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Accurate Scale Adaptive and Real-Time Visual Tracking with
Correlation Filters

Jiatian PI†,††a), Member, Shaohua ZENG†,††, Qing ZUO†, and Yan WEI†,††, Nonmembers

SUMMARY Visual tracking has been studied for several decades but
continues to draw significant attention because of its critical role in many
applications. This letter handles the problem of fixed template size in Ker-
nelized Correlation Filter (KCF) tracker with no significant decrease in the
speed. Extensive experiments are performed on the new OTB dataset.
key words: correlation filters, kernel methods, scale estimation, visual
tracking

1. Introduction

Online visual object tracking is one of the most fundamen-
tal tasks in the field of computer vision and is related to a
wide range of real-time vision applications, such as smart
surveillance systems, autonomous driving, intelligent traf-
fic control, and human-computer-interfaces. Although great
progress has been made in the past decade, it remains a chal-
lenging problem due to baffling factors, such as illumination
variations, background clutter and shape deformation.

Recent benchmark [1], [2] studies show that the top-
performance trackers are usually deep-learning based track-
ers. However, in the pursuit of ever increasing tracking per-
formance, their characteristic speed and real-time capability
have gradually faded. Except for those complicated track-
ers, recently proposed correlation filter (CF) based track-
ers [3]–[6] also have achieved appealing performance de-
spite their great simplicity and superior speed. Those track-
ers train a discriminative filter, where convolution output
can indicate the likeness between candidate and target. Be-
cause the element-wise operation in Fourier domain is equal
to the convolution operation in time domain (spatial do-
main in tracking), they evaluate the cyclically shifted can-
didates very efficiently. However, Minimum Output Sum
of Squared Error (MOSSE) tracker [3], Circulant Structure
Kernels (CSK) tracker [5], and Kernelized Correlation Fil-
ter (KCF) tracker [6], are limited to only estimating the tar-
get position with the fixed size. Discriminative Scale Space
Tracker (DSST) [4] has proposed an efficient method for es-
timating the target scale by training a classifier on a scale
pyramid, which is the best tracker in the competition [7].
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However, there is still room for improvement in translation
estimation in the DSST. Recently, Discrimination Reliabil-
ity Tracker (DRT) [13] has proposed a novel CF-based op-
timization problem to jointly model the discrimination and
reliability information. Spatial Temporal Regularized Cor-
relation Filters (STRCF) tracker [14] introduces the tempo-
ral regularization to spatially regularized discriminative CF
by online Passive-Agressive (PA) algorithm, and achieves
superior performance.

Motivated by the lasts developments on the fast
DSST [8], we incorporate the proposed scale estimation ap-
proach in the fast DSST tracker [8] into the KCF without
much computational overhead. The key contributions of this
work can be summarized as follows. Firstly, we extend the
KCF tracker with the capability of handling scale changes,
which obtains an impressive performance in accuracy. Sec-
ondly, we verify that the applied scale estimated approach
is generic and can be incorporated into the KCF tracker
framework. Finally, we perform extensive experiments on
the new OTB dataset [1], and show that the proposed tracker
achieved a very appealing performance both in accuracy and
robustness against the state-of-the-art trackers.

2. The Proposed Tracker

2.1 Translation Estimation with KCF

Recently, the tracking system based on the Kernelized Cor-
relation Filter (KCF) achieves favorable performance with
high speed. In that work, Henriques et al. [6] demonstrate
that it is possible to analytically model natural image trans-
lations, which shows that the resulting data and kernel matri-
ces become circulant under some conditions. The diagonal-
ization by the Discrete Fourier Transform (DFT) provides a
general blueprint for creating fast algorithms that deal with
translations. By considering correlation filters as classifiers,
the goal of training is to find a function f (z) = wT z that min-
imizes the squared error over samples xi and their regression
targets yi according to:

min
w

∑

i

( f (xi) − yi)
2 + λ‖w‖2, (1)

where w denotes the parameters, and λ is the regularization
parameter to prevent over fitting. The Ridge Regression has
the close-form solution according to:

w = (XT X + λI)−1XT y, (2)
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where the data matrix X has one sample per row xi and each
element of y is a regression target yi. I is an identity matrix.

