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Generation of Efficient Obfuscated Code through Just-in-Time
Compilation

Muhammad HATABA†∗a), Member, Ahmed EL-MAHDY†,††, Nonmember, and Kazunori UEDA†††, Member

SUMMARY Nowadays the computing technology is going through a
major paradigm shift. Local processing platforms are being replaced by
physically out of reach yet more powerful and scalable environments such
as the cloud computing platforms. Previously, we introduced the OJIT
system as a novel approach for obfuscating remotely executed programs,
making them difficult for adversaries to reverse-engineer. The system ex-
ploited the JIT compilation technology to randomly and dynamically trans-
form the code, making it constantly changing, thereby complicating the
execution state. This work aims to propose the new design iOJIT, as an
enhanced approach that patches the old systems shortcomings, and poten-
tially provides more effective obfuscation. Here, we present an analytic
study of the obfuscation techniques on the generated code and the cost of
applying such transformations in terms of execution time and performance
overhead. Based upon this profiling study, we implemented a new algo-
rithm to choose which obfuscation techniques would be better chosen for
“efficient” obfuscation according to our metrics, i.e., less prone to security
attacks. Another goal was to study the system performance with different
applications. Therefore, we applied our system on a cloud platform running
different standard benchmarks from SPEC suite.
key words: cloud computing security, dynamic compilation, obfuscation,
optimization transformations, side-channels

1. Motivation

With the emergence of new computing technologies, such
as cloud computing, fog computing and Internet of things
(IoT), we need to rethink the way we execute our programs.
Often, these new platforms are not totally governed by the
end user. Hence comes trustworthiness doubts and security
concerns [1]. Relying solely on cryptographic key encryp-
tion is not enough because at some point of the processing
time decryption could be done remotely, thereby opening all
defenses for inside attackers. Thus we proposed the use of
the security-by-obscurity paradigm, which depends on hid-
ing system internals from attackers via some sort of obfus-
cation to confuse attackers.

2. Threat Model

Our main concern is the widely infamous side-channel at-
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tacks [4] which could be mounted to a SCARE attack [16]
(Side-Channel Attacks Reverse-Engineering); a threat typ-
ically present in remote execution platforms such as the
cloud computing environment.

Hardware Assumption: we assume that an attacker
would be able to surreptitiously implant himself inside the
computing environment either via intrusion mechanisms or
the attacker himself being a legitimate user of the platform
or even a cloud administrator. Then, he would try to access
the shared physical resources and examine its usage patterns
to learn information about the execution trace of the running
programs. He could even examine physical properties of the
system such as power consumption, electromagnetic radia-
tion or even sound emissions to infer knowledge about the
executed instructions.

Software Assumption: we assume that the attacker
does not have access to the binary itself or prior knowledge
about the victim program or how it was compiled, but he
can run malicious applications to probe its runtime statistics
hoping that the code behavior would be producible under
the same circumstances and the same input data, then he
may predict the execution trace of the program or reverse-
engineer it.

3. Related Work

Most countermeasures to impede side-channel attacks fall
into two main categories: (1) eliminate the information leak-
age itself by means of hardware shielding modifications or
adding more access controls, e.g: [5]. (2) eliminate the cor-
relation between the leaked information and the protected
program. This could be done by designing the software to be
isochronous, having a constant execution time regardless of
input data, but clearly this is not practical. On the contrary,
non-isochronous techniques try to introduce random noise
to the code execution such as NOP or sleep instruction, but
this is easily detectable in cache and power analysis attacks.
Further compiler based techniques may involve variable la-
tency instruction [8] or branch eliminations [9]. Other tech-
niques investigated software diversity to thwart cache-side
channels [10]. But most of these techniques focused on pro-
tecting secret data rather than the code itself. There are ob-
fuscation techniques to impede disassembling software such
as [12] and [11], but most of these techniques are applied
statically and may not be satiable for a remote-setup such as
the cloud.

On the other hand, our software-based system which
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provides defense against reverse engineering by means of
dynamically yet randomly obfuscated code diversification,
which entails probabilistic protection against analysis tools,
tailored to input program characteristics in a simple yet
effective technique, verified by software complexity mea-
sures.

