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Robust 3D Surface Reconstruction in Real-Time with Localization
Sensor

Wei LI†a), Nonmember, Yi WU†b), Student Member, Chunlin SHEN†c), and Huajun GONG†d), Nonmembers

SUMMARY We present a system to improve the robustness of real-
time 3D surface reconstruction by utilizing non-inertial localization sen-
sor. Benefiting from such sensor, our easy-to-build system can effectively
avoid tracking drift and lost comparing with conventional dense tracking
and mapping systems. To best fusing the sensor, we first adopt a hand-
eye calibration and performance analysis for our setup and then propose a
novel optimization framework based on adaptive criterion function to im-
prove the robustness as well as accuracy. We apply our system to several
challenging reconstruction tasks, which show significant improvement in
scanning robustness and reconstruction quality.
key words: dense tracking and mapping, surface reconstruction, sensor
fusion, RGB-D SLAM

1. Introduction

3D reconstruction, especially dense surface reconstruction
has gained significant interests in computer graphics, vision,
and robotics communities. Especially with the eruption of
VR/AR in recent years, dense model acquisition approaches
or systems which are simple, robust and friendly to inexpe-
rienced users, are greatly demanded.

The real-time reconstruction systems, which are
closely related to simultaneous localization and mapping
(SLAM) techniques, mainly involve two aspects, the con-
tinuous camera tracking, and dense mapping. In this line of
research, the representative work named DTAM [1], which
could real-time model small scenes densely, is quite inspir-
ing and promising for AR applications. But large number
of obvious color features are required for credible camera
tracking due to only monocular camera are used.

In the other hand, with the emergence of commod-
ity RGB-D sensors such as the Microsoft Kinect and Asus
Xtion, tracking and mapping with RGB-D sensors, which
is also known as RGB-D SLAM [2], [3], opens new avenues
for real-time dense reconstruction. By leveraging depth data
from the RGB-D sensor, tracking becomes computationally
cheaper and faster. Additionally, with the advance of general
purpose graphics processing units (GPGPU), those meth-
ods can even produce decent models for large-scale scenes
instantly. Regarding camera tracking component, most of
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those depth based methods use a variant of the iterative clos-
est point (ICP) [4] algorithm to align input depth data. Al-
though the ICP variants could provide dependable tracking
results in some scenarios, keeping all tracking out of the
drift and lost is still challenging, especially when the scan-
ning scenes laking sufficient geometric details or encoun-
tering large frame-to-frame motion. Thus, 3D scanning ap-
plications such as KinectFusion [2] are still very limited in
practice and require carefully chose scanning trajectory.

To improve the robustness of camera tracking, variant
methods based on extra sensors such as inertial measure-
ment unit (IMU) [5]–[7] are explored. Integrating IMU into
scanning systems is closely bounded up with sensor fusion
topics. A conventional strategy is using Kalman filter re-
lated algorithms to fuse IMU and depth based tracking to-
gether [6]. Alternatively, pushing IMU output as an energy
term into the tracking optimization function receives more
attention recently, as it forms a more general and flexible
framework. However, even kinds of optimization methods
are proposed, IMU based tracking is still not perfectly set-
tled. More specifically, IMU may relieve tracking from lost
but has limited help on tracking drift, as sensor’s transla-
tion is not directly measured but numerically computed via
integral.

We present a very robust method to easily produce 3D
scanned models in real-time. We utilize non-inertial lo-
calization sensor comes from HTC VR system [8], which
makes our system naturally suitable for most AR/VR appli-
cations. The sensor’s non-inertial localization property can
play an important role in avoiding tracking drift and lost,
which are the stubborn problems in conventional methods
even using IMU. On the other hand, different with marker
based visual tracking system, such sensor can output posi-
tions when visible to one or two calibration-free base sta-
tions. Thus, we can set up the system from scratch within
several minutes, which makes it easy to be used for cus-
tomized reconstruction tasks.

