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Millimeter-Wave Radar Target Recognition Algorithm Based on
Collaborative Auto-Encoder

Yilu MA†a), Zhihui YE†b), Nonmembers, and Yuehua LI†c), Member

SUMMARY Conventional target recognition methods usually suffer
from information-loss and target-aspect sensitivity when applied to radar
high resolution range profile (HRRP) recognition. Thus, Effective estab-
lishment of robust and discriminatory feature representation has a signifi-
cant performance improvement of practical radar applications. In this work,
we present a novel feature extraction method, based on modified collabo-
rative auto-encoder, for millimeter-wave radar HRRP recognition. The la-
tent frame-specific weight vector is trained for samples in a frame, which
contributes to retaining local information for different targets. Experimen-
tal results demonstrate that the proposed algorithm obtains higher target
recognition accuracy than conventional target recognition algorithms.
key words: target recognition, high resolution range profile, auto-encoder,
frame-specific weight vector

1. Introduction

Target recognition still remains challenging in many practi-
cal radar applications. An effective target recognition frame-
work could greatly enhance the recognition ability of radar
system. As the high resolution range profile (HRRP) con-
sists of abundant spatial structure information and could
be obtained and processed efficiently in millimeter-wave
bands, it has been successfully applied to millimeter-wave
radar target recognition [1]. The conventional feature ex-
traction algorithms, such as primary component analy-
sis (PCA) and linear discriminant analysis (LDA), usually
focus on extracting low-dimensional features from high-
dimensional domains, which could help to preserve the po-
tential structure of targets. However, the performance of
these conventional algorithms degrade as inevitably causing
information-loss [2]. Therefore, facing unpredictable infor-
mation corruption caused by noise interference, and infor-
mation variation caused by different pitching angle and az-
imuth, it’s crucial to utilize a more effective feature extrac-
tion model to build robust and discriminatory representa-
tions.

Auto-encoder has been widely applied in many fields
and has made superior achievements in recent years. For
instance, denoising auto-encoder trains a one-hidden-layer
neural network to build robust latent representations from
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partly corrupted input data, and tries to reconstruct the ini-
tial clean version [3]. Collaborative filtering (CF) is com-
monly used in recommender systems [4], and Wu combines
denoising auto-encoder with CF theory to improve the per-
formance of the recommender system [5]. Recurrent auto-
encoder is utilized to perform sequence generation task, and
outperforms the traditional methods on both recommenda-
tion and sequence generator task [6].

In this work, a novel collaborative target recogni-
tion method, based on modified collaborative auto-encoder
(CAE), is proposed for millimeter-wave target HRRP recog-
nition. The CAE is exploited for building discriminatory
feature representations, and the MLP is utilized for recogni-
tion. The main contributions of the recognition framework
are summarized as follows: 1) the preference information
of the HRRP sample in different azimuth is taken into ac-
count when training the CAE, which could help to retain lo-
cal discriminatory features for HRRP recognition; 2) rather
than training a specific weight vector for each HRRP sam-
ple, according to the property of HRRP, the samples within
a small angular sector share the same weight vector, which
is defined as “frame-specific weight vector”. As a result,
the computation complexity could be reduced when main-
taining the advantage of the CAE. Experimental results
demonstrate that the proposed algorithm has the capabil-
ity of building more discriminatory representations for input
HRRP samples, and provide a higher recognition accuracy
for millimeter-wave radar target recognition than conven-
tional algorithms.

2. Recognition Algorithm with Collaborative Auto-
Encoder

2.1 Collaborative Auto-Encoder

The structure of CAE can be formally illustrated in Fig. 1.
Similar to the standard auto-encoder, the CAE is also repre-
sented as a one-hidden-layer neural network. The key differ-
ence is that a latent vector related to input sample is trained
at the encoding process, which makes this neural network be
a much better feature extractor for some specific application.

In the input layer, there are (I + 1) units. The first I
units are input units, and the last one is defined as sample-
specific unit, whose associated weight vector is unique for
each sample. In the hidden layer, there are H units which are
fully connected with the units in the input layer. Thus, we
define WH×I to denote the associated weight matrix between
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Fig. 1 The structure of CAE.

the input layer and the hidden layer, and VH×1 to denote
the sample-specific weight between sample-specific unit and
hidden layer. There are I units in the output layer, which
represent the reconstruction of the input sample. We define
bH×1 to represent the bias of encoding operation.