To introduce the kernel functions for improving the
performance, input data x can be mapped to a non-linear-
feature space as ϕ(x), and w =

∑
i αiϕ(xi). Then the solution

to the kernelized version of Ridge Regression in the KCF
tracker is given by:

α = (K + λI)−1y, (3)

where K is the kernel matrix and α is the vector of coef-
ficients αi, that represents the solution. With the help of
circulant matrix, all the translated samples around the tar-
get can be collected for training with no significant decrease
in the speed. Given a base sample x = (x0, . . . , xn−1), all
the cyclic shift visual samples are concatenated to form the
circulant matrix X = C(x). Then the solution of α can be
expressed as follows with the various interesting properties
of circulant matrices

α̂ =
ŷ

k̂ + λ
. (4)

where α̂, ŷ and k̂ denote the DFT of α, y and k, respec-
tively. It has been proven that the kernel function of a cir-
culant kernel matrix should be unitarily invariant [6]. Al-
though dot-product, radial basis kernel and polynomial ker-
nels functions are found to satisfy this condition, we apply
the Gaussian kernel which can be expressed as follows:

kxx
′
= exp(− 1

σ2
(‖x‖2 + ‖x′ ‖2 − 2F−1(x̂∗ � x̂

′
))), (5)

where x̂ denote the DFT of the base sample x, and x̂∗ repre-
sents complex conjugation. In a new frame, the target can be
detected by the trained parameter α and a maintained base
sample x. If the new sample is z, a confidence map ytrans

can be obtained by:

ytrans = C(kxz)α. (6)

The position with a maximum value in ytrans can be pre-
dicted as new position of the target.

2.2 Scale Estimation with Fast DSST Filters

The Kernelized Correlation Filter (KCF) in Sect. 2.1 is used
for estimating the translation, then we can find the accurate
position of the target without scale change. To handle the
challenging problem of scale change, we incorporate sepa-
rate filters [8] for scale estimation. The discriminative corre-
lation filter is closely related to the MOSSE filter [3], which
produces stable correlation filters when trained on a small
number of image windows. Firstly, the MOSSE filter need
a set of training images fi, as well as a set of training out-
puts gi. Training is conducted in the Fourier domain to take
advantage of the simple element-wise relationship between
the input and the output. To find a filter that maps training
inputs to the desired training outputs, MOSSE finds a filter h
that minimizes the sum of squared error. The minimization

problem takes the form according to:

min
ĥ∗

∑

i

| f̂i � ĥ∗ − ĝi|2, (7)

where f̂i, ĝi and the filter ĥ are the Fourier transform of fi,
gi and h, respectively. ĥ∗i represents complex conjugation.
By solving for ĥ∗, a closed form expression for the MOSSE
filter is found

ĥ∗ =
∑

i ĝi � f̂ ∗i∑
i f̂i � f̂ ∗i

. (8)

where f̂ ∗i represents complex conjugation.
In the DSST, the MOSSE filter has been extended to

multi-dimensional features. Assuming the feature dimen-
sion number l ∈ {1, 2, . . . , d}, the solution for the optimal
correlation filter ĥ, which consists of one filter ĥl per fea-
ture, is obtained in the DSST as follows:

ĥl =
ĝ∗ � f̂ l

∑d
k=1 f̂ k � f̂ k∗ + λ

, (9)

where λ is the regularization parameter to prevent over fit-
ting, and ĝ∗ represents complex conjugation. To reduce the
computational cost of the scale estimation with separate fil-
ters, we use Principal Component Analysis (PCA) to reduce
the feature dimensionality. The projection matrix Rt is d̃×d,
where d̃ is the dimensionality of the compressed feature rep-
resentation. We obtain Rt by minimizing the reconstruction
error of the target template ut as similar to the fast DSST [8].
Then the compressed numerator Ãl

t and denominator B̃t of
the filter is updated as follows:

Ãl
t = ηĝ

∗Ũl
t

B̃t = (1 − η)B̃t−1 + η
∑d̃

k=1 F̃k∗
t F̃k

t ,
(10)

where Ũt = F{Rtut}, ut = (1 − η)ut−1 + η ft, F̃t = F{Rt ft},
F{} represents Discrete Fourier Transform.The correlation
scores yscale are then computed as follows:

yscale = F−1{
∑d̃

l=1 Ãl∗Z̃l

B̃ + λ
}. (11)

The scale with a maximum value in yscale can be predicted
as the new scale of the target.

2.3 Tracking Algorithm

The main steps of our tracker are presented in Algorithm 1
(see Table 1). We use two independent correlation filters for
translation and scale estimation. The KCF is only applied
for translation estimation and the discriminative correlation
filter cooperates on scale estimation. Unlike our tracker, the
DSST [8] uses separate filters for translation and scale es-
timation, which are all based on discriminative correlation
filters. In addition, we extract translation sample with fixed
size to find the target position without considering the scale,
whereas the DSST extracts translation sample according to
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Table 1 Main steps of our algorithm

Algorithm 1:Proposed tracking algorithm: iteration at time t
1: Inputs:
• A bounding box with previous target position pt−1 and scale st−1

in Image It .
• Training sample feature Xtrans

t−1 and parameter αtrans
t−1 for translation

model.
• Training scale model Ãscale

t−1 and B̃scale
t−1 .

