
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019
655

LETTER

Millimeter-Wave InSAR Target Recognition with Deep
Convolutional Neural Network

Yilu MA†a), Nonmember and Yuehua LI†b), Member

SUMMARY Target recognition in Millimeter-wave Interferometric
Synthetic Aperture Radiometer (MMW InSAR) imaging is always a cru-
cial task. However, the recognition performance of conventional algorithms
degrades when facing unpredictable noise interference in practical scenar-
ios and information-loss caused by inverse imaging processing of InSAR.
These difficulties make it very necessary to develop general-purpose de-
noising techniques and robust feature extractors for InSAR target recogni-
tion. In this paper, we propose a denoising convolutional neural network
(D-CNN) and demonstrate its advantage on MMW InSAR automatic target
recognition problem. Instead of directly feeding the MMW InSAR image
to the CNN, the proposed algorithm utilizes the visibility function samples
as the input of the fully connected denoising layer and recasts the target
recognition as a data-driven supervised learning task, which learns the ro-
bust feature representations from the space-frequency domain. Comparing
with traditional methods which act on the MMW InSAR output images, the
D-CNN will not be affected by information-loss accused by inverse imag-
ing process. Furthermore, experimental results on the simulated MMW
InSAR images dataset illustrate that the D-CNN has superior immunity to
noise, and achieves an outstanding performance on the recognition task.
key words: target recognition, MMW InSAR, feature extractor, denoising
convolutional neural network

1. Introduction

Target recognition appears to be key components in MMW
InSAR imaging based applications, such as indoor security,
earth remote sensing [1], and aircraft navigation and so on,
because of the advantage of good concealment performance,
all-weather condition, high-resolution, rapid and accurate
data collection. Furthermore, InSAR measures the correla-
tion between pairs of various nondirective antennas to real-
ize high-resolution instead of using a large aperture antenna
directly, that makes the system convenient to physical appli-
cations [2].

A number of sensor modelings have been developed,
and some target recognition algorithms deriving from op-
tical image processing have been applied to InSAR im-
age processing. In [3], Yun combined kernel Principle
Component Analysis (KPCA) to analyze the phase coher-
ence and backscattering coefficient, producing highly re-
liable information of interpreting land-cover. This study
also clearly proved the effectiveness of InSAR signatures
for comprehensive classification. M.E. Engdahl proposed a
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method which utilized multi-temporal InSAR data to per-
form land-cover classification, providing volume estimates
for the forested areas [4]. Chen proposed an A-CNN frame-
work which only utilized CNN layers to reduce overfitting
problem, and produced a high accuracy to SAR image target
recognition [5], [6].

However, due to the imaging mechanism and facing
numerous objects in complex scenarios, the MMW InSAR
image still suffers from artifacts, Gibbs ringing effect of
the edges, information-loss caused by the inverse imaging
procedure, noise of environment and system, which eas-
ily invalidate conventional target recognition algorithms [7].
To solve these problems, as well as to learn high-level ro-
bust feature representations, a novel denoising convolutional
neural network, called D-CNN, is proposed for MMW In-
SAR target recognition in this paper. In the proposed frame-
work, data augmentation operations are utilized to overcome
the risk of limited training data in advance. Then, different
from the conventional recognition algorithms, the D-CNN
directly utilizes visibility function samples as inputs. A fully
connected denoising structure deriving from the pre-trained
DAE is utilized to learn robust projection between visibility
function samples and intermediate images. After that, the
intermediate images are fed to the following CNNs, which
are designed to extract stable features from input and gen-
erating high-level representations. Finally the classification
result is provided by softmax classifier. As the directly uti-
lizing of visibility function samples, the proposed frame-
work could effectively avoid being affected by information-
loss and Gibbs ringing accused by inverse imaging process,
thus preserving detailed information of the target. Experi-
mental results on the MMW InSAR image dataset verify the
effectiveness of the proposed method.

2. The Related Work

2.1 MMW InSAR Model

The simplified geometric relationship of interferometry is
illustrated in Fig. 1. The MMW InSAR system is usually
composed of the binary interferometers, and it measures the
correlation value between pairs of spatially separated anten-
nas, which is named visibility function. The visibility func-
tion is defined as:
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Fig. 1 Interference measurement schematic
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where (ξ, η) = (sin θ cos φ, sin θ sin φ) is the polar coordinate
with respect to the spatial axes (x, y), f0 is the center fre-
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) is the fringe washing function. In the

ideal digital signal processing case, the radiation source S is
dispersed into N small parts (ΔS n), and the fringe washing
function could be ignored, thus the visibility function Vd,q

can be represented as:

Vd,q =

N∑
n=1

T (n) Fd (n) F∗q (n) e− jK(Rd
n−Rq

n)ΔS n (2)

where T (n) represents target brightness temperature image,
Fd (n) and Fq (n) are the normalized antenna pattern of an-
tenna d and q. Rd

n and Rq
n are the distances between the ra-

diation source S and antennas. K is circular wavenumber,
defined as 2π

λ
, and λ is the center wavelengths of the electro-

magnetic radiation received by InSAR imaging system. As
the phase compensation is need in near-field, the distance
will be processed accurately to establish a new G matrix.
Thus, Eq. (2) can be expressed as Eq. (3) in the matrix form.