4. OJIT Background

Code obfuscation was introduced quite a while ago [6]. It
is widely popular among virus and malware developers to
evade virus scanners and protection programs via hiding
the true propose of the executed code. OJIT [2] used the
same concepts to dynamically produce functionally equiva-
lent versions of a running program, but they differ in their
appearance and behavior, as per our metrics, making them
very complicated for an attacker to understand or reverse-
engineer.

We built our obfuscation system as an extension to
the JIT compiler of the LLVM compilation framework [7],
which both open-source and platform-independent. More-
over, LLVM has multiple front-end and back-end compiler
capabilities that support a wide range of high-level program-
ming languages such as the C family and an even wider
range of hardware architectures. That’s why we choose for
our system to work primarily on the LLVM IR code level.
All of these characteristics makes our system generic and
quite suitable for remote execution platforms such as the
cloud computing.

We modified the Execution Engine of LLVM, forcing it
to call the obfuscated JIT compiler (OJIT) every time a com-
pilation unit (typically a module or a function) is invoked,
such that every time we JIT a function/module, we effec-
tively obfuscate it. Thus, we utilize the jitting time in adding
more distortion to the observable total running time. Most
of these obfuscation techniques are based on the standard
LLVM compiler optimizations called transformation passes.
We also developed more innovative techniques in [3].

For simplicity back then, we developed an algorithm to
select a random set of a random size of obfuscation passes to
be applied in a random order to the input program. In most
cases, the resulting obfuscated code versions were quite dif-
ferent from the original code and from each other as well.
This type of code diversification was measured in terms
of software complexity metrics such as instruction count,
branch count and decision points along with the more com-
plicated similarity metric measured by Stanford’s (MOSS)
system [14]. In addition, we predicted that this diversifica-
tion would typically result in execution time changes be-

Fig. 1 iOJIT compilation steps.

tween different code versions as a result of code behavior
being changed, so we measured that as well.

Nevertheless, the OJIT system was adequate but not
optimal; that is, in some occasions the resulting obfuscated
code was not that very different from the original one be-
cause the system did not choose the most effective obfusca-
tion transformations according to our metrics, since the se-
lection process was merely random. For example, the OJIT
system would choose loop related transformation for a pro-
gram which had no loops or recursive function transforma-
tions when none existed. That is why we needed a more
efficient way to examine the input code and refine the set
of selectable transformations that would produce a greater
change in the obfuscated versions as per the metrics we dis-
cussed earlier.

Algorithm 1 Pseudocode of iOJIT Algorithm
1: INPUT: Profiling Data (T ), Threshold , Length
2: OUTPUT: Obfuscation Sequence PS L

3: Pi ← 0, Ps ← 0, k ← 0, PB ← 0
4: while k < Length do
5: Pi ← PB, Candidates← ∅, TB ← T (Pi, Ps)
6: for all Pj ∈ Passes do
7: TN ← T (Ps, Pj), ΔT ← ((TN − TB)/TB) × 100
8: if |ΔT | ≥ Threshold then
9: Candidates← Candidates ∪ Pj

10: PB ← Ps

11: if Candidates = ∅ then
12: Ps ← GetMax(Pi, Ps,T )
13: else
14: Ps ← Toss(Candidates)
15: k ← k + 1
16: PS L ← PS L ∪ Ps

17: end

5. Our New Enhanced System: The iOJIT

Our purpose here is to enhance the Obfuscated JIT compiler
so that it would dynamically produce efficiently obfuscated
code versions. Since our major threat (side-channel attacks)
relied mainly on statistical timing analysis of the running
code, we selected the total time as our primary metric for
the effectiveness of the obfuscation transformations. Con-
sequently, our modified system introduces a profiling step,
where we applied all possible pairs of obfuscation transfor-
mations in separate code runs to study their effect on the
input program’s execution time. This helps us to determine
the candidate effective obfuscation transformations and their
suitable order.