2: Translation estimation:
• Extract a translation sample ztrans with fixed size at pt−1 in It .
• Compute the translation response ytrans using ztrans, Xtrans

t−1 and
αtrans

t−1 .
• Set pt to the target position that maximizes the response ytrans.
3: Scale estimation:
• Extract a scale sample zscale with scale st−1 at pt in It .
• Compute the scale response yscale using zscale, Ãscale

t−1 and B̃scale
t−1 .

• Set st to the target scale that maximizes the response yscale.
4: Model update:
• Extract sample feature with fixed size at pt in It to update Xtrans

t
and αtrans

t .
• Extract sample feature with scale st at pt in It to update Ãscale

t and
B̃scale

t .
5: Output:
• Estimated target position pt and scale st .
• Updated the translation model Xtrans

t , αtrans
t and scale model Ãscale

t ,
B̃scale

t .

the previous scale. Thus, we really separate the translation
and scale estimation in a way. Furthermore, the major dif-
ference between the KCF tracker and our tracker is that the
KCF tracker is unable to deal with the challenge of scale
change.

The main reasons that our algorithm performs favor-
ably can be attributed to three factors. Firstly, both the KCF
tracker and DSST have already achieved very appealing per-
formance both in accuracy and robustness against the state-
of-the-art trackers. Secondly, we apply the KCF tracker for
translation estimation independently, which obtains an accu-
rate position of the target. In addition, we take advantage of
the discriminative correlation filter in the DSST for scale es-
timation specially. Thirdly, we combine the strengths of the
KCF tracker and DSST to improve the performance. Conse-
quently, the improved algorithm is more accurate and robust.

3. Experiments

In this section, our proposed algorithm is evaluated with
other 7 state-of-the-art methods on the new OTB dataset [1].
These methods are DSST [8], CSK [5], KCF [6], Adap-
tive Structural Local Appearance (ASLA) [9], Incremental
Learning Tracker (IVT) [10], Distribution Fields Tracker
(DFT) [11] and Compressive Tracking (CT) [12]. For each
tracker, the default parameters with the source code are used
in all evaluations. We select 50 difficult and representative
ones in the OTB dataset for analysis. The proposed algo-
rithm runs at 110 frame per second (FPS) with a matlab im-
plementation on an Intel Core(TM) i5-4590 3.00 GHz CPU
with 4 GB RAM without any optimizing.

In our experiments, we use a Gaussian function to ini-
tialize the desired translation and scale filter output, respec-

Fig. 1 Precision plots over all 50 sequences. The results at error thresh-
old of 20 are used to ranking as shown in the top right corner.

Fig. 2 Success plots over all 50 sequences. The AUC scores of each plot
are used to ranking as shown in the top right corner.

tively. The regularization parameter is set to 10−4, the learn-
ing rate is set to 0.02. The bandwidth of the Gaussian kernel
σ = 0.5, spatial bandwidth for the desired translation filter
output is

√
mn/10 for a m×n target, and the standard for the

desired scale filter output is 1/16 times the number of scales
S = 33. We use the Principal Component Analysis His-
togram of Gradient (PCA-HOG) for target representation.
In order to get fair experimental results, all the parameters
are kept constant for the following experiments. To compare
the performance of different trackers, the precision plot and
the success plot with temporal robustness evaluation (TRE),
as well as in the benchmark [1], are used to rank the algo-
rithms.

Figures 1 and 2 show the ranking scores on the preci-
sion plot and success plot. Experimental results show that
our tracker achieves 59.1% on the AUC score, which is 5.7%
improvement over the KCF and 1.6% improvement over the
DSST. In addition to high accuracy, our tracker runs effi-
ciently at an average speed of 110.0 FPS, which is more
than 1.2 times faster than the DSST. Although the speed of
the KCF tracker is 252.0 FPS on average and is faster than
ours, it is not able to handle scale changes. The speeds of
the other trackers are demonstrated in Table 2.

There are many factors affect the experimental results
when evaluating tracking algorithms. For better analysis
of our tracker, we use the sequences annotated with the
other 11 attributes in the benchmark [1] to evaluate how
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Table 2 The AUC scores of success plots in 11 attributes. The best result
is highlighted in red color and the second result is highlighted in blue color.
The speeds of different trackers are shown in the last line.