VM×1 = GM×NTN×1 (3)

G (m, n) = Fmd (n) F∗mq (n) e− jK(Rmd
n −Rmq

n ) (4)
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(
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where md and mq represent the antennas’ position when
generating the mth sample of visibility function. The ob-
tained visibility function V is a complex-valued matrix.

2.2 Neural Networks

The definitions of DAE and CNN are briefly introduced in
this section.

1. DAE: A typical DAE is composed of an encoder and
a decoder. Let x be the given input vector, the operation of
the DAE can be defined as follows.

Corruption: it adds binary mask noise n to x.

x̂ = x + n (7)

Encoder: it maps the input vector to the hidden repre-
sentation h.

h = f (W1 x̂ + b1) (8)

Decoder: it reconstructs y from hidden representation.

y = g(W2h + b2) (9)

where W1 and W2 denote the weight matrix, b1 and b2 are
bias vectors, f and g are nonlinear activation function.

2. CNN: Let the Ol−1
i (x, y)(i = 1, . . . , I) represents the

unit at the position (x, y) of i−th input feature map in the
previous layer, and Ol

j(x, y)( j = 1, . . . , J) represents the unit
at the position (x, y) of j−th output feature map in this layer.
Each step of CNN can be represented as follows.

Convolution: it computes the convolution of input with
a bank of convolution kernels (filters) kl

ji.

Ol
j(x, y) = f (Vl

j(x, y))

= f

(
I∑

i=1

F−1∑
u,v=0

kl
ji(u, v) · Ol−1

i (x − u, y − v) + bl
j

)
(10)

where f is the nonlinear activation function, F denotes the
size of filter, and b j denotes the bias, I is the number of input
feature maps, and l represents the present layer.

Max-Pooling: It outputs the maximum value on a
group of units located within a local patch.

Ol+1
j (x, y) = max

u,v=0,...,P−1
Ol

j(x · s + u, y · s + v) (11)

where P is the pooling size and s denotes the stride of pool-
ing windows.

3. Dataset and Learning for D-CNN

In this section, we first give a brief introduction to the sim-
ulated MMW InSAR image dataset. Then we present the
details of specific configurations and leaning of D-CNN.

3.1 Dataset Simulation

In this paper, all the simulated images are generated from
43 models in 3 classes, which are composed of 16 types of
planes, 14 types of tanks and 13 types of ships. Five spec-
ified view angles are manually selected to cover the surface
and capture major features of the models, generating 215
different images. For the purpose of augmenting the dataset,
each posture is anticlockwise rotated from 0◦ to 180◦, and
the interval of the angle we set is 15◦. Therefore, we ob-
tain 2580 images in total. The near field based imaging al-
gorithm is applied to each image. Some thumbnails of the
simulated MMW InSAR images are presented in Fig. 2.

3.2 Learning for D-CNN

Inspired by the perceptual learning archetype, a data-driven
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target recognition algorithm is designed to learn robust fea-
ture representations from visibility function samples, which
is called D-CNN. The D-CNN consists of two parts: the
fully connected denoising layers deriving from pre-trained
DAE and the CNNs. The structure of D-CNN is depicted in
Fig. 3.

The size of the complex-valued input is 50 × 50. Since
the neural networks we used operate on real-valued inputs
and parameters, complex data are separated in to real com-
ponents in the input vector. Thus, the 50 × 50 complex-
valued matrix is reshaped to a 5000 × 1 real-valued vector.

For the first part, a DAE is firstly trained to depress the
noise interference. The hidden structure (5000 × 2500 ×
1000 × 2500) of the DAE is utilized to approximate the
projection between visibility function samples and images,
generating 2500 × 1 real-valued vectors. After that, these
real-valued vectors are reshaped to the 50 × 50 intermediate
images.

For the second part, the reshaped intermediate image
is fed to the CNNs. The first convolutional layer (C1) con-
volves 8 filters of 13 × 13. The second convolutional layer
(C2) convolves 16 filters of 3×3, followed by a max-pooling
layer (P1). The third convolutional layer (C3) convolves
32 filters of 15 × 15 again followed by a max-pooling layer
(P2). The stride of the filters is 1 and the pooling size is
2 × 2. Then the reshaped output is fed to the softmax classi-
fier layer which contains 128 neurons, followed by an output
layer contains 3 neurons.

After the separately pre-training, we integrate the de-
noising layers and the CNNs to build a new network (D-
CNN) between visibility function samples and correspond-
ing labels. Labeled visibility function samples are again uti-
lized to further fine-tune the parameters of the whole net-
work.