Figure 1 shows an overview of our proposed system’s
compilation steps. The front-end compiler takes an input
program consisting of a number of code units in its high-
level programming language form and compiles it into the
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LLVM Intermediate Representation (IR). This is fed into
our obfuscation extended JIT compiler, which then applies
a pair of transformation passes (Pass i and Pass j) and pro-
duces an obfuscated code version also in the LLVM IR. Fi-
nally, the back-end compiler generates the native code ver-
sion which is ready for execution. This process will be re-
peated until all units of a the given program are executed
and all possible transformation pairs are tested, and every
time the total execution time is measured. Hence, we have
all the profiling data needed for the following phases of our
system.

In addition, we developed the algorithm shown above
(Algorithm 1), which studies the profiling data to choose an
efficient sequence of obfuscation transformations, which re-
sults in more disruptions to the execution time of the code.
This effect is measured as a normalized percentage of the
change in execution time ΔT% after applying the transfor-
mations as shown in Eq. (1), where TN is the execution time
of the code version after applying the obfuscation transfor-
mation, and TB is the execution time of the code version
before that.

ΔT%= ((TN − TB)/TB) ×100 (1)

The algorithm starts from the pair (0,0), which corre-
sponds to the original code version where 0 means no trans-
formation is applied. Then we search all other pass pairs (0,
Pj), where Pj is the next pass number, to find out the pool
of candidate passes, which if applied, would have a tangi-
ble ΔT% (i.e. exceeding the predefined Threshold value).
Then the function Toss takes this set of candidate passes
and returns a randomly selected one of these passes Ps. If
none exists, we select the pass which had the largest ΔT%
using the function GetMax. Then, we repeat the selection
process starting from the newly introduced obfuscation pair
(Ps, Pj) until we reach the arbitrarily predefined Length of
the efficient obfuscation sequence PS L. Hence, we can ap-
ply subsets of these transformations in that order expecting
that each execution version of the code would have quite

Fig. 2 Execution times of obfuscated versions due to consecutive transformation pairs.

different execution time.

6. Experimental Results and Analysis

We applied our system to an arbitrary set of programs
selected from the standard SPEC CPU 2006 benchmarks
suite [15]. Most of these programs are integer benchmarks,
but a few are float. Some programs are written in C++, other
in plain C. The reason behind such miscellaneous selection
is to allow for a diversity of code characteristic, thus making
our system as generic as possible. For the sake of simplic-
ity, we used a small input data from the standard test data set
provided by SPEC. The platform we are working with is a
Virtual Machine having 16 cores and 16 GB RAM, operated
by CentOS 7.2, and hosted by an OpenNebula 5.4.1 cloud
environment.

Here we set an arbitrary length for the obfuscation se-
quence of 10 transformations. This can be extended or
shortened as per our obfuscation needs. From the profil-
ing step, we obtained 3D scatter graphs illustrated in Fig. 2.
These represent the execution timing after applying a set
of 41 by 41 passes. We noticed that many of these passes
are likely to be “idempotent”, i.e., applying the same pass
twice would not change the code. Aside from that, there
was quite a change in execution times, depending on the
input programs characteristics. The results are depicted in
Table 1, which shows the selected transformation numbers
and their corresponding normalized timing effect in percent-
age after applying it. We can see that in some benchmarks
the change ΔT% is quite large, such as in the 464.h264ref
benchmark, reaching up to 92% the previous execution time
(as a slowdown), in other cases there would be a speed up
of nearly −57% for that same program, with the same in-
put data, which is a drastic change. However, if this much
slowdown is undesirable, it could be mitigated by provid-
ing a predefined ceiling (or in other words, a cost or a per-
formance overhead) that a user would be willing to endure,
which would control the selection of the effective sequence.
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Table 1 Effective obfuscation sequences for each benchmark and their timing effect.

