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Fast Superpixel Segmentation via Boundary Sampling and
Interpolation

Li XU†, Bing LUO††a), Members, Mingming KONG††, Bo LI†††, and Zheng PEI††, Nonmembers

SUMMARY This letter proposes a fast superpixel segmentation
method based on boundary sampling and interpolation. The basic idea is
as follow: instead of labeling local region pixels, we estimate superpixel
boundary by interpolating candidate boundary pixel from a down-sampling
image segmentation. On the one hand, there exists high spatial redundancy
within each local region, which could be discarded. On the other hand, we
estimate the labels of candidate boundary pixels via sampling superpixel
boundary within corresponding neighbour. Benefiting from the reduction
of candidate pixel distance calculation, the proposed method significantly
accelerates superpixel segmentation. Experiments on BSD500 benchmark
demonstrate that our method needs half the time compared with the state-
of-the-arts while almost no accuracy reduction.
key words: superpixel, acceleration, sampling, interpolation

1. Introduction

Superpixel segmentation aims at obtaining local regions
with appearance and location consistency. It is used to ex-
tract perceptually meaningful element regions, which sig-
nificantly reduces the computation complexity for other
computer vision applications, such as object segmenta-
tion [1], [2], object detection [3] and recognition [4].

In recent years, existing superpixel segmentation meth-
ods have made a great progress in terms of high segmen-
tation accuracy and computation efficiency. For exam-
ple, it evolves from the polynomial time, i.e., Ncut [5],
O(N

3
2 ) and Meanshift [6] (O(N2)) to linear time complex-

ity O(N), such as SLIC [7], Turbopixel [8], SSS [9] and
LSC [10]. Although the latter ones obtain high performance
with linear time, they still require multiple iteration and
update until convergence, which handles realtime applica-
tions. Recently, Achanta et.al propose a simple non-iteration
clustering-based superpixel to overcome the limitation of
multiple iteration and disjoint region generation [11]. How-
ever, it also need calculate the distance between each pixel to
its corresponding connected seed. Intuitively, superpixel ac-
curacy is not determined by inner region in it, but its bound-
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Fig. 1 The subjective results for original SLIC, step s = 2 (SLIC2), s = 3
(SLIC3) and s = 4 (SLIC4).

ary pixels. Therefore, reducing the distance calculation of
superpixel’s interior is critical for improving computational
efficiency.

In this letter, we propose a novel fast and efficient su-
perpixel algorithm by reducing the distance calculation of
redundant pixels. To obtain accurate segmentation, a bound-
ary interpolation method is proposed based on the sampling
boundary pixels. Specifically, we first down-sample the
original image evenly to obtain the superpixel segmentation
of small scale image. Then, after identifying the candidate
boundary pixel around the sampled points, we obtain accu-
rate superpixel boundary via a novel boundary interpolation
method. Benefited from reducing the distance calculation of
inner redundant pixels, it significantly improves the compu-
tation efficiency. In Fig. 1, we show some subjective results
for original SLIC and three versions of our method, i.e., step
s = 2 (SLIC2), s = 3 (SLIC3) and s = 4 (SLIC4). It shows
that our methods almost have the same segmentation results
with original SLIC.

Feng et al. [12] also propose a down-sampling strategy
to cluster pixels on the alternating points of an image. The
distance computation is only reduced half of image pixels by
their 4-labeled neighbors. In contrast, the proposed method
estimates only superpixel boundary by interpolating candi-
date boundary pixel from a down-sampling image segmen-
tation. Hence, high spatial redundancy within each local
region are discarded, which results into fewer pixel distance
calculation than method [12].

Our main contributions are concluded as follows:

• propose a new superpixel segmentation method based
on boundary sampling and interpolation.

• propose an accurate nearest neighbour based interpola-
tion method to fit different sampling scale.
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2. Proposed Method

2.1 Sampling and Interpolation-Based Superpixel

Our basic idea is that there exists large redundancy in super-
pixel interior with regional consistency. In other words, ad-
jacent pixels in superpixel interior have the same labels and
ones in superpixel borders have different labels. We could
only label the boundary pixels to improve computational ef-
ficiency. Then an interpolation-based superpixel method is
proposed, which consists of two key steps:

• Extracting superpixel boundary on subsampled image.
• Interpolating candidate pixels on original image.

Specifically, given step s, we subsample original image
along horizontally and vertically every s pixels. Then, we
perform existing superpixel segmentation such as SLIC [7],
LSC [10] and SNIC [11], etc, to obtain the rough superpixel
segmentation. Let L as the labeling assignment for subsam-
pling image. Two shift and difference operations are ap-
plied to extract superpixel boundaries. Intuitively, interior
region in superpixel has same label and shifts 1 pixel will
not change the labels. However, boundary pixels have dif-
ferent labels with their neighbour pixels, which are non-zero
after shifting and differential operation.