Let X = {x1, . . . , xN} represent the input dataset, where
xi ∈ RI is an independent sample. CAE first maps the input
xi to a latent representation hi, which can be computed as
follows

hi = f (wxi + vi + b) (1)

where f (·) represents the activation function of the mapping
process, w represents the associated weight matrix, and b is
the bias vector, vi represents the sample-specific weight of
xi.

The decoding operation can be seen as the reconstruc-
tion of input data, which is represented as

x̃i = f (w
′
hi + b

′
) (2)

where w
′

and b
′

represent the weight matrix and bias vector
of the output layer.

Usually, the parameters are learnt via minimizing the
following object function.

L = arg min
{∑N

i=1
‖x̃i − xi‖2 + ‖W‖22 + ‖V‖22 + ‖b‖22

}

(3)

The gradient descent is usually applied to optimize the
parameters of neural networks. The gradients for parameters
of the CAE are represented as follows

w
′
(k+1) = w

′
(k) + η

∂L
∂x̃
∂x̃
∂w

′ (4)

b
′
(k+1) = b

′
(k) + η

∂L
∂x̃
∂x̃
∂b′

(5)

w(k+1) = w(k) + η
∂L
∂h
∂h
∂w

(6)

v(k+1) = v(k) + η
∂L
∂h
∂h
∂v

(7)

b(k+1) = b(k) + η
∂L
∂h
∂h
∂b

(8)

where k and η represent the number of iteration and learning
rate, respectively.

Table 1 Training of CAE.

Input: Training samples X, Size of CAE.
1: Initialize the parameters (W, b,V)with random values.
2: Iteration k

For all samples xi ∈ RI

Compute hi and x̃i for input xi via Eq. (1) and Eq. (2);
Compute reconstruction error via Eq. (3);
Update W

′
via Eq. (4);

Update b
′

via Eq. (5);
Update W via Eq. (6);
For xi ∈ Xm

Update Vm via Eq. (7);
End for.
Update b via Eq. (8);

End for.
3: If k < K, k ← k + 1, do step2;

else End training.
Output: Optimized parameters (W, V , b).

2.2 The Recognition Algorithm for Millimeter-Wave
Radar HRRP

In this section, a stable algorithm is designed for millimeter-
wave target HRRP recognition, which utilizes the pre-
trained CAE as feature extractor to obtain low-dimensional
representations from high-dimensional HRRP data. Com-
pared with conventional feature extractors, the CAE is able
to retain the specific details of the different structure. How-
ever, we can also observe that with the increase of training
samples, the training of sample-specific weight vector will
increase the computation complexity. According to the scat-
tering center target model, the HRRP within a small target-
aspect sector without scatterers’ motion through range cells
(MTRC) can be regarded as in a frame, and preserve lo-
cal invariance. The limitation of the target-aspect change to
avoid scatterers’ MTRC is represented as

δϕ ≤ (δϕ)MTRC
Δ
=

C
2BLx

(9)

where B means the bandwidth of the radar signal, Lx and
C denote the maximum target dimension in cross range and
the speed of light, respectively [7].

Thus, when training the CAE, we divide the HRRP
samples into M different frames according to different az-
imuth, and the HRRP in one frame Xm share the same weight
vector vm, which is defined as frame-specific weight vector.
In this way, the computation complexity can be decreased,
and the advantage of CAE can be preserved.

Suppose that we have N training samples and each
sample is an I×1 vector, the number of hidden units is fixed
to H. The training samples are divided into M frames and
the unsupervised training of CAE is shown in Table 1.

The classifier we used is a multi-layer perception
(MLP), which is composed of fully connected units. The
classifier is trained with supervised learning method, and
the parameters are optimized via back-propagation method.

Noting that for each training sample xi, a correspond-
ing frame-specific weight vector vm is trained. Thus, in order
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Table 2 Training of recognition algorithm.