In this work, we first evaluate the property of such
localization sensor for reconstruction usage. Experiments
show that the sensor’s output location and direction is not
suitable for dense mapping due to sensor inaccuracy and un-
synchronization in large motion. Therefore, we introduce an
online pose refinement algorithm to achieve highly accurate
tracking. The main contributions of our work are summa-
rized as follows:

• We propose an alternative reconstruction system using
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low-cost and easy-to-setup hardware. We apply the
hand-eye calibration and detailed performance analy-
sis for the sensor.

• We propose a novel adaptive weighting based online
pose refinement to improve reconstruction accuracy
while retaining robustness benefited from the localiza-
tion sensor.

• We demonstrate our system in several cases, it works
well even with challenging cases.

2. System

Our hardware system is shown in Fig. 1, which consists of
two base stations and one localization sensor mounted on
the top of a Microsoft Kinect camera. The system can be
built from scratch easily in a couple of minutes by strapping
base stations onto the tripods and power them up. Note that,
the extrinsic calibration between the two base stations is not
needed. Moreover, the system can even work with only one
base station by just losing little precision.

2.1 Calibration

The localization sensor streams its pose T s in the sensor’s
coordinate to the host computer via wireless at 90Hz. T s is
a 4 × 4 matrix indicates the sensor’s absolute position and
orientation. To integrate depth into a global model, the pose
T c

i of depth camera in the world coordinate could be com-
puted by the following transformation:

T c
i = H−1T s

0
−1T s

i H (1)

Where T s
0 and T s

i are sensor’s pose in sensor’s coor-
dinate of the initial frame and ith frame, respectively. T s

0
varies with every scan task. Therefore, when starting a new
scan, it is required to keep the sensor still for several sec-
onds, then we would extract T s

0 as the median of first 50
frames. H is the matrix transform pose from sensor’s co-
ordinate to world coordinate. H indicates the relative pose
between sensor’s center and Kinect camera’s center, which
can be obtained using hand-eye calibration. Regarding cal-
ibration, we first capture dozens of IR images relative to a
fixed check-board and record corresponding sensor’s pose in

Fig. 1 Hardware system. Top row, the localization sensor (in red box)
mounted on a Microsoft Kinect. Button row, two base stations.

the meantime, then extract depth camera’s extrinsic matrices
and computeH following method of [9].

2.2 Model Integration

At time frame i in scanning, with camera intrinsic parame-
ters, we extract a vertex map ID

i in camera’s view from the
input raw depth data after undistortion and unprojection. A
corresponding normal map IN

i is generated in the meantime
using central difference. Similarly, we also generate an as-
sociated color map IC

i from the input raw RGB data. Given
the camera pose Ti, the input maps can be transformed into
the world coordinate then fused into the global scene model.
Different from conventional volumetric representation and
fusion, the global model we used is based on surfels follow-
ing the method proposed by Keller [3]. Taken integrating the
vertex map ID

i as an example, every point in ID
i can form a

new surfel with position p j ∈ R3 in world coordinate, which
is transformed using camera pose T c

i . Then p j will be inte-
grated into global scene model as:

p̄ j ←
ω̄ j p̄ j + αp j

ω̄ j + α
, ω̄ j ← ω̄ j + α (2)

Here, p̄ j and ω̄ j are associated surfel’s position and
weight in the previous fused global model using projective
association [2]. The initial surfel’s weight α is computed
as α = e−γ

2/2σ2
, where, γ is the normalized radial distance

of current depth to camera center, and σ = 0.6 is derived
empirically. Similar to the position integrating, we also in-
tegrate surfel’s normal and color into global model from the
normal map IN

i and the color map IC
i , respectively.

2.3 Sensor Performance Analysis

Different from the marker base tracking system, the pose
streaming out from the localization sensor cannot be sim-
ply treated as tracking ground truth and directly used for
global model integration due to factors such as large sen-
sor noise, streaming delay and calibration inaccuracy. We
experimentally evaluate the sensor’s localization accuracy
by scanning a desk corner. We compare reconstruction us-
ing sensor’s output T c for dense mapping directly with us-
ing ElasticFusion [3], which is the base framework of our

Fig. 2 From left to right, the results of using sensor’s output pose for
dense reconstruction and using ElastionFusion. The first row are the recon-
structed models, while the second row are colorized using vertex color.
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method. While scanning, we move camera within a small
area. Figure 2 shows result using sensor’s pose directly suf-
fering from blurring and embossing. Actually, such problem
can also be handled by extended Kalman filter (EKF), but
EKF fails in other challenging cases shown in later exper-
iments. Even though accuracy performance is unsatisfied,
the sensor’s non-inertial localization mechanism is still the
attractive property we want to seize.