429.mcf
PS 25 24 18 12 24 16 20 34 16 9
ΔT% −10.3 −11.98 10.22 11.04 −10.24 10.51 13.53 −12.62 14.62 15.06

456.hmmer
PS 16 22 27 23 32 7 16 29 26 16
ΔT% 64.48 −10.6 −33.76 10.58 79.45 −44.11 46.2 −13.79 −29.66 72.12

458.sjeng
PS 23 4 1 2 4 11 5 31 16 7
ΔT% 22.55 18.4 −15.9 −20.04 22.15 12.45 −15.54 −12.41 73.16 −10.9

464.h264ref
PS 13 4 18 2 34 12 7 2 3 14
ΔT% 92.02 67.5 −25.79 −57.28 54.79 10.54 −42.14 −42.65 −11.43 10.31

470.lbm
PS 16 4 2 16 10 19 16 38 32 33
ΔT% 14.88 −5.3 −5.94 15.61 −7.97 −8.26 19.07 −5.36 −13.12 −14.81

473.astar
PS 16 32 11 36 12 11 9 24 11 4
ΔT% 22.59 11.88 −16.42 15.62 −18.13 19.31 −15.37 −11.47 11.24 10.15

401.bzip2-s
PS 6 7 4 12 25 32 22 28 17 11
ΔT% 15.72 47.43 132.4 10.33 −66.22 −31.25 54.21 −14.53 −17.77 49.8

401.bzip2-B
PS 16 23 39 24 4 16 5 39 16 23
ΔT% 223.91 −30.8 −53.86 −10.66 10.94 124.13 44.32 −70 235.91 −29.94

Table 2 ΔT% statistics for the 401.bzip2 benchmark over the course of 50 runs.

Code Version V16,23 V23,39 V39,24 V24,4 V4,16 V16,5 V5,39 V39,16 V16,23

μ −30.18 −56.68 −8.61 8.43 128.60 46.52 −72.38 262.47 −30.16
σ 1.33 1.27 3.44 3.92 5.19 2.2 0.73 10.82 1.81

On the other hand, from the observation of the col-
lected results, we clearly see that there are some transforma-
tions that would likely result in a notable slowdown in most
programs like pass number 16 (Alias Analysis pass). How-
ever, others have the opposite effect, resulting in a speed up
in most cases like pass number 24 (Lower Expect Intrinsic).
More interestingly, the rest of the transformations resulted in
speed up in some cases and slowdown in others like trans-
formation number 34 (loop unswitch), confirming our pre-
diction that the effect depends on the characteristics of the
input program, hence comes the need for the profiling step.

Another idea worth investigating is the effect of the in-
put data size and characteristics on the selection of the ob-
fuscation sequence. We experimented with the 401.bzip2
benchmark (also from SPEC CPU 2006 suite), with differ-
ent data sizes, the first is the small input obtained from the
standard test data set provided by SPEC and the other bigger
input is from the standard reference data set. For that pur-
pose, we collected the profiling data as shown in Fig. 1-g and
1-h, and the results were similar in both scenarios. There-
fore, the candidate passes would be also similar. However,
when applying our iOJIT system, due to the randomness in
the algorithm, the resulting obfuscation sequences were dif-
ferent as shown in the last 2 rows in Table 1. Since most
of the passes are control-flow transformations, we suspect
that either way, the selected sequence would be effective re-
gardless of the input data size, but such claim will be further
investigated in future work.

Figure 3 shows a consecutive comparison between 9
obfuscated code versions the compress function from the
401.bzip2 benchmark according to our software complex-
ity metrics we mentioned in Sect. 2. These code ver-
sions were generated by applying a pair of transforma-
tions from the candidate passes obtained from Table 1
{6,7,4,12,25,32,22,28,17,11 } taken as pair by pair, i.e. using
sequences of length of 2. That is version one is the prod-

Fig. 3 Comparing different code versions of the compress function from
the 401.bzip2 benchmark.