Attris Ours KCF DSST CSK ASLA DFT IVT CT
FM 58.4 49.1 50.9 35.1 28.6 28.1 20.5 18.4
MB 63.5 54.0 55.4 38.5 28.7 30.7 20.9 17.5
DEF 52.8 48.6 53.8 35.8 37.5 34.2 26.1 29.4
IPR 57.8 51.8 53.7 40.0 39.9 34.1 27.8 28.2
OCC 52.3 47.2 51.6 33.7 43.2 32.6 33.2 26.7
OPR 55.8 50.9 51.7 35.6 43.9 32.8 29.7 29.3
OV 44.3 39.4 42.8 26.5 32.8 29.1 27.8 25.8
IV 60.8 57.2 61.7 42.0 49.0 34.2 31.5 30.2
BC 62.6 60.9 61.9 44.5 47.9 35.7 31.0 32.4
LR 45.4 43.5 53.9 37.1 48.8 25.8 35.5 22.2
SV 54.1 47.9 54.2 37.1 44.3 28.8 31.3 23.6
FPS 110.0 252.0 91.7 210.6 5.3 7.2 21.7 27.8

Fig. 3 Performance on (a) ‘biker’, (b) ‘bird’ and (c) ‘carScale’ sequences
by 6 trackers.

well the tracker handles different attributes. The name of
the attributes are listed as follows: fast motion (FM), scale
variation (SV), motion blur (MB), deformation (DEF), in-
plane rotation (IPR), occlusion (OCC), out-of-plane rota-
tion (OPR), out-of-view (OV), illumination variation (IV),
background clutter (BC) and low resolution (LR). The AUC
score of success plots in each attribute are demonstrated in
Table 2. According to the experimental result, the proposed
algorithm is close to the best performance to 7 of the 11
attributes. So the discriminative correlation filter can be in-
deed incorporated into the KCF tracker framework to im-
prove the scale estimation. Our tracker performs more fa-
vorable than DSST because we apply the KCF tracker to
find the optimal translation before scale estimation, which is
more accurate than the DSST and can improve the scale es-
timation. The intuitive illustration is shown clearly in Fig. 3.
However, if the scale of the target is changed abruptly and
frequently, our tracker performs unfavorably as shown in the
first row of Fig. 3. Because the scale change is estimated af-
ter the translation estimation, which performs inaccurately
when the fast move and scale change happen at the same
time.

4. Conclusion

In this paper, we propose a robust tracking algorithm which

combines the method of discriminative correlation filters
(DCF) with the Kernelized Correlation Filter (KCF) tracker.
First, we extract translation sample with fixed size to find the
initial target position without considering the scale, which
separate the translation and scale estimation. After find-
ing the initial position with the KCF, we apply the DCF
for scale estimation. Our tracker handles the problem of
fixed template size in KCF tracker without much decrease
in the speed. Finally, experiments on benchmark sequences
demonstrated that the proposed algorithm performs favor-
ably in terms of accuracy and robustness.
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[8] M. Danelljan, G. Häger, F.S. Khan, and M. Felsberg, “Discrimina-
tive Scale Space Tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.39, no.8, pp.1561–1575, Aug. 2017.

[9] X. Jia, H. Lu, and M.-H. Yang, “Visual Tracking via Adaptive Struc-
tural Local Sparse Appearance Model,” Proc. IEEE CVPR, Provi-
dence, Rhode, USA, pp.1822–1829, June 2012.

[10] D.A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental Learn-
ing for Robust Visual Tracking,” Int. J. Comput. Vision., vol.77,
no.1-3, pp.125–141, May 2008.

[11] L. Sevilla-Lara and E. Learned-Miller, “Distribution Fields for
Tracking,” 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp.1910–1917, 2012.

[12] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time Compressive
Tracking,” Proc. European Conf. on Computer Vision, Firenze, Italy,
pp.864–877, Oct. 2012.

[13] C. Sun, D. Wang, H. Lu, and M.-H. Yang, “Correlation tracking via
joint discrimination and reliability learning,” CVPR, Salt Lake City,
Utah., USA, pp.489–497, June 2018.

[14] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning spatial-
temporal regularized correlation filters for visual tracking,” CVPR,
Salt Lake City, Utah., USA, pp.4904–4913, June 2018.

http://dx.doi.org/10.1109/tpami.2014.2388226
http://dx.doi.org/10.1109/cvpr.2010.5539960
http://dx.doi.org/10.5244/c.28.65
http://dx.doi.org/10.1007/978-3-642-33765-9_50
http://dx.doi.org/10.1109/tpami.2014.2345390
http://dx.doi.org/10.1109/tpami.2016.2609928
http://dx.doi.org/10.1109/cvpr.2012.6247880
http://dx.doi.org/10.1007/s11263-007-0075-7
http://dx.doi.org/10.1109/cvpr.2012.6247891
http://dx.doi.org/10.1007/978-3-642-33712-3_62