As shown in Fig. 2, given subsampled image, the su-
perpixel boundary is mapping to the original image, which
could be defined as B. We utilize nearest neighbor interpola-
tion to avoid the redundant computation in interior regions.
However, this method will result in the sawtooth edge due to
the inaccurate pixel labeling, as show in Fig. 3. In order to
obtain the accurate and smooth boundary, we slide an K ×K
patch, where K = 2s + 1, on sampling boundary set B to
cover the whole candidate superpixel boundary set. Then,
the candidate boundary set is defined as Bc, which is the
trajectory pixels on sliding patch except B. We define the
set B ∪ Bc as the external region and other pixels constitute
the interior region, as shown in Fig. 2 (c). Due to the con-
sistency of interior pixels, we could discard the large label
redundancy to improve the complexity.

For each p ∈ B, the candidate pixels associated with

Fig. 2 (a) Input image. (b) Superpixel segmentation for subsampling im-
age. (c) Labels mapping to original scale. (d) and (e) Label assigning for
candidate boundary pixels. In the K × K square, pixel will be assigned as
the label of adjacent cluster center with small distance.

Algorithm 1 Superpixel segmentation algorithm.
Require:

Input image I;
Sampling scale s;

Ensure:
Pixel labels L;

1: Perform SLIC on subsampling image I;
2: Obtain the superpixel sampling boundary B;
3: Obtain candidate boundary set Bc;
4:
5: for i ∈ Bc do
6: if |Vi| > 1 then
7: L(i)← arg minp D(Ii, Ip), Ip ∈ Vi;
8: else
9: L(i)← L(p), Ip ∈ Vi;

10: end if
11: end for

p are defined as pc ∈ Bc, which is the adjacent region in
K × K square. It makes sure that unsampled boundary pixel
could be assigned correct labels. In details, pc ∈ Bc will be
associated with multiple subsampled pixels and labeled as
the label of pixel p with minimum distance by formulation:

li = arg min
p

D(Ii, Ip), Ip ∈ Vi (1)

where Vi = {L(p)|, p ∈ B ∩ K × K} and is the boundary
label set associated with pixel Ii. Each candidate pixel is
assigned as the label of associated boundary pixel Ip with
minimum distance. Furthermore, pixels are inspected in a
square candidate region. We set pc as unsampled pixels.
Then, L(pc) = L(p), if |V | = 1. Otherwise, the label is
assigned by Eq. (1). The algorithm is summarized as Algo-
rithm 1.

2.2 Time Complexity

In original SLIC, computational cost depends on the number
of candidate clusters for each pixel. Except the pixels along
image boundary, each pixel calculates the distance from it-
self to the four closed cluster centers. The expected number
of candidate clusters per pixels is defined as

ES LIC =
∑

c

p(|w| = c) · c (2)

where c is the number of candidate cluster and w is the set of
pixels whose candidate clusters are with the same number.
ES LIC indicates the expected number of distance calculation.

In contrast, our method has following expression:

E =
1
s2

ES LIC +
∑
w∈Bc,c

p(|w| = c) · c (3)

Fig. 3 Illustration for generation of external region. The red sliding win-
dow is used to cover the unsampled pixels.
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Fig. 4 (a) The illustration for boundary pixel. (b) The computational
time for different sampling versions compared with the original SLIC. (c-
d) The computational time for different compactness parameters of SLIC2
(c) and SLIC4 (d), respectively.

where the second term is the number of distance calcula-
tions for boundary pixels. The pixels who participate in
the distance calculation will just locate along the superpixel
boundaries, as shown in Fig. 4 (a). For simplicity, we seg-
ment H × W image with M superpixels. Then, each patch

contains a square with side b =
√

HW
M . The image approxi-

mately contains H
b − 1 rows, W

b − 1 columns boundary ties,
which contain ( H

b −1) ·W · s and ( W
b −1) ·H · s pixels, respec-

tively, where s is stride length. Hence, the proportion of the
candidate boundary set Bc can be approximately expressed

as (2
√

M
HW − H+W

HW ) · s. Each unlabeled pixel will inspect the
distance to no more than 8 adjacent boundary pixels. Then,
Eq. (3) can be calculated as

E =
ES LIC

s2
+(2

√
M

HW
−H +W

HW
)·s·

8∑
c=4

p(|w| = c)·c (4)

On the one hand, it can be seen that the computation
complexity E will raise along with the increasing superpixel
number M. On the other hand, increasing the sampling scale
will not always reduce the computational time, especially
for the equilibrium of the first and second term. In the ex-
periments, we give the corresponding time comparison.

3. Experiment and Analysis

We perform experiments on BSD500 segmentation bench-
mark from two perspectives: computational efficiency and
segmentation performance.