uct of transformation pair (6,7), version two is produced by
(7,4) and so on. The version of (0,6) was neglected, since it
just means applying transformation 6, because the number 0
stands for applying no transformation at all. Then, each ver-
sion was compared with the previous one starting from the
original code. First, we measured the code similarity using
the MOSS system shown in blue bars. Secondly, we illus-
trated how the number of branch instructions changed across
these code versions as shown in the green line. Thirdly, the
red lines shows how the total number of instructions in these
code version changed as well. The Figure shows that each
code version is quite different from the previous one even for
that short sequence. Finally, we compared these results with
the ones obtained using the old OJIT, detailed in [2], where
we did similar experiments also on the compress function
of the 401.bzip2 benchmark and the different code versions
were the product of a randomly selected set of transforma-
tion passes. We found out that the overall performance of
the new system is better in terms of execution time varia-
tions (−15 to 30% vs. −66.22 to 132.4%). Even for the
code similarity metric for the compress function, 55 to 99%,
the results are acceptable for such a small length sequence as
opposed to the variable length used in [2]. Still, we expect
the results to be improved if we applied randomly length-
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ened sequences of transformations.
In addition, in order to verify that the online perfor-

mance of the system is stable when compared with the pro-
filing phase, we ran the experiments on the 401.bzip2 bench-
mark over the course of 50 times with the big input size.
Then we collected the ΔT% statistics for the code version
produced by the selected set of transformations. Our find-
ings in Table 2 show that the mean values for ΔT% noted
as μ in Table 2, are comparable to the ΔT% collected in
the profiling phase in the last row of Table 1 for the corre-
sponding code versions (i.e. neglecting the first column val-
ues in Table 1, which corresponds to the single transforma-
tion case, discussed above). In addition, the resulting stan-
dard deviation values, noted as σ in Table 2, are also within
reasonable margins, meaning that our measurement error is
almost negligible. Therefore, we can claim that the obfus-
cation sequence generated in the profiling phase is suitable
across runs.

7. Conclusion and Future Work

In this paper we introduced an enhancement to an earlier
system that uses obfuscation through JIT compilation to
thwart side-channel attacks. In particular, we added a pro-
filing step and an optimization algorithm to help choose
the more efficient obfuscation transformations in accordance
with the input program characteristics. We tested our system
on a cloud platform running a variety of standard bench-
marks from the SPEC CPU 2006 suite. Our newly intro-
duced system achieved improvements, when compared with
the old OJIT, in terms of execution time and code appear-
ance changes yet retaining the system’s dynamic random-
ness feature, rendering the code unintelligible for reverse
engineering via statistical analysis or decompilation tools.

For future work, we plan to employ smarter selection
algorithms, perhaps in the realm of machine learning. In
fact, we hope be able to eliminate the need for the profiling
phase. This would enable us to obfuscate the code on a finer-
grain (function or module) level. We also plan to test the
iOJIT in real attack scenarios. We also have plans to protect
the compiler itself against tampering.
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Appendix A: iOJIT Transformations

The iOJIT system uses a set of transformation as shown in
the following table. We label each transformation with a
number, that was referenced earlier in the paper. For more
information on their operations, please refer to [7].

Table A· 1 List of used transformations.

#Trans. Pass Name #Trans Pass Name
1 Basic Alias Analysis 2 CFG Simplification
3 Reassociation 4 GVN pass
5 DCE 6 Constant Propagation
7 Instruction Combining 8 Aggressive Dead Code Elim.
9 Mem. Copy Optimization 10 Promote Mem. To Reg.
11 Dead Instruction Elimin. 12 Indirect Variable Simplify
13 LICM 14 Sinking
15 Instruction Namer 16 Alias Analysis Evaluator
17 De-linearization 18 Partially Inline Lib. Calls
19 Tail Call Elimination 20 Unreachable Block Elimin.
21 Break Critical Edges 22 Early CSE
23 GVN with (false) input 24 Lower Expect Intrinsic
25 Lower Invoke 26 Instruction Simplifier
27 Jump Threading 28 Stack Protector
29 Scalar Replicate Aggregates 30 Flatten CFG
31 Verfier 32 Demote Reg. To Mem.
33 Lower Switch 34 Loop Unswitch
35 Loop Rotate 36 Loop Deletion
37 Loop Unroll 38 Dead Store Elimination
39 SCCP 40 GC Lowering
41 Dwarf EH
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