Input: Training samples X, Labels Y , Size of CAE, Testing samples
1: Initialize the parameters (W, b,V) with random values.
2: Optimize the parameters of CAE according to Table 1.
3: Take the latent representation h as input and label y as output;

Train the MLP classifier via BP method, optimize the parameters.
4: Compute the similarity coefficient via Eq. (10);

select vm via three most relevant xi;
encode the latent representation hte via Eq. (1).

5: Feed hte to the trained classifier, and calculate the label.
Output: Labels of the testing samples

to select an appropriate weight vector when encoding testing
sample xte, we evaluate the similarity between the testing
samples and training samples, and based on the max value
of similarity, the appropriate weight vector is assigned. The
formulation for computing the similarity is represented as

S i =
<xte, xi>

‖xte‖ ‖xi‖ (10)

where < · > represents the inner product operation, and ‖·‖
represents the modular arithmetic. The index of most rel-
evant training sample is utilized to find the corresponding
frame-specific weight vector vm for testing sample xte, and
then the representation is fed to the classifier to generate the
corresponding label. The procedure of the proposed recog-
nition algorithm is shown in Table 2.

Target-aspect sensitivity is always an important issue in
HRRP recognition, which degrades the quality of features
extracted by traditional methods. The HRRP samples can
be significantly different for single target with variable as-
pect angles. Therefore, it is tough to obtain discriminatory
and uniform feature without solving this issue. Compared
with basic AE, rather than training a fixed encoder for all
HRRP samples, the proposed CAE model takes the target-
aspect sensitivity into consideration to train the complemen-
tary frame-specific weight vector. It can be seen as an error
correction term to reduce the impact of target-aspect sensi-
tivity, so that to build a more robust feature representation
for each target. The inner-class distance could be reduced
and the local structure is preserved, thus improving the qual-
ity of extracted features.

3. Experiments and Result Analysis

High range resolution profile is the amplitude of the coher-
ent sum of the complex time signal returns from the scat-
ters in each range cell. It contains abundant information
about the radial location of the scatters and geometric struc-
ture, which can be used in target recognition. The pro-
posed algorithm is evaluated on both real HRRP data and
simulated HRRP data. To demonstrate its efficiency, the
performance of the proposed algorithm is compared with
the following 5 approaches: (1) Locality Preserving Pro-
jections (LPP); (2) Linear Local Tangent Space Alignment
(LLTSA); (3) Neighborhood Preserving Embedding (NPE);
(4) kernal PCA (KPCA); (5) Auto-encoder (AE). The ker-
nal function of KPCA is radial basis function (RBF), and 18

Fig. 2 The correlations between the testing sample and training samples.

features are retained. The dimensions of LPP, LLTSA and
NPE are fixed to 20, 15 and 15, respectively.

3.1 Experimental Results on Simulated Data

The proposed algorithm is first evaluated on the simulated
data. The frequency of the simulated radar system is fixed
to 35GHz, and the bandwidth is fixed to 500MHz. The sim-
ulated scatters are placed in different positions to simulate 3
different targets. The azimuth varies from 0◦ to 180◦ with
the step of 0.5◦, and the pitch angle varies from 25◦ to 35◦
with the step of 5◦. Finally, 3240 HRRP samples are gen-
erated. For single simulated target in one pitch angle, its
HRRPs within 2◦ can be regarded as one frame and share
the preference weight vector. 1800 samples are selected as
training samples, and the rest samples are utilized to evalu-
ate the performance. The input units are fixed 256 and 257
for AE and CAE, and 20 for the output. The learning rate is
set as 0.8, and the batch size is 10 with 50 training epochs.

Figure 2 shows the normalized correlations between
the selected HRRP sample (the 400th HRRP from pitch an-
gle of 25◦) and the others in the dataset. The first 360 val-
ues represent the correlations of target 1, the following 360
values represent the correlations of target 2, and the 360
last values represent the correlations of target 3. It can be
observed that the correlation changes with the variation of
azimuth, which reflects target-aspect sensitivity. The sam-
ples from different pitch angles keep discriminatory. On the
other hand, as shown in the top right of Fig. 2, the correla-
tion maintains stable within a small angular range. Thus,
it is reasonable to train the frame-specific weight vector for
a frame within certain azimuth, which helps to retain the
discriminatory information. Compared with training a pref-
erence weight for each sample, it also decreases computa-
tional complexity and reduces the risk of overfitting. The
most suitable weight vector for the testing sample is as-
signed according to the similarity (correlations value).