3.1 Computational Efficiency

We validate the computational efficiency with different
scales on a 3.3GHz core i5 processor with 8GB of RAM. We

set step size as s = 2, 3, 4. Figure 4 (b) shows the compu-
tational time for different sampling versions compared with
the original SLIC [7]. In experiments, we set the compact-
ness parameters for all SLIC versions as m = 20. It can be
seen that SLIC2, SLIC3, SLIC4 run faster than the origi-
nal SLIC. Specifically, SLIC [7] takes more than 0.1s for a
481 × 321 image on average. However, the average running
time of SLIC2 is close to 0.05s. Meanwhile, with the rise of
superpixel number, the running cost of SLIC2 has a slight
increase. The reason is that more boundary pixels partici-
pate into distance calculation.

Furthermore, the running time of different sampling
versions increases with the extern step from s = 2 to s = 4.
As the range K of candidate boundary regions enlarges,
it needs more time to inspect the boundary pixel labels,
which results into inferior computational efficiency. We also
compare running time of different compactness parameters
m = 1, 5, 10, 20, 30 for SLIC2 and SLIC4 with the original
SLIC in Fig. 4 (b). It shows that the running time of SLIC
is robust to the compactness parameters m. Our methods
will increase the running time as the increasing superpixel
number. Meanwhile, the lower the compactness parameter
m is, the more boundary pixels participate into distance cal-
culation. For the worst case, i.e., m = 1 and s = 4, SLIC4
is also faster than SLIC, which shows the effectiveness of
our methods. In addition, we perform our methods based
on matlab + C code without any optimization. In future, we
will improve the code via C.

The limitation of our method is that the time complex-
ity will raise along with the increasing superpixel number,
especially for large sampling step, i.e., s ≥ 4. The time cost
for SLIC4 will be higher than the original SLIC over 1000
superpixels, as shown in Fig. 4 (b). Therefore, our method
could only significantly accelerates superpixel segmentation
with small sample step s = 2, 3.

3.2 Segmentation Performance

Some subjective results are shown in Fig. 5. It shows that
our methods and the original version, i.e., SLIC, SLIC2,
SLIC3 and SLIC4 almost have the same segmentation re-
sults. Moreover, SLIC2 obtains more accurate segmentation
than SLIC for the girl’s finger. It is difficult to find any differ-
ence among the compared methods for the fish’s boundary,
which demonstrates the efficiency of our method.

In terms of objective results, three metrics, boundary
recall (BR), under segmentation error (UE) and achievable
segmentation accuracy (ASA) [13] are used to measure seg-
mentation performance. Figure 6 shows that our three ver-
sions, SLIC2, SLIC3 and SLIC4 all obtain the approximate
segmentation performance with the original SLIC. Espe-
cially for BR, the proposed methods are all slightly higher
than SLIC. The reason is that the labels of candidate bound-
ary pixels is assigned as the minimum distance to the adja-
cent labeled pixels, which is more accurate than the mini-
mum distance to the adjacent superpixel centers of the orig-
inal SLIC. Meanwhile, we note that the larger sampling step
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Fig. 6 The objective results for our methods and the original SLIC in terms of BR, UE and ASA.

Fig. 5 Some subjective results of compared methods with 100, 300 and
600 superpixels, respectively.

obtains higher boundary recall, i.e., SLIC4 has higher BR
value than SLIC3. The more candidate boundary pixels will
fit object boundary more accurate, which leads higher BR.
In contrast, the performance of the proposed methods are
slightly lower than the original SLIC in terms of UE and
ASA. This is because that these two metrics measure the
regularity of superpixel regions. While, method based on
pixel distance to adjacent superpixel centers could generate
more regular superpixel regions than the proposed method,
which is based on the distance between the candidate pixel
to the associate subsampling pixel with minimum distance.

4. Conclusions

This letter proposes a fast superpixel segmentation method
based on boundary sampling and interpolation. Instead of
labeling local region pixels, we estimate superpixel bound-
ary by interpolating candidate boundary pixel from a down-
sampled image segmentation. Firstly, high spatial redun-
dancy within each local region have been discarded. Then
we estimate the labels of candidate boundary pixels via sam-
pled superpixel boundary within corresponding neighbour.
Due to the reduction of candidate pixel distance calculation,
our method significantly accelerates the superpixel segmen-
tation. Experiments on BSD500 benchmark demonstrate
our method needs half the time compared with state-of-the-
arts while almost no accuracy reduction.
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“Slic superpixels compared to state-of-the-art superpixel methods,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol.34, no.11, pp.2274–2282, 2012.

[8] A. Levinshtein, A. Stere, K.N. Kutulakos, D.J. Fleet, S.J. Dickinson,
and K. Siddiqi, “Turbopixels: Fast superpixels using geometric
flows,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol.31, no.12, pp.2290–2297, 2009.

[9] P. Wang, G. Zeng, R. Gan, J. Wang, and H. Zha, “Structure-sensitive
superpixels via geodesic distance,” International journal of computer
vision, vol.103, no.1, pp.1–21, 2013.

[10] Z. Li and J. Chen, “Superpixel segmentation using linear spectral
clustering,” CVPR, pp.1356–1363, 2015.
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