system, the response time
varies depending on the status of network communications.
This sometimes makes the response time more than 5 sec-
onds. Therefore, we are still on the way to maximize user
satisfaction by reducing the response time.

To reduce the response time, we think one good config-
urations is a hybrid ASR, where we send incoming speech
signals to not only a cloud ASR but also an embedded
speech recognizer at the same time [48]. The basic idea be-
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hind the hybrid ASR is that the user’s expectation on the
response time is different depending on the car navigation
functionalities that the user intends to execute. Most users
expect very quick responses when they intend basic func-
tionalities, e.g., zooming in/out on a map, turning on/off the
audio, and going back to the previous screen. Meanwhile,
users may allow a longer response time when the users in-
tend a functionality that needs complicated processes, e.g.,
destination search and music search. Keeping this in mind,
we propose a new module in a car navigation system which
classifies whether the user’s intent of an incoming utterance
requires a quick response or not. If this classification result
indicates that it requires a quick response, the car naviga-
tion system executes a function determined from the speech
recognition result from the embedded ASR. Otherwise, the
car navigation system waits for the speech recognition result
from the cloud ASR. This configuration of the hybrid ASR
can improve user satisfaction by reducing response time.
One of our future studies is to validate the efficiency of the
hybrid ASR configuration.

7. Conclusion

In this paper, we proposed a novel in-vehicle voice system
with improved accuracy in utterance classification under the
condition that the connected cloud ASR is a black box and
cannot be modified. Our proposed system includes speech
enhancement and utterance classification that makes a voice
interface robust against speech recognition errors without
requiring that the internals of the cloud ASR be modified.
Evaluation results using actual user utterances showed that
our system reduces the number of utterance classification
errors by 54% from a baseline condition. Furthermore, we
proposed “optimal doping,” in which the training data of
a classifier are constructed by using both speech recogni-
tion results and transcriptions. Optimal doping suppressed
the increase in errors for accurate transcription inputs to
just 0.1% while improving classification accuracy for rec-
ognized sentence inputs. Finally, we showed a method to
maintain good utterance classification accuracies by just in-
cluding current speech recognition results for user utter-
ances in the training data.

The next studies are as follows. The first will be on
validating our methods using various cloud ASR services.
The second will be on establishing automatic improvement
for utterance classification through the use of actual user
logs. The third will be on increasing the number of utter-
ance classes that our methods can deal with. The last will
be on reducing response time by incorporating hybrid ASR
to improve usability.
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Ney, “iROVER: Improving system combination with classification,”
Proc. NAACL-HLT, Rochester, USA, pp.65–68, April 2007.

[13] S. Li, Y. Akita, and T. Kawahara, “Semi-supervised acoustic model
training by discriminative data selection from multiple ASR sys-
tems’ hypotheses,” IEEE/ACM Trans. Audio Speech Lang. Process.,
vol.24, no.9, pp.1524–1534, Sept. 2016.

[14] V. Soto, O. Siohan, M. Elfeky, and P.J. Moreno, “Selection and
combination of hypotheses for dialectal speech recognition,” Proc.
ICASSP, Shanghai, China, pp.5845–5849, March 2016.

[15] Y. Fujita, R. Takashima, T. Homma, R. Ikeshita, Y. Kawaguchi,
T. Sumiyoshi, T. Endo, and M. Togami, “Unified ASR system us-
ing LGM-based source separation, noise-robust feature extraction,
and word hypothesis selection,” Proc. ASRU, Scottsdale, USA,
pp.416–422, Dec. 2015.

[16] N. Sawada and H. Nishizaki, “Recurrent neural network-based
phoneme sequence estimation using multiple ASR systems’ outputs
for spoken term detection,” Proc. Interspeech, San Francisco, USA,
pp.3688–3692, Sept. 2016.

[17] M. Katsumaru, M. Nakano, K. Komatani, K. Funakoshi, T. Ogata,
and H.G. Okuno, “Improving speech understanding accuracy with
limited training data using multiple language models and multiple
understanding models,” Proc. Interspeech, pp.2735–2738, Brighton,
United Kingdom, Sept. 2009.

[18] Y. Obuchi, R. Takeda, and N. Kanda, “Voice activity detection based
on augmented statistical noise suppression,” Proc. APSIPA ASC,
Hollywood, USA, Dec. 2012.

[19] Y. Obuchi, “Speech processing for car navigation systems,” Techni-
cal Report of IEICE, EA 114(274), pp.3–8, Oct. 2014. (in Japanese)

[20] W. Zhu and D. O’Shaughnessy, “Using noise reduction and spec-
tral emphasis techniques to improve ASR performance in noisy
conditions,” Proc. IEEE ASRU, St. Thomas, USA, pp.357–362,
Nov.-Dec. 2003.

[21] X. Cui and A. Alwan, “Noise robust speech recognition using feature

http://dx.doi.org/10.1007/978-1-4419-5951-5_4
http://dx.doi.org/10.21437/interspeech.2016-733
http://dx.doi.org/10.1016/j.specom.2003.08.002
http://dx.doi.org/10.1109/msp.2016.2617341
http://dx.doi.org/10.1109/slt.2016.7846291
http://dx.doi.org/10.1109/asru.1997.659110
http://dx.doi.org/10.1002/scj.20340
http://dx.doi.org/10.3115/1614108.1614125
http://dx.doi.org/10.1109/taslp.2016.2562505
http://dx.doi.org/10.1109/icassp.2016.7472798
http://dx.doi.org/10.1109/asru.2015.7404825
http://dx.doi.org/10.21437/interspeech.2016-337
http://dx.doi.org/10.1109/asru.2003.1318467
http://dx.doi.org/10.1109/tsa.2005.853002


3136
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.12 DECEMBER 2018

compensation based on polynomial regression of utterance SNR,”
IEEE Trans. Speech Audio Process., vol.13, no.6, pp.1161–1172,
Nov. 2005.

[22] L. Deng, A. Acero, M. Plumpe, and X. Huang, “Large-vocabulary
speech recognition under adverse acoustic environments,” Proc.
ICSLP, Beijing, China, pp.806–809, Oct. 2000.

[23] Y. Obuchi, R. Takeda, and M. Togami, “Noise suppression method
for preprocessor of time-lag speech recognition system based on
bidirectional optimally modified log spectral amplitude estimation,”
Acoust. Sci. & Tech., vol.34, no.2, pp.133–141, March 2013.

[24] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary
noise environments,” Signal Process., vol.81, no.11, pp.2403–2418,
Nov. 2001.

[25] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator,” IEEE
Trans. Acoust. Speech Signal Process., vol.32, no.6, pp.1109–1121,
Dec. 1984.

[26] C. Chelba, M. Mahajan, and A. Acero, “Speech utterance classifi-
cation,” Proc. ICASSP, Hong Kong, China, pp.I-280–I-283, April
2003.

[27] C.T. Hemphill, J.J. Godfrey, and G.R. Doddington, “The ATIS spo-
ken language systems pilot corpus,” Proc. 3rd DARPA Speech and
Natural Language Workshop, Hidden Valley, USA, pp.96–101, June
1990.

[28] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” Proc. ACL, Baltimore,
USA, pp.655–665, June 2014.
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