The SVM and the MLP classifier are applied to per-
form the recognition experiments, and the results are shown
in Table 3. Among the four conventional algorithms, LPP,
LLSTA and NPE obtain higher accuracies than KPCA for
both SVM and MLP classifier, which indicates that mani-
fold learning methods are effective for learning better fea-
ture representations. On the other hand, it is surprising to
see that the MLP achieves higher accuracy than the SVM.
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Table 3 The accuracies of the simulated data.

Methods SVM MLP
LPP 91.17 90.89
LLSTA 83.77 84.53
NPE 90.41 91.25
KPCA 79.37 81.38
AE 94.06 95.97
CAE 96.39 98.54

The only feature extraction algorithm based on which SVM
achieves better result is LPP, but the performance gains is
not significant. In general, the algorithms based on auto-
encoder perform better than conventional ones, especially
when feeding the extracted features to the MLP. One rea-
sonable explanation is that, we connect the CAE (AE) with
the MLP when training the MLP classifier via supervised
learning method, and the parameters of CAE (AE) are fur-
ther optimized for MMW radar HRRP recognition. Thus,
the recognition accuracies of the AE-MLP and the CAE-
MLP model are higher than the AE-SVM and the CAE-
SVM model. The main difference between CAE and AE
is the frame-specific weight vector, which is designed to be
a compensation term for extracted feature. Compared with
the result of AE, the frame-specific weight vector shows its
advantage of retaining the discriminatory structure informa-
tion, thus improving the recognition accuracy.

3.2 Experimental Results on Real Data

The CAE based algorithm is then evaluated on the measured
data, and the experimental environment is as follows. Based
on the theory that a complex target can be regarded as the
combination of scattering points, we use a number of cor-
ner reflectors settled at different positions to simulate three
different targets. The distance from the radar to the center
of simulated target is 10 meters. The background is cement
floor. The radar system works at 24GHz and the bandwidth
of transmit signal is 400MHz. We gradually change the az-
imuth from 0◦ to 180◦ to measure each target, with the step
of 1◦. Thus, each target has 180 HRRPs, and each HRRP
is a 256 × 1 vector after processing. The input units for AE
and CAE are also 256 and 257, and 20 for the output, while
the batch size is 5 with 50 training epochs and the learning
rate is 0.5.

The recognition rsults of all algorithms are shown in
Table 4. In gerneral, the results of the MLP and the SVM
are consistent. The manifold learning methods (LPP and
NPE) have the similar performance, and performs better
than KPCA. Compared with other four methods, the AE
and CAE also achieve higher accuracy, but it also takes a
longer time for the AE and CAE to train the parameters.
Besides, we can find that the CAE based algorithm achieves
the highest recognition accuracy in the experiment of real
data, which indicates that the proposed algorithm has the
capability of build better feature representations for MMW
HRRPs than conventional algorithms.

Compared with the results of simulated data, we can
observe that the accuracy of real data is little lower. It may

Table 4 The accuracies of the measured data.

Methods SVM MLP
LPP 87.31 89.25
LLSTA 82.65 84.35
NPE 85.12 87.16
KPCA 77.68 78.49
AE 93.42 94.55
CAE 94.92 95.65

be explained that although we have taken noise into account
for HRRP simulation, the real data is obtained from more
complex scenarios, and the number of training samples is
also less than simulated ones.

4. Conclusions

In this paper, a collaborative auto-encoder based feature ex-
traction algorithm is proposed to build the more discrimi-
natory and robust representation for millimeter-wave radar
HRRP. Frame-specific weight vectors are trained to benefit
the encoding of the HRRP samples. Experimental results
on both simulated data and real data demonstrate that the
CAE based algorithm can provide higher recognition accu-
racy than conventional algorithms. Further research will fo-
cus on decreasing the computational complexity of training
frame-specific weight vectors.
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