Let L be the recognition error, the trainable parame-
ters is fine-tuned by the gradient decent of subset, and the

Fig. 2 Thumbnails of simulated MMW InSAR images

Fig. 3 The illustration of networks for manuscript

derivatives can be deduced according to the chain rule.
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The δli is defined as following in fully connected layers.
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However, if the l−th layer is convolutional layer, the
error term δli is related to the error term δl+1

j of the pooling

layer. The δli can be represented as:

δli(x, y) =
∂Ol

i

∂Vl
i

· δl+1
j (x, y) (14)

If the l−th layer is a pooling layer, the δli can be repre-
sented as:

δli(x, y) =
J∑

j=1

F−1∑
u,v=0

kl+1
ji (u, v) · δl+1

j (x + u, y + v) (15)

After computing the error term in each layer, the up-
dated rule of weight and bias is represented as:

Wl
(k) = Wl

(k−1) + ηδ
l
i · Ol−1

i (16)

bl
(k) = bl

(k−1) + ηδ
l
i (17)

where k is the number of iterations, η is the learning rate.
We initially fix the learning rate to 0.01 and reduce it during
the training, with the reduction of 10−5 after each epoch.

4. Experiments and Result Analysis

In this section, we demonstrate the performance of the D-
CNN and give the comparison with three traditional target
recognition algorithms: Stacked Auto-encoder (SAE), Lo-
cal Binary Patterns (LBP) and CNN.

In the first experiment, we evaluate the immunity to
noise for all algorithms. The Gaussian noise whose inten-
sity varies from 0 to 0.30 is added to the MMW InSAR im-
ages as well as the visibility function samples. The recog-
nition accuracy across the noise level are shown in Fig. 4,

Fig. 4 Recognition accuracy at variable noise levels
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Table 1 Recognition accuracy with different ratios

(a) Noise free
Ratio 60% 70% 80% 90%

D-CNN 88.12 92.07 95.63 96.87
CNN 80.26 85.93 90.96 91.74
SAE 61.81 69.74 74.85 77.53
LBP 59.28 68.45 73.47 76.10

(b) Noise intensity is 0.3
Ratio 60% 70% 80% 90%

D-CNN 73.52 79.16 85.43 90.48
CNN 60.42 66.36 69.05 79.76
SAE 56.25 64.69 66.32 73.66
LBP 49.41 52.67 57.44 67.25

Table 2 Confusion matrix (σ=0.05)

Method D-CNN CNN SAE LBP
Type Plane Tank Ship Plane Tank Ship Plane Tank Ship Plane Tank Ship
Plane 93.47 3.05 3.48 88.29 5.39 5.32 72.34 12.06 15.60 73.76 12.06 14.18
Tank 1.57 95.10 3.33 3.82 90.98 5.2 9.81 71.56 18.63 11.76 73.53 14.71
Ship 0.75 1.40 97.85 2.47 4.09 93.44 10.68 14.13 75.19 9.78 15.95 74.27

which demonstrates that D-CNN has a superior immunity
to noise over other methods. First of all, it can be observed
that the D-CNN consistently achieves higher recognition ac-
curacy than other three methods for all noise intensities, and
reaches 96.87% in the case of noise free. Furthermore, it
should be noted that the recognition accuracy of the other
three algorithms decrease rapidly with the increasing noise
intensity, whilst the accuracy of the D-CNN is always over
90%, that obviously shows its strong robustness to noise.
The gap between D-CNN and other two deep learning mod-
els is about 20% when the noise intensity reaches 0.3.

In the second experiment, we evaluate the performance
of D-CNN with different usage ratios (from 60% to 90%)
of training samples. The experiments are performed in two
different conditions (noise free and the noise intensity is
0.30), and the results are shown is Table 1. It’s clearly
observed from Table 1 that the proposed algorithm outper-
forms than other traditional methods. First, we can find that
with the same usage ratio of training samples, the D-CNN
performs much better than traditional ones, indicating that
the D-CNN can learn much more useful features from visi-
bility function samples whilst the traditional methods suffers
from information-loss and artifact caused by InSAR inverse
imaging procedure. On the other hand, it can be observed
from Table 1 that when utilizing 60% of training samples,
the recognition accuracy of D-CNN is 8% and 13% higher
than that of other methods in these two conditions. Con-
sidering the fact that it’s hard to acquire abundant samples
for training and the number of testing samples is usually
huge, the proposed D-CNN is better for MMW InSAR tar-
get recognition task.

The confusion matrix of D-CNN, CNN, SAE, and LBP
is listed in Table 2. 80% of MMW InSAR samples are uti-
lized for training, and noise intensity is fixed to 0.05. We
can find that the D-CNN outperforms than other three meth-
ods for all types target, which indicates that it is more robust
than other methods.

5. Conclusions

In this paper, a novel denoising algorithm named D-CNN

is designed to recognize the MMW InSAR target. In con-
trast to conventional algorithms which act on the InSAR out-
put images, the D-CNN directly utilizes the visibility func-
tion samples as input, and recasts the target recognition as a
data-driven supervised learning task. Therefore, the D-CNN
automatically learns the robust feature representations from
the visibility function samples, and will not be affected by
information-loss or Gibbs ringing accused by inverse imag-
ing process. Furthermore, the denoising structure deriv-
ing from DAE can effectively suppress the noise interfer-
ence from the measurement process. Experimental results
demonstrate that D-CNN is able to provide higher recogni-
tion accuracy and has superior immunity to noise than other
recognition algorithms, especially when the training sam-
ples are limited.
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