3. Online Pose Refinement

According to the sensor performance analysis in Sect. 2.3,
the raw pose is not suitable for depth integration. Therefore,
we propose a novel real-time pose refinement to improve
pose accuracy while keeping sensor’s ability to avoid drift-
ing. We first explore four cues which will be used for the
refinement.

3.1 Pose Metric

(1) Sensor and Velocity Metric

Although the pose from the sensor is not accurate enough,
it is still the main guidance for truth and avoiding drifting.
We affirm that camera pose should be close to observation,
so we define a sensor metric in the energy form as:

Esen(Ti) = ‖Ti − T c
i ‖2 (3)

Where Ti is final camera pose for dense integration.
Next, we involve a velocity constraint to enforce camera’s
movement close to sensor’s, this is defined in the form:

Evel(Ti) = ‖TiT−1
i−1 − T c

i T c
i−1
−1‖2 (4)

Where Ti−1 and T c
i−1 are camera and sensor’s pose of

the previous frame, respectively. Those two constraints are
simply derived from sensor’s property. They can be used as
the initial guess. Furthermore, they are essential for avoid-
ing drift and improving robustness. However, they have a
limited improvement in accuracy.

(2) Dense Registration Metric

In order to improve accuracy, we introduce two dense reg-
istration metrics, the geometric and photometric metric into
our system. We compute the difference of input RGB-D
frame with the rendered global model using target camera
pose Ti. Specifically, we render clipped surfels in the global
model into 2D image plane using the surfel-splatting method
to obtain vertex map Vi, normal map Ni and color map
Ci. Then, the geometric energy of frame i, which indicates
the difference between points in input map ID

i and rendered
map Vi, can be computed using the sum of point-to-plane
distance:

Egeo(Ti) =
1
n

n∑
j

(
(Ti p j −Vi( p̄ j)) · Ni( p̄ j)

)2
(5)

Where p j is the 3D point observed in the input vertex

map ID
i , while p̄ j is the corresponding point in rendered

vertex map associated by using projective data association.
The photometric energy is formed by:

Epho(Ti) =
1
n

n∑
j

‖IC
i (π(Ti p j)) − Ci( p̄ j))‖2 (6)

Where IC
i is the input color image, π(p) denotes the

perspective projection and dehomogenisation operation for
a 3D point.

3.2 Energy Optimization

We utilize all metrics in Sect. 3.1 to compute accurate cam-
era pose for dense mapping. However, simply combining all
metrics together is problematic since different metrics have
varying properties. Therefore, we adopt a scalable criterion
function to adaptively adjust metric’s weight. The total en-
ergy is defined as follows:

Ei
total =

∑
m

ρ(Em(Ti)/βm) (7)

Here, ρ(r) is Cauchy’s function defined as: ρ(r) =
q2ln(1+(r/q)2)/2, which is used to criticize gross energy er-
rors and adjust each metric’s weight separately, here param-
eter q is chosen to 4 empirically. While βm is scale weight
for each metric, which is used to tune the balance between
metrics. According to [10], we can solve the following least
square system to minimize the energy in Eq. (7):

Ti = argmin
∑

m

ω2
mEm(Ti)

2/β2
m (8)

Where ω(r) = 1/(1 + (r/q)2) is named weight func-
tion [10] derived from ρ(r). We approximate Ti ∈ R4×4 with
a six-dimensional vector by linearizing the rotation, then
minimize Eq. (8) within an iterative fashion. In each itera-
tion, we update the point correspondence for geometric and
photometric terms as well as the scale weight βm. For sensor
and velocity metric, they share the same iteration wise scale
weight β1(k) = 1/k2, here k ∈ {1, 2, . . . kmax} is the current
iteration index. While dense registration metrics share one
scale weight β2(k) = 1 − 1/k2. The insight of iteration wise
weight function β is temporally adjusting metric’s impor-
tance. In the early stage, we tend to rely more on sensor’s
essential metrics to get good initial guess and limit search
region. While in the later fine tune stage, dense registration
metrics would take the more important role.

After convergence or reach maximum iteration limit,
we get the total residual energy Ei

total, which we realize
could indicate the frame’s health weights for global inte-
gration. Therefore, we reuse it for adjusting the integrating
weight for current frame. So, we rewrite α in Eq. (2) as
α = e−r2/2σ2

/max(Etotal, Ē), here Ē is low threshold bound
used to avoid small energy Etotal.

4. Experiments

We evaluate our system by reconstructing two scenes. Note
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Fig. 3 The comparison of modeling a full-size bed using different meth-
ods. From left to right, results of using ElasticFusion [3], ElastionFusion
with EKF and our method. Top two rows are results in front and close view,
receptively. The third row, the input RGB image and its gray-scale differ-
ence with a rendered image from reconstructed models using those three
methods.

that we record the scanning sequence for fair comparison
even our system is designed to run online. All experiments
are conducted using a laptop with quad-core CPU@i7-
7700HQ, 8G RAM, GTX1060 6G GPU RAM.

We first evaluate our method by reconstructing a full-
size bed. Results are shown in Fig. 3. The baseline is the
state of art dense surface reconstruction method ElasticFu-
sion [3]. We also implement an EKF based on ElasticFusion
framework to utilize sensor. While scanning, we carry out
some too close views to simulate arbitrary even ill-suited
trajectory which always occurs while inexperienced users
do scanning. ElasticFusion fails in the tracking of those ex-
treme viewpoints. With sensor fusing using EKF, the result
are better but still unacceptable, as EKF is a kind of combi-
nation of the sensor output and conventional tracking result.
While, with the novel adaptive weighting refinement, our
method generates the highest quality model.

Figure 4 shows comparison when modeling a more
challenging scene, a green screen studio. As the walls are
covered by the featureless plane green screens, this case can-
not be handled by almost all of the state of the art meth-
ods using only RGB-D sensor when moving parallel to
the screen. Obviously, ElasticFusion [3] gets poor result.
While, with the localization sensor and our novel optimiza-
tion framework, our system can still produce a high fidelity
model in this challenging case.

A more detailed evaluation statistics are shown in Ta-

Fig. 4 The comparison of reconstructing a green screen studio. From left
to right, results using ElasticFusion [3] and our method.

Table 1 Statistics of the reconstruction error of different methods using
the RMSE of the input image and rendered image from the model.

Model ElasticFusion Sensor Fixed Weight EKF Ours
Bed 8.35 6.92 6.46 6.33 5.13

Studio 6.16 5.09 5.03 4.95 4.34

ble 1 to quantitatively describe the improvement. We also
carried out a comparison between using sensor’s output di-
rect for fusion (column 3) and using fixed metric weight
optimization bypassing the adaptive weighting procedure
in Sect. 3.2 (column 4). As lack of a ground true model,
we compute the RMSE (root mean squared error) between
the input image and the rendered image of the colorized
model at the same viewpoint. Here, the RMSE is defined

as:
√∑n

k (gi
k − g

r
k)2/n, where gi

k and gr
k are 8-bit gray-scale

value (0 ∼ 255) of kth pixel in the input image and the ren-
dered image, respectively. Note that, even slightly camera
position drift or error, which always exist from the middle
of scanning, would make the rendered and the input image
with large pixel-wise match errors. Thus, we use only the
first frame of the input sequence for comparison. As the
Table 1 shown, our method has the smallest reconstruction
error.

5. Conclusion

We presented an easy-to-build setup and novel optimiza-
tion framework to robust reconstruct 3D scenes in real-
time. With the non-inertial localization sensor, our system
can handle global drift and large motion naturally compar-
ing with IMU based setups. The following novel adaptive
weighting optimization is carried out to achieve high-quality
result against inaccurate and noisy tracking result from the
sensor. With our robust system, even inexperienced users
can easily produce decent 3D models without thinking about
proper scanning trajectory.
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